• No results found

Utveckling av handbok för mätning och övervakning på broar

7 Förslag på forskningsprojekt

7.6 Utveckling av handbok för mätning och övervakning på broar

Sammanfattande projektbeskrivning

Projektet går ut på att ta fram en handbok som beskriver diverse metoder och mätsystem för mätning och övervakning på broar. Handboken presenterar listor som redovisar möjligheter och begränsningar, noggrannhet samt för- och nackdelar av olika mätmetoder, givare och mätsystem.

Förväntad nytta för Vägverket

Vägverket kan använda sig av handboken vid t.ex. upphandling av mätuppdrag. Typ av projekt

Projektet är ett post doc. projekt. Forskningsmiljö

7.6. Utveckling av handbok för mätning och övervakning på broar

Referenser

Aktan A. E., Farhey D. N., Helmicki A. J., Brown D. L., Hunt V. J., Lee K.-L. and Levi A. (1997). Structural Identification for Condition Assessment: Experimental Arts. Journal of Structural Engineering, Vol. 123, No. 12, pp. 1674-1684.

Aktan E., Catbas N., Turer A. and Zhang Z. (1998). Structural Identification: Analytical Aspects. Journal of Structural Engineering, Vol. 124, No. 7, pp. 817-829.

Aktan A. E., Catbas F. N., Grimmelsman K. A. & Tsikos C. J. (2000). Issues in Infrastructure Health

Monitoring for Management, ASCE Journal of Engineering Me., Vol.126, N.7,pp.711-724.

Aktan A. E., Catbas F. N., Grimmelsman K. A. & Pervizpour M. (2001). Development of a Model

health Monitoring Guide for major Bridges. (Report, 2001) Drexel Intelligent Infrastructure and

Transportation Safety Institute, USA.

Andersson A. and Sundquist H. (2006). Utvärdering av krafter i Älvsborgsbron genom dynamisk mätning

och analys, KTH, TRITA-BKN. Rapport 98, ISSN 1103-4289, ISRN KTH/BKN/R-98-SE.

ARTeMIS Extractor Pro, Release 3.5, (2005). Structural Vibration Solution A/S, NOVI Science Park, Aalborg East Denmark.

Bailey S. F. (1996). Basic principles and load models for the structural safety evaluation of existing road bridges. Doctoral thesis 1467, Ecole Polytechnique Fédérale de Lausanne.

Bez R. (1989). Modélisation des charges dues au traffic routier. Doctoral thesis 93. Ecole Polytechnique Fédérale de Lausanne.

BRIME (1999). Development of models (loads and strength). Deliverable D5, EU project, Transports RTD, 4th framework.

Calgaro J. A. (1998). Loads on bridges. Progress in Structural Engineering and Materials. 1998 Vol. 1(4): 452-461.

Carlsson F. (2002). Reliability based assessment of bridges with short spans. Division of structural engineering, Lund Institute of Technology, Lund University, Report TVBK-1025, ISSN 0349-4969.

Carlsson F. (2006). Modelling of Traffic Loads on Bridges – Based on Measurements of Real Traffic Loads

in Sweden. Division of Structural Engineering, Lund University, Lund Sweden. ISSN 0349-

4969.

Catbas F. N. and Aktan A. E. (2002). Condition and Damage Assessment: Issues and Some Promising

Indices. Journal of Structural Engineering, Vol. 128, No. 8, pp. 1026-1036.

Chen J., Xu Y. L. and Zhang R. C. (2004). Modal parameter identification of Tsing Ma suspension bridge

under Typhoon Victor: EMD-HT method. Journal of Wind Engineering and Industrial

COWI (2004). Bro O 614 Älvsborgsbron – mätning av krafter i hängkablar. Rapport 59909-A-1-01. Cremona C. (2001). Optimal extrapolation of traffic load effects. Structural safety 23 (2001) pp. 31-46.

Elsevier Science Ltd.

Crespo-Minguillón C. and Casas J. R. (1997). A comprehensive traffic load model for bridge safety checking. Structural Safety. Vol. 19 No. 4, pp. 339-359, 1997.

COST 323 (1997). Collection and analysis of requirements as regards weighing vehicles in motion. http://www.cordis.lu/cost-transpoet/src/cost-323.htm.

Das (1997). Safety of bridges. Thomas Telford Publishing. ISBN 0 7277 2591 2.

Doebling S, Farrar C.; Prime M., Shevitz D. (1996). Damage Identification and Health Monitoring of

Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review, Los Alamos National Laboratory, Report LA-13070-MS UC-900.

EMPA, CityU, COWI, LTU, NFBC,OU, UMINHO, USTUTT,USAC and WUT, (2004).

Evaluation of Monitoring Instrumentation and Techniques. Technical report, the sustainable

bridges project co-funded by the European Commission within the Sixth Framework Programme.

Enckell, M. (2006) Structural Health Monitoring using Modern Sensor Technology – Long-term Monitoring of

the New Årsta Railway Bridge (Licentiate thesis, Royal Institute of Technology, KTH).

Enevoldsen I., Pedersen C., Axhag F., Johansson O. and Toyra B. (2002): Assessment and measurement of the Forsmo Bridge, Sweden. Structural Engineering International: Journal of

the International Association for Bridge and Structural Engineering (IABSE), Vol. 12, No. 4, pp.

254-257.

Eurocode 1 (2002). Actions on structures – Part 2: Traffic loads on bridges. prEN 1991-2:2002, E CEN Brussels.

Feng Q. (2001). Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock faces. (Doctoral Thesis, Royal Institute of Technology (KTH)).

FIB (2003). Monitoring and safety evaluation of existing concrete structures. FIB Bulletin, Vol. No. 22, March 2003, pp. 297.

Geier R., De Roeck G., Flesch R., (2006). Accurate cable force determination using ambient vibration

measurements. Structures and Infrastructures Engineering, Vol. 2 No. 1, March 2006, page

43-52.

Getachew A. (2003). Traffic load effects on bridges, statistical analysis of collected and Monte Carlo simulated

vehicle data. Doctoral thesis, Kungliga Tekniska Högskolan, Institutionen för

Byggkonstruktion. TRITA-BKN Bulletin 68, 2003, ISSN 1103-4270, ISRN KTH/BKN/B-68-SE.

7.6. Utveckling av handbok för mätning och övervakning på broar Hansson A. (2007). Övervakning och detektering av sprickor i betong med en elektriskt ledande färg,

KTH/Brobyggnad, TRITA-BKN. Examensarbete 248, ISSN 1103-4297, ISRN KTH/BKN/EX--248--SE.

Hejll, A. (2002). Measurements of concrete structures – A way to improve assessment and strengthening methods Proceedings to Nordic Concrete Research meeting, Elsingore, Denmark, Published by Norsk Betongforening Olso, Norway NO. 28 pp 146-149.

Hejll, A., Enochsson O. and Täljsten B. (2003). A structural health Diagnostic system (SHD) for Two

railway bridges, Proceedings for Structural Faults + Repair – 2003, London, UK, Edited by

Forde M. University of Edinburgh pp 86-86.

Hejll A. (2004). Structural health of bridges: monitor, assess and retrofit, Licentiate thesis Luleå University of Technology, Structural Engineering 2004:46.

Hejll, A.& Täljsten B. (2005). Civil Structural health Monitoring-Tillståndsbedömning via mätning anpassad

för anläggningskonstruktioner. (Technical report, 2005:33), Luleå University of Technology

(LTU).

Ho I.-K. and Shahrooz B. M. (1998). Finite element modeling of deteriorated R.C. slab bridge: lessons

learned and recommendations. Structural Engineering and Mechanics, Vol. 6, No. 3, pp. 259-

274.

Huria V., lee K.-L. and Aktan A. E. (1993). Nonlinear Finite Element analysis of RC Slab Bridge. Journal of Strucrural Engineering, Vol. 119, No. 1, January, pp. 88-107.

Huria V., Lee K.-L. and Aktan A. E. (1994). Different Approaches to Rating Slab Bridges. ASCE Journal of Structural Engineering, Vol. 120, No. 10, October 1994, pp. 3056-3062.

Hwang E-S. and Nowak A. S. (1991). Simulation of dynamic load for bridges. Journal of structural engineering, Vol. 117, No 5.

ISIS Canada (2001). Guidelines for structural health monitoring. The Canadian Network of Centres Excellence on intelligent Sensing for Innovative Structures. Design Manual No. 2.

James G. (2003). Analysis of traffic load effects on railway bridges. Doctoral thesis, Kungliga Tekniska Högskolan, Institutionen för Byggkonstruktion. TRITA-BKN Bulletin 70, 2003, ISSN 1103-4270, ISRN KTH/BKN/B-70-SE.

James G. and Karoumi R. (2003). Monitoring of the New Svinesund Bridge, Report1: Instrumentation of the

arch and preliminary results from the construction phase, TRITA-BKN. Rapport 74, Brobyggnad

2003, ISSN 1103-4289, ISRN KTH/BKN/R--74--SE, Royal Institute of Technology (KTH), Stockholm.

Johnson R. (1999). Progression of the Dynamic Properties of Large Suspension Bridges during Construction -

A Case Study of the Höga Kusten Bridge, KTH/Brobyggnad, TRITA-BKN. Bulletin 45, 1999,

ISSN 1103-4270, ISRN KTH/BKN/B--45—SE.

Johansson H. (2005). Parameter identification in constitutive models with a posteriori error control and

Johnson R. Miller and Freund’s (2000). Probability and Statistics for Engineers. 6th ed. London: Prentice Hall International (UK) Limited; 2000. p. 233.

Karoumi R. and Andersson A. (2007). Load Testing of the New Svinesund Bridge: Presentation of results

and theoretical verification of bridge behaviour. TRITA-BKN. Rapport 96, ISSN 1103-4289,

ISRN KTH/BKN/R--96--SE, Royal Institute of Technology (KTH), 2007, Stockholm. Karoumi R., Trillkott S., Kullberg C. & Sundquist H. (2006). Kontinuerlig mätning av lagerkrafter på

Höga Kusten-bron, KTH/Brobyggnad, Teknisk rapport 2006:6, Brobyggnad. ISSN 1404-

8450.

Liljencrantz A. (2007). Monitoring railway traffic loads using Bridge Weight-in-Motion. Kungliga Tekniska Högskolan, avdelning för brobyggnad. Licentiatavhandling. TRITA-BKN Bulletin 90. Rapporten kan laddas ner från http://www.byv.kth.se/publikationer

Löfgren I. (2005). Fibre-reinforced Concrete for Industrial Construction – A fracture mechanics approach to

material testing and structural analysis. Ph.D. Thesis, Chalmers University of Technology,

Department of Civil and Environmental Engineering, Structural Engineering, Concrete Structures, Göteborg.

Moses F. (1979). Weigh-in-Motion system using instrumented bridges, ASCE transportation Engineering Journal, 105:233-249.

Mottershead J. E. and Friswell M. I. (1993). Model updating in structural dynamics: A survey. Journal of Sound and Vibration, Vol. 167, No. 2, pp. 347-375.

Nowak A. S. (1993). Live load model for highway bridges. Structural Safety, 13 (1993) 53-66, Elsevier. Plos M. (2006). Modelling the response of the New Svinesund arch bridge: FE model verification and updating

based on field measurements. Bridge Maintenance, Safety, Management, Life Cycle

Performance and Cost. (Proceedings of the third International Conference on Bridge Maintenance, Safety and Management, IABMAS ‘06, Porto, Portugal, July 16-19, 2006, eds. Cruz, Frangopol & Neves), Taylor and Francis Group, ISBN 0 415 40315 4, London, pp. 755-757

Plos M. (2007). Bridge Assessment and Maintenance based on Finite Element Structural Models and Field

Measurements: State-of-the-art review. Report 2007:x, Chalmers University of Technology,

Department of Civil and Environmental Engineering, Structural Engineering, Göteborg. To be published.

Plos M. and Movaffaghi H. (2004). Finite Element Analysis of the New Svinesund Bridge – Design model

conversion and analysis of the arch launching. Rapport 04:12, Department of Structural

Engineering and Mechanics, Concrete Structures, Chalmers University of Technology, Gothenburg, Sweden.

Raporten kan laddas ner från http://www.byv.kth.se/svinesund/publication.htm.

prEN 1993-1-11, (2005). Eurocode 3 - Design of steel structures Part 1.11: Design of structures with tension

7.6. Utveckling av handbok för mätning och övervakning på broar Quilligan M. (2003). Bridge Weigh-in-motion, development of a 2-D multi-vehicle algorithm. Kungliga

Tekniska Högskolan, avdelning för brobyggnad. Licentiatavhandling, TRITA-BKN Bulletin 69.

Raghavendrachar M., Aktan A. E. (1998). Flexibility by Multireference Impact Testing for Bridge

Diagnostics. ASCE Journal of Structural Engineering, Vol. 118, No. 8, August 1992, pp.

2186-2203.

Rytter, A. (1993). Vibration Based Inspection of Civil Engineering. Ph.D. Dissertation, University of Aalborg, Denmark.

Sanayei M., Imbaro G. R., McClain J. A. S. and Brown L. C. (1997). Structural model updating using

experimental static measurements. Journal of Structural Engineering, Vol. 123, No. 6, pp. 792-

798.

Sanayei M., McClain J. A. S., Wadia-Fascetti S. and Santini E. M. (1999). Parameter estimation

incorporating modal data and boundary conditions. Journal of Structural Engineering, Vol. 125,

No. 9, pp. 1048-1055.

Sanayei M. and Saletnik M. J. (1996). Parameter estimation of structures from static strain measurements. I:

formulation. Journal of Structural Engineering, Vol. 122, No. 5, pp. 555-562.

Shahrooz B. M., Ho I. K., Aktan A. E., Borst R. d., Blaauwendraad J., Veen C. v. d., Iding R. H. and Miller R. A. (1994). Nonlinear Finite Element Analysis of Deteriorated RC Slab Bridge. Journal of Strucrural Engineering, Vol. 120, No. 2, February, pp. 422-440.

Teughels A. and De Roeck G. (2003). Damage assessment of the Z24 bridge by FE model updating. Key Engineering Materials, Vol. 245-346, pp. 19-26.

Teughels A. and De Roeck G. (2004). Structural damage identification of the highway bridge Z24 by FE

model updating. Journal of Sound and Vibration, Vol. 278, No. 3, pp. 589-610.

Täljsten, B. and Carolin, A. (2003). Strengthening Two Large Concrete Bridges in Sweden for Shear Using

CFRP Laminates, Structural Faults and Repair 2003, London, July 1-3 2003, CD-

Proceedings.

UIC (2006). Guidelines for Railway Bridge Dynamic Measurements and Calculations, UIC – International Union of Railway, Bridcap project team report G776x-2006, ISBN 2-7461-1235-3. (Edited by Karoumi R.)

Wang X., Kangas S., Padur D., Liu L., Swanson J. A., Helmicki A. J. and Hunt V. J. (2005).

Overview of a Modal-Based Condition Assessment Procedure. Journal of Bridge Engineering, Vol.

10, No. 4, pp. 460-467.

WAFO a Matlab toolbox for analysis of random waves and load. Brodtkorb P., Johannesson P., Lindgren G., Rychlik I. and Rydén J. (2000). Lund Institute of Technology, Department of Mathematical Statistics.

Wiberg J. (2006). Bridge Monitoring to Allow for Reliable Dynamic FE Modelling: A Case Study of the New

Vejdirektoratet (2004). Reliability-based classification of the load carrying capacity of existing bridges. Road Directorate, Report 291, ISBN 87-7923-773-8.

Vägverket (2004a). Vägverkets allmänna tekniska beskrivning för nybyggande och förbättring av broar, Bro

2002. (Road bridge assessment code, In Swedish). Pub. 2004:56, ISSN: 1401-9612.

Vägverket (2004b). BWIM-mätningar 2002 och 2003 slutrapport (BWIM-measurements, final report, in

Swedish). The Swedish Road Administration. VV Pub. 2003:165.

Vägverket, (2006). Koder för inspektion av byggnadsverk Del 1 Gemensamma koder, Publikation 2006:61 www.vv.se (2007-03-03).

Östlund L. (1996). Traffic load investigations 1991-94, Summary of investigations at: E4 Skog and

Sprängviken, E4 Hyllinge, E6 Torp and Salem, Lund (not published).

Ülker M. (2007). The dynamic properties of two concrete railway bridges during the testing of Gröna Tåget, KTH/Brobyggnad, TRITA-BKN. Rapport 117, ISSN 1103-4289, ISRN KTH/BKN/R-- 117—SE.

Ülker M., Karoumi R. (2006). Monitoring of the New Svinesund Bridge, Report 3: The influence of temperature, wind and damages on the dynamic properties of the Bridge, KTH/Brobyggnad , TRITA-BKN. Rapport 99, Brobyggnad 2006, ISSN 1103-4289, ISRN KTH/BKN/R--99—SE.

Appendix A

A.1 KTHs mätprojekt A.2 LTUs mätprojekt A.3 LTHs mätprojekt A.4 CTHs mätprojekt

VV FUD 2850 Mätprojekt

The Höga kusten Bridge

Page 1(3)

Bridge name The Höga kusten Bridge General facts

Location Sweden, across the Ångermanälven

close to Härnosand and Veda

Owner Vägverket

Year of construction Opened for traffic in 1997

Measurement period 1997-1998 and 2005-2006

Type of structure Suspension bridge

Type of traffic Highway, E4

Maximum speed 90 km/h

Materials Concrete pylons and steel deck and

cables

Spans 310 / 1210 / 280 m

Type of measurement 1) Dynamic monitoring during

construction (1997) 2) pull-back test (1998) 3) monitoring of loads on end

supports and in hangers (2005- 2006)

Project description

The aim of the ambient vibration test in 1997 was to determine the dynamic properties as a function of the completion of the bridge. The results were also compared with results from wind tunnel and FE-analyses.

The aim of the pull-back test in 1998 was to determine the structural damping in the first torsional mode as a function of acceleration amplitude. Comparisons were also made with the results from the earlier ambient vibration test.

The aim of the measurements in 2005-2006 was to collect information on the loads in the first hangers and on end supports at the Hornö side of the bridge.

Stockholm Höga Kusten

The Höga kusten Bridge

Structural system

The Höga Kusten Bridge is one of the world’s largest suspension bridges with a total length of 1800 m and a main span of 1210 m.

The bridge is of the gravity-anchored type.

The deck is of the continuously suspended steel box type.

Sketch of the entire bridge and the deck section.

Instrumentation

1997-1998 test Æ accelerometers in bridge deck. 2005 test Æ accelerometers on hangers 80-82.

2005-2006 monitoring Æ calibrated strain transducers at the end supports on the Hornö side of the bridge. The calibrated strain transducers are connected to a Spider8 data acquisition system from HBM. The collected data (permanent loads & traffic loads) is transferred to KTH through a telephone line.

Examples of outcomes

The following figure show the 10 minutes statistics min/max load at the two end supports on the Hornö side of the bridge, during 20/9/2005 – 18/5/2006.

VV FUD 2850 Mätprojekt

The Höga kusten Bridge

Page 3(3) 200 250 300 350 400 450 500 200 250 300 350 Oct 2005

Nov Dec Jan 2006 Feb Mar Apr May

Högakustenbron - lagerlaster 10 minuters statistik

La ge rla s t [ t on ] La ge rla s t [ t on ] Datum Min Lager Nordväst Max Lager Nordväst

Min Lager Nordöst Max Lager Nordöst

References

Karoumi Raid, Trillkott Stefan, Kullberg Claes och Håkan Sundquist, Kontinuerlig mätning av lagerkrafter på Höga Kusten-bron, Teknisk rapport 2006:6, KTH/Brobyggnad 2006. Click Download

Håkan Sundquist, Raid Karoumi, Stefan Trillkott och Claes Kullberg, Bestämning av hängarkrafter i några av hängarna på Höga Kusten-bron, Teknisk rapport 2005:12, KTH/Brobyggnad 2005.

Rickard Johnson, Progression of the Dynamic Properties of Large Suspension Bridges during Construction - A Case Study of the Höga Kusten Bridge, TRITA-BKN. Bulletin 45, KTH/Brobyggnad 1999.

Johnson R & Larose G.L., Field Measurements of the Dynamic Response of the Höga Kusten Bridge during Construction, TRITA-BKN. Report 49, KTH/Brobyggnad 1998. Peter Sterner, Högakustenbrons dynamiska vindstabilitet. TRITA-BKN. Examensarbete 100, KTH/Brobyggnad 1998.

Submitted by

Raid Karoumi

Royal Institute of Technology (KTH), Divison of Structural Design and Bridges SE-100 44 Stockholm, Sweden

Phone int.: +46 8 7909084, Fax int.: +46 8 216949 Email: raid.karoumi@byv.kth.se

Älvsborgsbron, O614

Bridge name

Älvsborgsbron, O614

General facts

Location Gothenburg, Sweden

Owner

The Swedish National Road Administration (Vägverket)

Year of construction

1963 – 1966

Measurement period

20051017 to 20051020 and 20060325

Type of structure

Cable suspension bridge

Type of traffic

Six lane roadway and two lane footpath

Maximum speed

70 km/h

Materials

Concrete deck resting on a steel truss

Spans

Main span 417 m, vertical clearance 45 m

Type of measurement

Dynamic

Project description

The project was initiated by commission of the Swedish Road Association

(Vägverket), to serve as input data for a bridge assessment of the Älvsborg

bridge. The aim of the measurements was to determine the natural frequencies

of the bridge, primary focusing on the cable structures, but measurements of the

global structure was also performed. The measured results have been used in

evaluating the cable forces and their degree of restraint. The global frequencies

of the bridge have been used in calibration of FE-models.

VV FUD 2850 Mätprojekt

Page 2(4)

Älvsborgsbron, O614

Structural system

The Älvsborg bridge is a cable suspension bridge with a main span of 417 m.

The vertical clearance is 45 m. The carriageway consists of a concrete slab

resting on a truss. The carriageway is held up by the main cables via group of

hangers in the main span. The main cables consist of 85 strands, each anchored

individually in the splay chambers.

Figure 2: Photo of the Älvsborg bridge.

Instrumentation

The instrumentation consisted of accelerometers using MEMS® technology. The

location of the instrumentation is shown in Figure 3 and Figure 4.

In October 2005 the following measurements were performed:

- Each of the backstays, accelerometers instrumented in position 2 in Figure 4.

In addition, the North-West backstay was also instrumented in position 1.

Measurements were performed using either ambient vibration or a 1000 kg

lift-off as in Figure 4.

- Each strand in the North-West splay chamber.

- The top edge of the pylons, both longitudinally and transversally.

- The main cable and the truss, in the midpoint and quarter-point of the main

span.

In April 2006 additional measurements were performed:

- The shortest hangers on the West side of the bridge, denoted hanger group

10 to 19 in Figure 6. Each group consists of 4 hangers and each hanger was

instrumented with 5 accelerometers in several positions.

Älvsborgsbron, O614

Splay chamber

hangers

backstay Main cable and truss Pylon edge

truss

Splay chamber

hangers

backstay Main cable and truss Pylon edge

truss

Figure 3: Location of the instrumentation.

Position 2 weight 1000 kg Position 1

Figure 4: Position of instrumentation on the backstays.

South North

Examples of outcomes

Figure 5 shows an example of a measured accelerometer signal from one of the

backstays, along with the corresponding frequency spectra.

Figure 5: Results from the backstays, a) accelerometer signal using 1000 kg lift-off

b) corresponding natural frequencies.

0 1 2 3 4 5 6 F r e k ve n s / H z f1 f2 f3 f4 f5 f6 f7 f8

VV FUD 2850 Mätprojekt

Page 4(4)

Älvsborgsbron, O614

Figure 6 shows the evaluated natural frequencies from the shortest hangers.

Figure 6: Measured natural frequencies of the shortest hangers.

References

Andreas Andersson, Håkan Sundquist, Raid Karoumi, 2006, Brobyggnad

Evaluating cable forces in cable supported bridges using the ambient vibration

method. The International Conference on Bridge Engineering – Challenges in

the 21st Century, November 1-3, 2006, Hong Kong. Download

Andersson Andreas och Sundquist Håkan, 2006, Brobyggnad

Utvärdering av krafter i Älvsborgsbron genom dynamisk mätning och analys.

TRITA-BKN, Rapport 98, ISSN 1103-4289, ISRN KTH/BKN/R-98-SE. Download

COWI, 2004, Bro O 614 Älvsborgsbron – mätning av krafter i hängkablar. Rapport

59909-A-1-01.

Gatubolaget, 2005, Inmätning av Älvsborgsbrons huvudkablar. Ritningar 2005.

Submitted by

Andreas Andersson, PhD Student

Royal Institute of Technology (KTH)

Division of Structural Design and Bridges

SE-100 44 Stockholm, Sweden

Phone: +46 8 790 79 58

Fax:

+46 8 21 69 49

Cell:

+46 70 491 14 29

andreas.andersson@byv.kth.se

Email:

Submitted 2007-02-01

New Svinesund Bridge

Bridge name New Svinesund Bridge General facts

Location Swedish – Norwegian border, close to

Strömstad

Owner Vägverket / Statens Vegvesen

Year of construction Opened for traffic in 2005

Measurement period June 2003 – (ongoing monitoring)

Type of structure Single concrete arch with steel

carriageway

Type of traffic Highway

Maximum speed 110 km/h

Materials Concrete and steel

Spans 68 / 75 / 75 / 75 / 70 / 247 / 70 / 72 m

Type of measurement Static and dynamic monitoring, during

construction, load test and under operation

Project description

The world's largest bridge with a single concrete arch. The bridge forms a part of the European highway, E6, which is the main route for all road traffic between Gothenburg and Oslo. The bridge is elegant but structurally complicated as it combines a very slender construction with a special structural form.

Due to the uniqueness of design and the importance of the bridge a monitoring project was initiated by the Swedish National Road Administration (Vägverket). The monitoring project, including measurements during the construction phase, the testing phase, and the first 5 years of operation, is coordinated by The Royal Institute of Technology (KTH). The primary objective of the monitoring programme is to check that the bridge is built as designed and to learn more about the as-built structure. This will be achieved by

comparing the measured structural behaviour of the bridge with that predicted by theory. For more information, see the monitoring project homepage at

http://www.byv.kth.se/svinesund/

Parallel to the monitoring project, Chalmers is performing a research project concerning bridge assessment and maintenance based on FE structural models and field

measurements, with the New Svinesund Bridge as a case study. See separate project description by Chalmers for more details.

VV FUD 2850 Mätprojekt

New Svinesund Bridge

Page 2(5)

The New Svinesund Bridge under construction

Structural system