• No results found

POPULÄRVETENSKAPLIG SAMMANFATTNING

Munhålan är en mycket komplex miljö som vi inte reflekterar över så ofta. Många viktiga funktioner i munnen kan vi till stor del tacka saliven för. Saliv består av 99 % vatten, och den resterande delen består av en mångfald av komponenter, såsom proteiner, kolhydrater, fetter och salter, som har viktiga funktioner. Mitt arbete har främst fokuserat på den viktiga roll som salivens proteiner utgör.

I saliven har man hittills hittat över 1000 olika proteiner och dessa har många varierande funktioner, varav en del överlappar varandra. Exempel på viktiga funktioner är antimikrobiell aktivitet som påverkar den mångfald av bakterier som också finns i saliven, smörjande egenskaper som underlättar tal och när vi tuggar, samt att motverka syra-angrepp från bakterier.

Protein består av små beståndsdelar som kopplas samman till långa kedjor. De små beståndsdelarna, s.k. aminosyror, kan ha olika struktur och därmed olika egenskaper. Exempelvis kan de vara laddade/hydrofila (älska vatten) eller vara hydrofoba (dvs. sky vatten). Aminosyra-kedjans uppbyggnad; hur lång den är samt hur den veckar sig, har stor betydelse för proteinets funktion och egenskaper. De hydrofoba och hydrofila aminosyrorna i proteinet leder till att proteinet dras till gränsytor där båda sorter av aminosyror trivs, exempelvis mellan tandytan och saliven. Proteinet har då adsorberat; dvs. fäst vid, en yta.

I munnen finns många olika typer av ytor, exempelvis slemhinnan, tandytan samt även material som används för dentala rekonstruktioner. På dessa ytor fäster salivproteinerna och den film som då bildas kallas pellikel. Pellikeln har många viktiga funktioner; bl.a. har den en inverkan på vilka bakterier som fäster till ytorna som senare bildar plack. Plack kan, om det inte tas bort, orsaka hål i tänderna eller tandlossning. Genom att förstå och kunna förutspå

66

pellikelns sammansättning och uppbyggnad samt hur komponenterna i filmen växelverkar med varandra vore det möjligt att utveckla nya och bättre metoder för plackkontroll.

I denna avhandling undersöks pellikel-bildningen i olika nivåer av komplexitet. Dels har inbindningen från enskilda salivproteiner undersökts för att förstå vilka grundläggande krafter som är viktiga vid filmbildningen. Därtill har system bestående av flera komponenter undersökts för att ge insikt i interaktioner mellan olika proteiner under filmens uppbyggnad. I studierna har ytans egenskaper, på vilken komponenterna binder, visat sig ha stor inverkan på filmen som bildas; dels med avseende på hur mycket protein som fäster på ytan men även på hur hårt proteinerna sitter fast. På liknande sätt som pellikeln byggs upp kan man bygga en film bestående av flera proteinlager (multilager). En sådan multilager-uppbyggnad påverkas av egenskaperna hos de samverkande komponenterna, samt av ytan. Hur de adsorberade filmerna påverkas av en tensidlösning (SDS; en typ av tvättmedelsmolekyl som finns i tandkräm) har också undersökts. Man fann då att delar av de adsorberade proteinfilmerna lossnade från ytan. Vi kunde även se att genom att adsorbera flera komponenter efter varandra på samma yta, kan man minska fraktionen av enskilda proteiner som lossnar från ytan vid exponering för SDS. Detta kan bidra till att styra sammansättningen hos filmen till exempel öka relativa andelen av speciella proteiner i filmen och därmed få en ökad effekt av deras funktioner.

För att kunna undersöka pellikelns sammansättning krävs att man kan få hela filmen att lossna från tandytan. För att möjliggöra detta har vi visat att genom att gnugga tandytan med en liten fiber-kudde indränkt i 0.5 % SDS lösning kan man få hela pellikeln att lossna från tandytan. Dessutom har vi visat att sammansättningen på pelliklar från olika dentala material (emalj, titan-implantat och akryl-plast) skiljer sig åt, vilket därmed även kan leda till skillnader i sammansättningen av placket och därmed utvecklandet av orala sjukdomar.

67

ACKNOWLEDGEMENTS

This work would not have been possible without the help of so many people, and I think most of them are aware of their importance. Special thanks are in order to:

Thomas and Lisa, my supervisors. Lisa, I don’t think many PhD students have been so fortunate as to share office with a supervisor, and also so many laughs. Thank you for sharing your knowledge about the oral field, giving me input on the clinical relevance of my work. Thomas, I envy your wide experience and great knowledge of surface chemistry. Our scientific discussions have been of great value to me, and it is a comfort to known that your door is always open for stupid questions.

Olof, Marité and Ulla for good scientific collaboration, and also for a helpful hand when needed. Zoltan, for expert help on complex chemistry and the english language. Marie, for many interesting conversations in between experiments. PhD students at BML/T; Anna, Gabriela, Jildiz, Linda, Peter, Sebastian, although our projects are far apart, we still have many things in common. Members of the Biointerface group and staff at BML/T for discussions, support and help in the labs.

Past and present staff at the Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, where I started my PhD. Professor Krister Nilner is particularly acknowledged for encouraging words and interest in my work. Staff at the Department of Oral Biology, especially Ulla-Britt; your vast knowledge of gel electrophoresis has been priceless. I don’t think I ever asked a question that you couldn’t answer.

My family of course; mamma och pappa, Sanne, älskade Morgan och Kevin, även om ni inte har någon direkt koll på vad jag sysslat med har ni alltid varit så stolta över mig. Det har hjälpt att driva mig framåt även i svåra

68

stunder. Ni har ställt upp när, var och hur jag än behövt er! Mina vänner för att ni fortfarande finns kvar efter detta kraftprov på vänskap!

Financial support from the Knowledge Foundation (KK stiftelsen, Biofilms- research centre for bioniterfaces), Swedish Patent Revenue Fund for Research in Preventive Dentistry, Research grants from Malmö University and the Institute for Research and Competence Holding AB (IRECO) is gratefully acknowledged.

69

REFERENCES

1 M. Edgar, C. Dawes, D. O'Mullane, Saliva and oral health, British Dental Association, London, 2004.

2 C. Dawes, G.N. Jenkins, C.H. Tonge, The nomenclature of the integuments of the enamel surface of teeth. Br Dent J 115 (1963) 65-8.

3 D.I. Hay, The adsorption of salivary proteins by hydroxyapatite and enamel. Arch Oral Biol 12 (1967) 937-46.

4 M. Hannig, A. Joiner, in:The teeth and their environment- physical, chemical and biochemical influences. R.M.E. Duckworth, Karger AG, Basel, Switzerland, 2006, p. 29- 64.

5 U. Lendenmann, J. Grogan, F.G. Oppenheim, Saliva and dental pellicle - a review. Adv Dent Res. 14 (2000) 22-8.

6 W.L. Siqueira, W. Zhang, E.J. Helmerhorst, S.P. Gygi, F.G. Oppenheim, Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6 (2007) 2152-60.

7 R. Vitorino, M.J. Calheiros-Lobo, J.A. Duarte, P.M. Domingues, F.M. Amado, Peptide profile of human acquired enamel pellicle using MALDI tandem MS. J Sep Sci 31 (2008) 523-37.

8 R. Vitorino, M.J. Calheiros-Lobo, J. Williams, A.J. Ferrer-Correia, K.B. Tomer, J.A. Duarte, P.M. Domingues, F.M. Amado, Peptidomic analysis of human acquired enamel pellicle. Biomed Chromatogr 21 (2007) 1107-17.

9 M. Yoshinari, T. Kato, K. Matsuzaka, T. Hayakawa, T. Inoue, Y. Oda, K. Okuda, M. Shimono, Adsorption behavior of antimicrobial peptide histatin 5 on PMMA. J Biomed Mater Res B Appl Biomater 77 (2006) 47-54.

10 P. Valenti, G. Antonini, Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci 62 (2005) 2576-87.

11 R. Ihalin, V. Loimaranta, J. Tenovuo, Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 445 (2006) 261-8.

70

12 C. Hannig, B. Spitzmuller, S. Knausenberger, W. Hoth-Hannig, E. Hellwig, M. Hannig, Detection and activity of peroxidase in the in situ formed enamel pellicle. Arch Oral Biol 53 (2008) 849-58.

13 C. Hannig, B. Spitzmuller, M. Hannig, Characterisation of lysozyme activity in the in situ pellicle using a fluorimetric assay. Clin Oral Investig (2008) 15-21.

14 K. Haberska, O. Svensson, S. Shleev, L. Lindh, T. Arnebrant, T. Ruzgas, Activity of lactoperoxidase when adsorbed on protein layers. Talanta 76 (2008) 1159-64.

15 R.V. Soares, T. Lin, C.C. Siqueira, L.S. Bruno, X. Li, F.G. Oppenheim, G. Offner, R.F. Troxler, Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol 49 (2004) 337- 43.

16 R.V. Soares, C.C. Siqueira, L.S. Bruno, F.G. Oppenheim, G.D. Offner, R.F. Troxler, MG2 and lactoferrin form a heterotypic complex in salivary secretions. J Dent Res 82 (2003) 471-5.

17 C. Wickström, C.E. Christersson, J.R. Davies, I. Carlstedt, Macromolecular organization of saliva: identification of "insoluble" MUC5B assemblies and non-mucin proteins in the gel phase. Biochem J 351 (2000) 421-8.

18 I. Iontcheva, F.G. Oppenheim, R.F. Troxler, Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res. 76 (1997) 734-43.

19 I. Iontcheva, F.G. Oppenheim, G.D. Offner, R.F. Troxler, Molecular mapping of statherin- and histatin-binding domains in human salivary mucin MG1 (MUC5B) by the yeast two-hybrid system. J Dent Res. 79 (2000) 732-9.

20 T. Sandberg, H. Blom, K.D. Caldwell, Potential use of mucins as biomaterial coatings. I. Fractionation, characterization, and model adsorption of bovine, porcine, and human mucins. J Biomed Mater Res A (2008)

21 W. Norde, Colloids and Interfaces in Life Science, Marcel Dekker, New York, 2003. 22 W. Norde, Adsorption of proteins from solutions at the solid liquid interface. Adv

Colloid Interface Sci.25 (1986) 267-340.

23 J. Arends, W.L. Jongebloed, The enamel substrate-characteristics of the enamel surface. Swed Dent J 1 (1977) 215-24.

24 J. Svensson, Recombinant amelogenin, Pure and Applied Biochemistry, Lund University, 2008.

25 A.H. Weerkamp, H.M. Uyen, H.J. Busscher, Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res 67 (1988) 1483-7.

26 H.J. Busscher, D.H. Retief, J. Arends, Relationship between surface-free energies of dental resins and bond strengths to etched enamel. Dent Mater 3 (1987) 60-3.

27 P.-O. Glantz, On wettability and adhesiveness, GWK Gleerup, Lund, 1969.

28 F.Z. Saleeb, P.L. de Bruyn, Surface properties of alkaline earth apatites. Electroanal. chem. interface electrochem. 37 (1972) 99-118.

71

29 P. Tengvall, I. Lundstrom, Physico-chemical considerations of titanium as a biomaterial. Clinical Materials 9 (1997) 115-34.

30 L. Meirelles, F. Currie, M. Jacobsson, T. Albrektsson, A. Wennerberg, The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23 (2008) 641-7.

31 T. Sawase, R. Jimbo, K. Baba, Y. Shibata, T. Ikeda, M. Atsuta, Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin Oral Implants Res 19 (2008) 491-6.

32 L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23 (2007) 844-54.

33 F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, B. Kasemo, A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Coll and Surf B: Biointerfaces 24 (2002) 155-70.

34 S. Arvidsson, A. Askendal, P. Tengvall, Blood plasma contact activation on silicon, titanium and aluminium. Biomaterials 28 (2007) 1346-54.

35 H. Nygren, P. Tengvall, I. Lundstrom, The initial reactions of TiO2 with blood. J Biomed Mater Res 34 (1997) 487-92.

36 R.Q. Frazer, R.T. Byron, P.B. Osborne, K.P. West, PMMA: an essential material in medicine and dentistry. Journal of lond-term effects of medical implants 15 (2005) 629- 39.

37 L. Shi, R. Ardehali, K.D. Caldwell, P. Valint, Mucin coating on polymeric material surfaces to suppress bacterial adhesion. Coll and Surf B: Biointerfaces 17 (2000) 229-39. 38 T. Arnebrant, in:Biopolymers at interfaces. M.E. Malmsten, Marcel Dekker, New York,

2003, p. 811-55.

39 M. Cardenas, T. Arnebrant, A. Rennie, G. Fragneto, R.K. Thomas, L. Lindh, Human saliva forms a complex film structure on alumina surfaces. Biomacromolecules 8 (2007) 65-9.

40 M. Cárdenas, U. Elofsson, L. Lindh, Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: an in situ ellipsometry and atomic force microscopy study. Biomacromolecules 8 (2007) 1149-56.

41 O. Santos, J. Kosoric, M.P. Hector, P. Anderson, L. Lindh, Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ

ellipsometry. J Colloid Interface Sci 318 (2008) 175-82.

42 I.E. Svendsen, T. Arnebrant, L. Lindh, Human palatal saliva: Adsorption behaviour and the role of low-molecular weight proteins. Biofouling 20 (2004) 269-77.

43 L. Lindh, P.-O. Glantz, I. Carlstedt, C. Wickström, T. Arnebrant, Adsorption of MUC5B and the role of mucins in early salivary film formation. Colloids Surf B Biointerfaces 25 (2002) 139-46.

72

44 L. Lindh, P.-O. Glantz, N. Strömberg, T. Arnebrant, On the adsorption of human acidic proline-rich proteins (PRP-1 and PRP-3) and statherin at solid/liquid interfaces. Biofouling 18 (2002) 87-94.

45 I.C. Hahn Berg, L. Lindh, T. Arnebrant, Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM. Biofouling 20 (2004) 65-70.

46 D.I. Hay, The interaction of human parotid salivary proteins with hydroxyapatite. Arch Oral Biol 18 (1973) 1517-29.

47 E.C. Moreno, M. Kresak, D.I. Hay, Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem 257 (1982) 2981-9.

48 S. Elangovan, H.C. Margolis, F.G. Oppenheim, E. Beniash, Conformational changes in salivary proline-rich protein 1 upon adsorption to calcium phosphate crystals. Langmuir 23 (2007) 11200-5.

49 D.J. Thornton, N. Khan, R. Mehrotra, M. Howard, E. Veerman, N.H. Packer, J.K. Sheehan, Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9 (1999) 293-302.

50 T. Sandberg, J. Carlsson, M.K. Ott, Mucin coatings suppress neutrophil adhesion to a polymeric model biomaterial. Microsc Res Tech 70 (2007) 864-8.

51 K. Kawasaki, M. Kambara, H. Matsumura, W. Norde, Protein adsorption at polymer- grafted surfaces: comparison between a mixture of saliva proteins and some well-defined model proteins. Biofouling 19 (2003) 355-63.

52 K. Kawasaki, M. Kambara, H. Matsumura, W. Norde, A comparison of the adsorption of saliva proteins and some typical proteins onto the surface of hydroxyapatite. Colloid and Surfaces B: Biointerfaces 32 (2003) 321-34.

53 J.H. Teichroeb, J.A. Forrest, L.W. Jones, J. Chan, K. Dalton, Quartz crystal microbalance study of protein adsorption kinetics on poly(2-hydroxyethyl methacrylate). J Colloid Interface Sci 325 (2008) 157-64.

54 J.R. Lu, S. Perumal, X. Zhao, Surface-induced unfolding of human lactoferrin. Langmuir 21 (2005) 3354-61.

55 J.R. Lu, M.J. Swann, L.L. Peel, N.J. Freeman, Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Langmuir 20 (2004) 1827- 32.

56 M. Wahlgren, T. Arnebrant, M.A. Paulsson, The adsorption from solutions of beta- lactoglobulin mixed with lactoferrin or lysozyme onto silica and methylated silica surfaces. J Colloid Interface Sci 158 (1993) 46-53.

57 M. Wahlgren, T. Arnebrant, I. Lundström, The adsorption of lysozyme to hydrophilic silicon oxide surfaces: comparison between experimental data and models for adsorption kinetics. J Colloid Interface Sci 175 (1995) 506-14.

58 A. Yin, H.C. Margolis, Y. Yao, J. Grogan, F.G. Oppenheim, Multi-component adsorption model for pellicle formation: The influence of salivary proteins and non- salivary phospho proteins on the binding of histatin 5 onto hydroxyapatite. Arch Oral Biol (2005) 102-10.

73

59 J. Mårtensson, H. Arwin, I. Lundström, T. Ericson, Adsorption of lactoperoxidase on hydrophilic and hydrophobic silicon dioxide surfaces: an ellipsometric study. J Colloid Interface Sci 155 (1993) 30-6.

60 M. Edgerton, P.A. Raj, M.J. Levine, Surface-modified poly (methyl methacrylate) enhances adsorption and retains anticandidal activities of salivary histatin 5. J Biomed Mater Res 29 (1995) 1277-86.

61 A. Carlén, A.-C. Börjesson, K. Nikdel, J. Olsson, Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 32 (1998) 447-55.

62 M. Hannig, A.K. Khanafer, W. Hoth-Hannig, F. Al-Marrawi, Y. Acil, Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 9 (2005) 30-7.

63 Y. Yao, J. Grogan, M. Zehnder, U. Lendenmann, B. Nam, Z. Wu, C.E. Costello, F.G. Oppenheim, Compositional analysis of acquired enamel pellicle by mass spectrometry. Arch Oral Biol 46 (2001) 293-303.

64 M. Rykke, T. Sonju, Amino acid composition of acquired enamel pellicle collected in vivo after 2 hours and after 24 hours. Scand J Dent Res 99 (1991) 463-9.

65 T. Sönju, G. Rölla, Chemical analysis of the acquired pellicle formed in two hours on cleaned human teeth in vivo. Caries Res 7 (1973) 30-8.

66 R. Gocke, F. Gerath, H. von Schwanewede, Quantitative determination of salivary components in the pellicle on PMMA denture base material. Clin Oral Investig 6 (2002) 227-35.

67 C. Hannig, M. Wasser, K. Becker, M. Hannig, K. Huber, T. Attin, Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle in situ. J Biomed Mater Res A 78 (2006) 755-61.

68 C. Hannig, K. Huber, I. Lambrichts, J. Graser, J. D'Haen, M. Hannig, Detection of salivary alpha-amylase and lysozyme exposed on the pellicle formed in situ on different materials. J Biomed Mater Res A 83 (2007) 98-103.

69 M. Edgerton, M.J. Levine, Characterization of acquired denture pellicle from healthy and stomatitis patients. J Prosthet Dent. 68 (1992) 683-91.

70 J. Tanner, A. Carlén, E. Söderling, P.K. Vallittu, Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforces composites. J Biomed Mater Res B Appl Biomater 66 (2003) 391-8.

71 M. Hannig, M. Balz, Influence of in vivo formed salivary pellicle on enamel erosion. Caries Res 33 (1999) 372-9.

72 W. Norde, J. Lyklema, Protein adsorption and bacterial adhesion to solid surfaces: a colloid-chemical approach. Colloid and Surfaces 38 (1989) 1-13.

73 P.O. Glantz, T. Arnebrant, T. Nylander, R.E. Baier, Bioadhesion--a phenomenon with multiple dimensions. Acta Odontol Scand 57 (1999) 238-41.

74 H.J. Busscher, H.C. van der Mei, Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11 (1997) 24-32.

74

75 L. Vroman, Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surface Sci 16 (1969) 438-46.

76 H.J. Busscher, M.v.d. Kuijl, J. Haker, R. Kalicharan, H.C.v.d. Mei, E.C.I. Veerman, A.V.N. Amerongen, J Dent Res. 71 (1992) 601.

77 M. Johnsson, M.J. Levine, G.H. Nancollas, Hydroxyapatite binding domains in salivary proteins. Crit Rev Oral Biol Med. 4 (1993) 371-8.

78 F. Bernsmann, N. Lawrence, M. Hannig, C. Ziegler, H. Gnaser, Protein films adsorbed on experimental dental materials: ToF-SIMS with multivariate data analysis. Anal Bioanal Chem (2008) 545-54.

79 P. Schaaf, J.C. Voegel, in:Biopolymers at interfaces. M.E. Malmsten, Dekker, New York, 2003, p. 345-66.

80 G. Decher, J.D. Hong, J. Schmitt, Buildup of ultrathin multilayer films by a self- assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin solid films 210/211 (1992) 831-5.

81 Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117 (1995) 6117- 23.

82 A. Dedinaite, M. Lundin, L. Macakova, T. Auletta, Mucin-chitosan complexes at the solid-liquid interface: multilayer formation and stability in surfactant solutions. Langmuir 21 (2005) 9502-9.

83 O. Svensson, L. Lindh, M. Cardenas, T. Arnebrant, Layer-by-layer assembly of mucin and chitosan--Influence of surface properties, concentration and type of mucin. J Colloid Interface Sci 299 (2006) 608-16.

84 K. Ariga, Y. Lvov, in:Biopolymers at interfaces. M.E. Malmsten, Marcel Dekker Inc., New York, 2003, p. 367-92.

85 O. Etienne, C. Picart, C. Taddei, Y. Haikel, J.L. Dimarcq, P. Schaaf, J.C. Voegel, J.A. Ogier, C. Egles, Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48 (2004) 3662-9.

86 M. Wahlgren, C.A.-C. Karlsson, S. Welin-Klintström, in:Biopolymers at interfaces. M.E. Malmsten, Dekker, New York, 2003, p. 321-44.

87 R.J. Rapoza, T.A. Horbett, The effects of concentration and adsorption time on the elutability of adsorbed proteins in surfactant solutions of varying structures and concentrations. J Colloid Interface Sci 136 (1990) 480-93.

88 N. Vassilakos, T. Arnebrant, P.-O. Glantz, Interaction of anionic and cationic surfactants with salivary pellicles formed at solid surfaces in vitro. Biofouling 5 (1992) 277-86.

89 I.C. Hahn Berg, U.M. Elofsson, A. Joiner, M. Malmsten, T. Arnebrant, Salivary protein adsorption onto hydroxyapatite and SDS-mediated elution studied by in situ

75

90 J.L. Brash, T.A. Horbett, in:Proteins at interfaces II- fundamentals and applications. T.A. Horbett, J.L.E. Brash, American Chemical Society, Washington, D.C., 1995, p. 1- 23.

91 N. Vassilakos, T. Arnebrant, J. Rundegren, P.O. Glantz, In vitro interactions of anionic and cationic surfactants with salivary fractions on well-defined solid surfaces. Acta Odontol Scand 50 (1992) 179-88.

92 I. Rantanen, K. Jutila, I. Nicander, J. Tenovuo, E. Soderling, The effects of two sodium lauryl sulphate-containing toothpastes with and without betaine on human oral mucosa

in vivo. Swed Dent J. 27 (2003) 31-4.

93 C. Moore, M. Addy, J. Moran, Toothpaste detergents: a potential source of oral soft tissue damage? Int J Dent Hyg 6 (2008) 193-8.

94 M. Cardenas, J.J. Valle-Delgado, J. Hamit, M.W. Rutland, T. Arnebrant, Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva. Langmuir 24 (2008) 7262-8.

95 J.H.H. Bongaerts, D. Rossetti, J.R. Stokes, The lubricating properties of human whole saliva. Tribol Lett 27 (2007) 277-87.

96 M. Wahlgren, T. Arnebrant, Interaction of cetyltrimethylammonium bromide and sodium dodecyl sulfate with β-lactoglobulin and lysozyme at solid surfaces. J Colloid Interface Sci. 142 (1991) 503-11.

97 M. Wahlgren, T. Arnebrant, Adsorption of β-lactoglobulin onto silica, methylated silica and polysulphone. J Colloid Interface Sci 136 (1990) 259-65.

98 M. Malmsten, N. Burns, A. Veide, Electrostatic and hydrophobic effects of oligopeptide insertions on protein adsorption. J Colloid Interface Sci. 204 (1998) 104-11.

99 I.C. Hahn Berg, D. Muller, T. Arnebrant, M. Malmsten, Ellipsometry and TIRF studies of enzymatic degradation of interfacial proteinaceous layers. Langmuir 17 (2001) 1641- 52.

100 M. Malmsten, in:Biopolymers at interfaces. M.E. Malmsten, Marcel Dekker Inc., New York, 2003, p. 539-82.

101 C. Dawes, Rhythms in salivary flow rate and composition. Int J Chronobiol 2 (1974) 253-79.

102 L. Lindh, T. Arnebrant, P.-E. Isberg, P.-O. Glantz, Concentration dependence of adsorption from human whole resting saliva at solid/liquid interfaces: an ellipsometric study. Biofouling 14 (1999) 189-96.

103 N. Vassilakos, T. Arnebrant, P.-O. Glantz, Adsorption of whole saliva onto hydrophilic and hydrophobic solid surfaces. The influence of concentration, ionic strength and pH. Scand J Dent Res. 100 (1992) 346-53.

104 N. Vassilakos, P.O. Glantz, T. Arnebrant, Reflectometry: a new method for quantitative determinations of intraoral film formation. Scand J Dent Res 101 (1993) 339-43.

105 D. Horsley, J. Herron, V.V. Hlady, J.D. Andrade, in:Proteins at interfaces. J.L. Brash, T.A.E. Horbett, American chemical society, Washington DC, 1987, p. 290-305.

76

106 J.M. Steijns, A.C.M. van Hooijdonk, Occurence, structure, biochemical properties and technological characteristics of lactoferrin. British J Nutrition 84 (2000) S11-S7. 107 R. Vitorino, S. de Morais Guedes, R. Ferreira, M.J. Lobo, J. Duarte, A.J. Ferrer-

Correia, K.B. Tomer, P.M. Domingues, F.M. Amado, Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur J Oral Sci 114 (2006) 147-53.

108 J. Li, E.J. Helmerhorst, R.F. Troxler, F.G. Oppenheim, Identification of in vivo pellicle constituents by analysis of serum immune responses. J Dent Res 83 (2004) 60-4. 109 K.D. Kussendrager, A.C.M. van Hooijdonk, Lactoperoxidase: pysico-chemical

properties, occurrence, mechanism of action and applications. British J Nutrition 84 (2000) S19-S25.

110 J. Tenovuo, in:Human Saliva: clinical chemistry and microbiology. J.O.T. (Ed.), CRC Press, Boca Raton, FL, 1989, p. 55-91.

111 C. Hannig, M. Hannig, T. Attin, Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113 (2005) 2-13.

112 K.M. Pruitt, B. Reiter, in:The lactoperoxidase system - chemistry and biological significance. K.M. Pruitt, J.E. Tenovuo, Marcel Dekker, New York, 1985, p. 143-78. 113 D. Deimling, C. Hannig, W. Hoth-Hannig, P. Schmitz, J. Schulte-Monting, M. Hannig,

Non-destructive visualisation of protective proteins in the in situ pellicle. Clin Oral Investig 11 (2007) 211-6.

114 M. Edgerton, S.E. Koshlukova, Salivary histatin 5 and its similarities to the other

Related documents