• No results found

Effekter på hälsa och miljö av högfluorerade ämnen

In document Luftföroreningar i Botkyrka kommun (Page 45-48)

Högfluorerade ämnens hälso- och miljöfarliga egenskaper

3.3 Effekter på hälsa och miljö av högfluorerade ämnen

3.3.1 Hälsoeffekter

Kunskap om högfluorerade ämnens skadliga effekter baseras till största del på observationer i experimentella djurstudier. I studier på däggdjur är vanliga observerade effekter påverkan på kroppsvikten, effekter på levern, förändrade nivåer av sköldkörtelhormon, påverkan på fettmetabolismen samt försämrad tillväxt, utveckling och överlevnad hos avkomman (Borg och Håkansson 2012, Lau 2012). Andra effekter som observerats för enskilda högfluorerade ämnen inkluderar uppkomst av tumörer samt påverkan på immunsystemet och utvecklingen av bröstkörtlar (Borg och Håkansson 2012). Dock saknas toxikologiska data för många högfluorerade ämnen. Generellt förefaller långkedjiga högfluorerade ämnen vara mer potenta än kortkedjiga i försöksdjur på grund av att de har en längre uppehållstid i kroppen (Lau 2015). I djurstudier inträffar de tidigaste indikationerna på skadliga effekter (”Lowest Observed Adverse Effect Level”, LOAEL) vid dosnivåer omkring 0,1 mg/kg kroppsvikt/dag motsvarande serumhalter runt 17-19 µg/ml (ATSDR 2015, Borg och Håkansson 2012). Dessa halter överstiger de halter som vanligtvis återfinns i blodet hos människor, även högexpo-nerade. Påverkan på immunsystemet och bröstkörtelutvecklingen har setts i försöksdjur vid höga ng/ml-blodserumnivåer, i nivå med vissa högexponerade grupper, men fler studier behövs för att kunna fastställa hur allvarliga dessa förändringar är och deras relevans för människor (Borg och Håkansson 2012).

Observationsstudier på människor (epidemiologiska studier) har gjorts på högexponerade grupper, främst i USA, samt på människor med ”normala” exponeringsnivåer. De

hög-exponerade grupperna inkluderar arbetare i produktionsanläggningar för högfluorerade ämnen samt människor som exponerats för höga halter av PFOA via förorenat dricksvatten. Det starkaste sambandet som kunnat observeras inom alla grupper är ett samband mellan ökade blodserumhalter av PFOS/PFOA och ökade halter av totalkolesterol, LDL-kolesterol (det

”dåliga” kolesterolet) samt urinsyra i blodet (ATSDR 2015, Frisbee et al. 2010, Lau 2015).

Vidare har i en grupp av 69 000 människor som exponerats för PFOA-förorenat dricksvatten kopplingar möjligen hittats mellan ökade blodserumhalter av PFOA och bland annat sköld-körtelsjukdomar, ulcurös kolit, cancer i testiklar och njurar samt högt blodtryck under graviditet (Lau 2015). Det finns motstridiga studier gällande samband mellan ökade blodserumhalter av högfluorerade ämnen och bland annat minskad födelsevikt hos barn, påverkan på immunförsvaret, vissa cancerformer samt neurologiska effekter hos barn (Lau 2015). I en nyligen avslutad utvärdering av PFOA ansåg Echas vetenskapliga kommitté för riskbedömning (”Committe for Risk Assessment”, RAC) att det epidemiologiska underlaget för PFOA inte var tillräckligt robust gällande ovanstående effekter för att kunna användas kvantitativt i riskbedömningssammanhang (Echa 2015).

3.3.2 Hälsobaserade riktvärden

Det saknas idag rättsligt bindande gränsvärden för högfluorerade ämnen i mat och dricks-vatten inom Sverige och EU. Dock så har Europeiska Livsmedelssäkerhetsmyndigheten (European Food Safety Authority, Efsa) samt livsmedelsverket tagit fram riktvärden på EU- nivå respektive svenska nivå.

Efsa gjorde 2008 en riskvärdering av PFOS och PFOA (Efsa 2008). Denna riskvärdering resulterade i riktvärden i form av tolerabelt dagligt intag (TDI) för PFOS på 150 ng PFOS/kg kroppsvikt/dag samt för PFOA på 1 500 ng PFOA/kg kroppsvikt/dag. Riktvärdet för PFOS baserades på förändringar i fettmetabolismen samt påverkan på nivåer av sköldkörtelhormon i apor vid dosen 0,15 mg PFOS/kg kroppsvikt/dag (LOAEL). Den högsta dos där inga skadliga effekter kunde observeras (”No Observed Adverse Effect Level”, NOAEL) i denna studie var 0,03 mg PFOS/kg kroppsvikt/dag med en korresponderande blodserumhalt på 13-15 µg/ml.

Riktvärdet för PFOA baserades på levereffekter i råttor vid dosen 0,3 mg/kg kroppsvikt/dag.

För övriga högfluorerade ämnen finns ännu inga TDI-värden på grund av ett otillräckligt dataunderlag (Glynn och Sand 2014). Sedan 2008 har dock nya toxikologiska data på PFOS, PFOA och andra högfluorerade ämnen tillkommit. Detta har resulterat i att Efsa inlett en översyn av de rekommenderade riktvärdena för PFOS och PFOA, vilket kan leda till sänkta riktvärden, samt även inkluderat andra högfluorerade ämnen i processen (EU-kommissionen 2015). I USA har nyligen ett icke-bindande riktvärde (”Minimal Risk Level”, MRL) tagits fram för intag av PFOS och PFOA på 30 ng/kg kroppsvikt/dag respektive 20 ng/kg kropps-vikt/dag baserade på effekter på immunsystemet (ATSDR 2015) och som är signifikant lägre än Efsas nuvarande riktvärden.

Livsmedelsverket har efter upptäckterna av högfluorerade ämnen i dricksvatten i Sverige tagit fram ett hälsobaserat riktvärde och en hälsobaserad åtgärdsgräns för högfluorerade ämnen i dricksvatten (Livsmedelsverket 2015). Dessa baseras på Livsmedelsverkets föreskrifter

riktvärde överskrids uppmanas gravida kvinnor att inte dricka vattnet (Livsmedelsverket 2015). Vid överskridande av Livsmedelsverkets åtgärdsgräns på 90 ng/l för Σ PFAA7 uppmanas dricksvattenleverantörer att vidta åtgärder snarast för att sänka halten av högfluorerade ämnen i dricksvattnet till så låga halter som är praktiskt möjligt under åtgärdsgränsen (Livsmedelsverket 2015). De uppmätta halterna av högfluorerade ämnen i dricksvatten (Tabell 4) innebär således att vattnet i Kallinge och Hamre inte bör drickas samt att samtliga dricksvatten redovisade i Tabell 4 kräver åtgärder för att reducera halterna av högfluorerade ämnen. En eventuell sänkning av Efsas rekommenderade riktvärde skulle kunna leda till att Sveriges rikt- och åtgärdsgränsvärden sänks ytterligare.

3.3.3 Miljöeffekter

Högfluorerade ämnen har i experimentella försök visat viss toxicitet mot vattenlevande organismer. Studier på fisk, kräftdjur och alger visar att giftigheten generellt sett ökar med ökande kolkedjelängd (Giesy et al. 2010, Hoke et al. 2012, Figur 3a). PFOS och PFOA är de mest studerade varianterna av högfluorerade ämnen (Giesy et al. 2010) men det finns även viss information om andra högfluorerade ämnen, främst kortkedjiga ersättare till PFOS och PFOA (Kjølholt et al. 2015).

Akuta effekter av PFCA och PFSA kan observeras i vatten vid halter på mg/l- och g/l-nivå och på längre sikt i vissa fall på µg/l-nivå (Giesy et al. 2010, Guanghui och Peijnenburg 2013, Kjølholt et al. 2015). Det finns också data som visar att fluortelomerer förefaller vara cirka 1000 gånger mer giftiga för akvatiska organismer än PFCA (Giesy et al. 2010, Mitchell et al.

2011, Figur 3b). Av de arter som studerats är fisk troligtvis den minst känsliga för högfluorerade ämnen (Hoke et al. 2012).

I studier av högfluorerade ämnen på fåglar har PFOS har visats vara mest potent av de högfluorerade ämnen för vilka man kunnat påvisa några skadliga effekter (Borg och Håkansson 2013). I en reproduktionstoxicitetsstudie på vaktel kunde sänkt överlevnad i avkomman observeras vid en halt av PFOS i dieten på 10 mg/kg (0.77 mg PFOS/kg

kroppsvikt/dag) (Borg och Håkansson 2012). Vid en exponering direkt i ägget hos kyckling har en försämrad kläckningsförmåga setts vid halter ner till 0.1 mg PFOS/kg ägg (Borg och Håkansson 2012).

3.3.4 Miljöbaserade gränsvärden

I underlaget till EUs miljökvalitetsnorm (”Environmental Quality Standard”, EQS) för PFOS i vatten enligt vattendirektivet (2000/60/EG) har det gränsvärde för PFOS i sötvatten som kan betraktas som säker (”Predicted No Effect Concentration”, PNEC) satts till 36 000 ng/l på kort sikt (”Maximal Annual Concentration”, MAC-EQS) baserat på effekter i kräftdjur och där en säkerhetsfaktor på 100 tagits i beaktande (EU-kommissionen 2011). Motsvarande gränsvärde för PFOS på lång sikt (”Annual Average”, AA-EQS) har satts 230 ng/l, också baserat på effekter i kräftdjur, och där en säkerhetsfaktor på 10 tagits med i beräkningarna (EU-kommissionen 2011).

Fisk som innehåller höga halter av högfluorerade ämnen skulle kunna utgöra en risk för fiskätande djur som mink, utter och fågel, via så kallad sekundär förgiftning via närings-kedjan. I underlaget till EU-miljökvalitetsnormen för PFOS i vatten har därför också ett PNEC för PFOS gällande sekundär förgiftning via näringskedjan tagits fram och uppskattats till 33 µg/kg föda (EU-kommissionen 2011). Detta PNEC-värde grundas på hormonella effekter observerade i apor, samma effekt som gett upphov till Efsas gällande riktvärden för PFOS (Efsa 2008).

Figur 3 Effektnivåer (LC50 och EC50) för högfluorerade ämnen i fisk (A) och daphnia (B) i relation till olika kolkedjelängder för PFSA (PFAS), PFCA och fluortelomerer (FTCA). Cirklarna visar sulfonamider och alkoholer som inte inkluderats i regressionsanalyserna. Från Giesy et al. (2010).

3.4 Hälso- och miljörisker med uppmätta halter av högfluorerade

In document Luftföroreningar i Botkyrka kommun (Page 45-48)