• No results found

A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines

N/A
N/A
Protected

Academic year: 2021

Share "A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Energy

and

AI

journalhomepage:www.elsevier.com/locate/egyai

A

data-driven

approach

for

predicting

long-term

degradation

of

a

fleet

of

micro

gas

turbines

Tomas

Olsson

a,∗

,

Enislay

Ramentol

b

,

Moksadur

Rahman

c

,

Mark

Oostveen

d

,

Konstantinos

Kyprianidis

c

a Division Digital Systems, Industrial Systems, RISE Research Institutes of Sweden, Stora Gatan 36, Västerås 722 12, Sweden

b Department of Financial Mathematics, Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany c School of Business, Society and Engineering, Mälardalen University, Västerås 721 23, Sweden

d Micro Turbine Technology B.V., Esp 310, Eindhoven 5633 AE, The Netherlands

h

i

g

h

l

i

g

h

t

s

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

Long-termdegradationofafleetofmicro gasturbineswaspredictedusinganovel data-drivenmethod;

Degradationisestimatedandpredicted withouttheneedofareferencesystem;

Degradationof output poweris mea-suredrelativetotheidealoutputpower unaffectedbywear;

Degradationwasvalidatedagainstthe referencemodelwithr>0.9forfour sys-temsandr>0.8foronesystem;

Forecastsusingonlyrunninghoursas inputwereequallygoodorbetterfor4 of5systemscomparedtoanestimation model.

a

r

t

i

c

l

e

i

n

f

o

Article history:

Received 8 December 2020

Received in revised form 27 February 2021 Accepted 1 March 2021

Available online 5 March 2021 Keywords:

Fleet monitoring Micro gas turbine Machine learning Health monitoring Predictive maintenance Power generation

a

b

s

t

r

a

c

t

Predictivehealthmonitoringofmicrogasturbinescansignificantlyincreasetheavailabilityandreducethe operatingandmaintenancecosts.Methodsforpredictivehealthmonitoringaretypicallydevelopedfor large-scalegasturbinesandhaveoftenfocusedonsinglesystems.Inanefforttoenablefleet-levelhealthmonitoring ofmicrogasturbines,thisworkpresentsanoveldata-drivenapproachforpredictingsystemdegradationover time.Theapproachutilisesoperationaldatafromrealinstallationsandisnotdependentondatafromareference system.Theproblemwassolvedintwostepsby:1)estimatingthedegradationfromtime-dependentvariables and2)forecastingintothefutureusingonlyrunninghours.Linearregressiontechniqueisemployedbothforthe estimationandforecastingofdegradation.Themethodwasevaluatedonfivedifferentsystemsanditisshown thattheresultisconsistent(𝑟>0.8)withanexistingmethodthatcomputescorrectedvaluesbasedondatafrom areferencesystem,andtheforecastinghadasimilarperformanceastheestimationmodelusingonlyrunning hoursasaninput.

1. Introduction

Estimatingandpredictingperformancedegradationofgasturbines isanimportantcomponentforcondition-basedmaintenancetoallow

Correspondingauthor.

E-mailaddress:tomas.olsson@ri.se(T.Olsson).

dynamicplanningthatonlytakesactionwhenneeded[1].By know-inginadvancewhenaresourceneedstobemaintained,both unneces-sarymaintenanceactionsandunplannedstopscanbeavoidedthatin turnsavebothtimeandmoney.Twomainreasonsfortheperformance degradationofgasturbinesoverthelong-termarefoulinganderosion. Incontrast,suddenorfastfailuremechanisms,suchasbearingfailure orforeignobjectdamage,cannotbeeasilypredictedinadvanceforlong periods.Unaddressedperformancedegradationmightleadtoincreased https://doi.org/10.1016/j.egyai.2021.100064

(2)

fuelconsumption,uneconomicaloperationandincreaseingreenhouse gasemissions[2].Theexperiencefromthecurrentusecaseisthatthe long-termdeterioration(countedover1000ormorerunninghours)is moreimportantformaintenanceplanningthantheshort-term immedi-atefailures.

Untilrecently,technologydevelopmenthaslargelybeenfocusingon thehealthmonitoringofsingleandlarge-scalegasturbines.Incontrast, weenvisionafuturewheredistributedfleetsofmicrogasturbineswill gainimportancewhenconnectedandmanagedtogetherinagrid[3]. Themicrogasturbinesaremeanttobeinstalledin,forinstance,large housesmulti-familyhomes,offices,schools,andhistoricbuildings.The targetistoreplaceothermeansofproducingenergylocally,suchas, us-ingcoalorotherfossilfuels.Inthescenarioofthispaper,theturbines aretypicallysituatedindifferentgeographicallocationswithvarying workingconditionsforparameterssuchastheambientpressure, hu-midity,andoutdoortemperature.Atypicalmicrogasturbine would generatelessthan100kWandinordertokeepthecostdown, prefer-ablybebuiltoutofoff-the-shelfcomponents(COTS)fromthe automo-tiveindustry[3,4].However,usingoff-the-shelfpartscanalsoleadto greaterperformancevariationbetweenindividualgasturbines,which inturnmakesithardertodetecthealth-relatedproblems.Inaddition tothat,thesmallsizeandlowcostalsomeanthatthenumberof avail-ablesensorsisalsolimitedandaddingnewsensorsmustbemotivated byverylargeperformanceoreconomicgains.Therefore,eachgas tur-binemustbeindividuallymonitoredusingalimitednumberofsensor signals.

Thispaperpresentsanoveldata-drivenpredictivemaintenance ap-proachthat estimatesandforecastslong-termindividualunit perfor-mancedegradationforafleetofmicrogasturbinesusingonlythe avail-ablesensors.Thepaperisorganisedasfollows.First,wepresentrelated workwithincondition-basedmaintenanceformicrogasturbines.Next, wedescribethestudiedmicroturbinein detailincludingother back-groundknowledgeneededtounderstandthiswork.Followingthat,we definetheproblemthatwesolve,andthedatausedinthiswork. There-after,wepresentthedata-drivendegradationmodelanddescribethe developedforecastmodel.Finally,weevaluatethemethodsanddraw someconclusionsinthelastsections.

2. Literaturereview

TheriseofIndustry4.0– thefourthindustrialrevolution– andthe well-knownIoT(InternetofThings)haveallowedtheevolutionof data-drivenmodelsforpredictingmaintenanceanddegradationinindustry. TheheartofIndustry4.0isintelligentmachinesthatshareinformation

witheach other,organizeandworktogethertocoordinate processes anddeadlines[5].

Intheconsultedliterature[6–8],wehavefoundthatmanyauthors agreethattocarryoutpredictivemaintenanceinIndustry4.0,five com-ponentsarerequired:

1. Sensors:fordatacollection,sensorsmustbe installedinphysical machines;

2. Data communication: allowsdata toflow securely betweenthe monitoredassetandthecentraldatastore;

3. Centraldatastore:iswherethedataisstored(canbeon-premises orinthecloud),processed,andanalysed;

4. Predictiveanalytics:predictiveanalyticalgorithmsareappliedin ordertofindpatternsandgenerateusefulinformationfordecision support;

5. Rootcauseanalysis:toolsfordataanalysisareusedbyspecialists andengineerswiththeaimtodeterminecorrectiveactiontotake. Consideringthatinourcasestudycomponents1,2and3arealready available,wewillfocusonsolutionsforcomponents4and5.Thus,in this section,wewillstudythemost significantmodelsforpredicting degradation andmaintenancewithin thecurrent state-of-the-art.We willfocusonthoseapplicationsrelatedtomGT(MicroGasTurbine), butwewillalsostudyotherdegradation andmaintenancemodelsto betterunderstandtheproblem.

Inrecentyearstherehasbeenanincreaseinapplicationsand pub-licationsforthediagnosisofmGT.ThereasonisthemGThasemerged as”energyconversiontechnology,whichofferspromisingfeatureslike highfuelflexibility,lowemissionslevel,andefficientco-generationof heatandpower”[9].

Theavailableapproachescanbedividedinthreegroups[10]: Data-drivenapproaches

Model-basedapproaches Hybridapproaches.

Fig.1 showsthethreecategoriesoftheapproachesforPDD (Prog-nostics,Diagnostics,Degradation).

A goodexampleof amodel-basedscheme wasproposed in[11], wheretheauthorsmodeledacombinedheatandpowersystembasedon anmGT,focusingonlyonthefaultidentificationlevel.Theyproposeda four-stepschemewhereinthefirsttwosteps,called”Adaptation”,they simulatedthepreliminaryindicationaboutfaultlocationandmagnitude usingasinputtheactualconditionmeasuredandtheexpected perfor-manceattheISA(InternationalStandardAtmosphere).Inthethirdstep, theycomputed”Exchangerates” havingasinputsthesimulatedoutput

(3)

fromthepreviousstepandtheISAreferencecondition.Finally,instep 4,themaximumcorrelationbetweenengineexchangeratesandthe sig-naturesfromthedatabase1iscomputedandthepossiblefaultlocation

anditsmagnitudeareestimated.

Areviewofthemainreliabilityestimationmodelsbasedon degra-dationwaspublishedrecentlyin[12].Theauthorsreviewedthemost commonly applied deterministic and stochastic degradation models in thestate-of-art andexplainin detail aroadmap for adoptingthe degradation-basedreliabilityestimationmodelsbasedontheconcept oftheIIoT(IndustrialInternetofThings).

Anotherreviewwaspresentedin[2].Theauthorspresentedadeep studyaboutthemostrepresentativetechniquesinthestate-of-the-artfor conditionmonitoring,diagnostic,andprognostic.Theyreviewedmostly thosediagnostic/prognostictechniquesthatuseperformance parame-tersobtainedfromtheoperatingsystemsofgasturbines.Allthelisted techniquesweredividedintothefollowingcategories:

Onlinemonitoring

Performanceparameters Non-performancesymptoms Offlinemonitoring.

Theauthorsalsolistedthemostcommonlyusedperformance param-etersdividedintomeasurableonesandcalculableones,providinguseful explanationsabouteachone.Thepaper[2]presentedthemostrelevant andrecentresearchinthearea;itcanbeconsideredasacomprehensive handbookofmonitoring,diagnostics,andprognosticsforGT.Fentaye etal.[13] thoroughlyreviewedtheavailablegasturbinefault diagnos-ticmethods,summarisedtheirstrengthsandweaknesses,andnotedthe challengesandfutureresearchdirectionsinacomprehensiveway. Par-ticularlytheauthorshighlightedtherecenteffortsonAI(Artificial In-telligence)methodsduetotheirremarkablecapabilityofhandlingthe currentchallengesandmeetthemajorityofthedesirableattributes.

MachinelearninghasproventobeaneffectivetoolforPDD[14,15]. Adeeplearningapproachforanomalydetectioningasturbine combus-torswasproposedin[16].Thisapproachisnotexactlyamaintenance predictionapproach,ratherananomalydetectionapproachthatearly detectsabnormalbehavioursandincipientfault.Theauthorsintroduced adeeplearningapproachforthecombustoranomalydetection.Inafirst step,theylearnedfeaturesfromthesensormeasurementsofexhaustgas temperaturesandthentheyusedthelearnedfeaturesastheinputtoa neuralnetworkclassifierforperforminganomalydetectioninthe com-bustor.

Amethodologyforgasturbinepathanalysiswaspresentedin[17], wheretheauthorusedartificialneuralnetworkstodetect,isolate,and evaluatefailures duringthe operatingconditions. Thepresented ap-proachusedasinputseveralmeasurementsovertheenginegivingas outputthevariationsofcomponentcharacteristicsandtheflowrate.

Asetofmachinelearningtechniquesforgasturbinediagnosticswas evaluatedin[18].Inthepaper,theyevaluatedtheuseofSVM(Support VectorMachine)andthreetypesofANN(ArtificialNeuralNetworks) forgaspathdiagnosticsinaclassificationtask.Thepaperproposedan algorithmforvariablesclassificationallowingavery flexiblewayto changeelementslikeforexampletypeofclassused,patternnumbers, faultseverity,classquantity,etc.Thisalgorithmcreated12fault classifi-cations,thattheauthorsthenusedtostudytheinfluenceofclassification structureonthefinaldiagnosticaccuracy.

Fentaye et al. [19] combined adaptive gas path analysis and a Bayesiannetworktoassessthehealthstatusofgasturbines.Zaccaria etal.[20] studiedahybridapproachforreal-timefaultdiagnosticsof gasturbinesbycombiningaBayesiannetworkwithcorrelationanalysis. Thehybridmethoddemonstratedsuperiorperformancewith94%and 96%correctisolationratesinpresenceofengine-to-enginevariations andoperationalvariationsrespectively.

1 Inventoryoffaultsobtainedbysimulatingdifferentcomponentfaults.

Fig.2. TypicallayoutofmicrogasturbineinCHPconfiguration[11].

Fig.3. MTT’smicrogasturbineassembly[25].

3. Preliminaries

Inthissection,weprovidethepreliminariesthatmaketherestofour paperself-contained.First,weprovideabriefintroductiontothe stud-iedmGTanditsmainfeaturesandfunctionalities.Next,weprovidean introductiontolineardegradationanditsrelevancetoourresearch. Fi-nally,wetakealookatregularisedregression,whichisanintroduction tothebasisforunderstandingthedata-drivenmethodwewilldescribe laterinthepaper.

3.1. Themicrogasturbine

Microgasturbinesaresmallscalegasturbineswithpoweroutput rangingfromafewkWetoover500kWe[21].Thedownsizing nega-tivelyaffectsthepoweroutput,electricalefficiency,andthecapitalcost [22].However,italsoleadstonumerousbenefitssuchascompactsize, lowweightperunitpower,simpleoperability,highfuelflexibility,low maintenanceandlowerlevelofemission[23].Similartothelarge-scale gasturbine,mGTalsooperatesontheverywell-knownBraytoncycle. InasimpleBraytoncycle,theairiscompressedinacompressor.Theair isthenmixedwithfuelandburnedinacombustorunderapproximately constantpressure.Theresultinghotgasesareexpandedinaturbinethat

(4)

Fig.4. PeismeasuredandPe_coriscorrectedpower,andenginereplacementindicatesstartofcurrentlyinstalledenginelife.

drivesthecompressorandthehigh-speedgenerator.InmGTs,a recuper-atorisgenerallyfittedaftertheturbinetopre-heatcompressedairprior tocombustion,inordertoreducefuelconsumptionandthusimprove cycleefficiency.Moreover,oftenexhaustheatisrecoveredbyusinga boilerthatresultsinhighthermalefficiency[24].Atypicallayoutof anmGTinCHP(CombinedHeatandPower)configurationisshownin Fig.2.

TheEnerTwinis acommercialmGTbasedmicro-CHPthatis the focusofthestudypresentedinthispaper.ThemGTunithasbeen de-velopedtodeliver3.2kWelectrical powerand15kWthermalpower. Thethermalpowerisintendedtobeusedforheatingandhottap wa-terusage.TheuniquefeatureofmGTunitisthatitisbasedonCOTS (CommercialOff-The-Shelf)automotiveturbochargertechnology.The turbomachineryassemblyofanEnerTwinsystemispresentedinFig.3. AppendixAcontainsmoredetailsfortheEnerTwinsystemandthe sup-plierprovidedmaintenanceintervals.

3.2. Lineardegradation

Likeanyotherphysicalassets,theperformanceofgasturbines de-grades overtimeandshows adistinct degradationpattern andrate. Typically,degradationoftheentireengineisjustasummationofits individualcomponentdegradation.Eachcomponentdegradesata dif-ferentrateandfollowsacertaindegradationpattern.Thisdegradation canbeclassifiedasrecoverableandnonrecoverabledegradation.

Recoverabledegradationis performancedropsthat canbe recov-eredbyoperationalprocedures withouttheneedformajorrepairor hardwarereplacement.Contrarily,nonrecoverabledegradationis per-formancedropsthatcannotberecoveredwithoutmajorrepairor re-placementofaffectedcomponents[26].Typically,thisdegradation re-sultsinincreasedtipclearance,changeinbladegeometryandsurface roughness,whichinturnleadstoareductioninpoweroutputandarise inthermalenergylosses[27].

Accordingto Zagorowskaet al. [28], thenonrecoverable perfor-mancedegradationofgasturbinesisevidentlylinearinnature.Among recoverabledegradation,foulingalsoshowsnearlylinearperformance deteriorationofengineovertime[29].Still,thediagnosticsresearch communityhasyettoreachaconsensusregardingthelinearityof degra-dationsingasturbines.InBrothertonetal.[30],thegasturbine degra-dationmodeisclaimedtohavearecedings-shape.Saravaramuttooand Maclsaac[31]arguedtheratesofdegradationforgasturbinesarerarely knownandnotlikelytobelinear.Additionally,everygasturbine de-signwillshowadifferentbehaviour,whichwillalsobeaffected fur-therbywherethegasturbineisoperated(i.e.,dust,environment,etc.) andhowharshlyitisoperated (i.e.,start-stop cycle,loadchange be-haviour,controlstrategies,etc.).EscherandSingh[32]andLiandSingh [33] claimedthedegradationsingasturbinesarenonlinearinnature anddevelopedanon-linearGPAbaseddiagnosticapproach.However, manyresearchersconsideredlineardegradationofgasturbinestobe

areasonableassumptionwhiledevelopingdiagnosticsandprognostics methods.PugginaandVenturini[34] consideredgasturbine degrada-tionasalinearfunctionoftime.TsoutsanisandMeskin[35] assumed degradationwasmonotonicallyincreasingandemployedamoving win-dowapproachforgasturbineperformanceprognosticsby approximat-ing degradation tobe locally linearwithin each window.Mahmood etal.[36]simulatedtheleakagefromtherecuperatoroutlettothe am-bientandittobe linearinnature.Later,Kimetal.[37] studiedthe influenceofinternalleakageonamicrogasturbineperformanceand foundthattheeffectisalmostlinearataconstantspeed.

3.3. Regularisedregression

Supervisedmachinelearningistheproblemoffindingafunction 𝑓(⃗𝑥)sothatforobservations⃗𝑥,𝑦wehave𝑦=𝑓(⃗𝑥)+𝑒where𝑒isasmall error.Wewilluse ̂𝑦todenotethepredicted𝑦sothat ̂𝑦=𝑓(⃗𝑥).Inmost cases,acertainfamilyoffunctionsisselectedwhere𝑓 isparameterised withparameters𝑤⃗sothat ̂𝑦=𝑓(⃗𝑥;𝑤⃗).Thefunction𝑓 canbeboth non-linearandlinear,wherenon-linearfunctionscanbeanarbitrary func-tionforinstanceanartificialneuralnetwork[38].Thentheproblemis tofind𝑤⃗inordertohaveasmallerrorbetween𝑦and𝑓(⃗𝑥;𝑤⃗).

Inthisworkwewillonlyconsiderlinearfunctions.Ifthefunctionis linearsothat𝑓(⃗𝑥;𝑤⃗)=⃗𝑥𝑇 𝑤⃗(withcolumnvectors),andtheerroristhe 𝑙2-norm,then– givenindependentandidenticallydistributed observa-tions– wegetlinearregression,whichminimisesthebelowerror[39]: ∑

𝑖

(𝑦𝑖 ⃗𝑥𝑇 𝑖 𝑤⃗)2 (1)

wheresumover𝑖isforallobservationof⃗𝑥𝑖 ,𝑦𝑖 .

Inordertoimprovethegeneralisingpoweroftheabovemodel,and toavoidoverfittingthetrainingdata,itisalsopossibletoguidethefitby puttingmoreorlessweighttothedifferentvariablesin⃗𝑥byconstraining thecorrespondingcoefficientsin𝑤⃗tobeclosertozero.Thiscanbedone withregularisation,thatis,alossisaddedtoEq.(1)byforinstanceusing the𝑙2-norm: ∑ 𝑖 (𝑦𝑖 ⃗𝑥𝑇 𝑖 𝑤⃗)2+𝐶×∑ 𝑗 | ⃗𝑤𝑖 | 2 (2)

where𝐶 isaweighthatisusuallyselectedusingcross-validation.By usingcross-validation,itisensuredthattheresultingmodelgeneralises tootherdatathanthetrainingdataandthus,overfittingcanbeavoided. Theabovetypeofregularisedlinearregressioniscalledridgeregression whileincaseofusing𝑙1-norm,itiscalledlassoregression[40]: ∑

𝑖

(𝑦𝑖 ⃗𝑥𝑇 𝑖 𝑤⃗)2+𝐶×∑ 𝑗 | ⃗𝑤𝑖 |

(3) Manytimes,itisalsoknownthatthecoefficientsin𝑤⃗cannothave certainvalues,forinstance,thattheyarenotallowedtobenegative. Forordinarylinearregressionandridgeregression,thereareclosed so-lutions,whilelassoregressionmustbesolvedusingothermethods,such

(5)

Table1

Thedatausedinthisworkincludingmeasuredvariablesandsetpoints(emphasised).

Variables Parameters Unit/type

Predicted variable ( 𝑦 ) - (Net electric) output power Watts

Ambient variables ( ⃗𝑥 )

- Measured return water temperature Kelvin

- Inlet air temperature Kelvin

- Ambient pressure bar

- Ambient pressure at stand still a bar

- Measured turbine speed rpm

- Turbine rotational speed set point rpm - The internal set point for desired code speed and turbine exit temperature

- Ambient pressure is missing b dummy

Time dependent variables - Total number of running hours hours affecting the degradation trend ( ⃗𝑡 ) - Total number of starts and stops frequency count Maintenance actions ( 𝑀) - Total number of running hours when action was taken hours The ideal output power - Net electric output power during c Watts

per system ( 𝑘 ) installation

a Thepressureisonlymeasuredatstandstill,soitisnotmeasuredcontinuously.Itwasoriginallyusedasa

replacementinthereferencemodelwhentheambientpressureismissing.

b Inordertohandlemissingvaluesoftheambientpressurevariable,weaddadummyvariablethatis1when

thevariableismissingand0whenitispresent.Thus,weestimateareplacementvalueforthemissingvalue.

c Theidealoutputpowerismeasuredatinstallationandcorrespondstotheoutputpowergeneratedwithout

degradation.However,theambientconditionscouldnotbecontrolledsothereisasourceoferrorinthisestimate.

as,gradientdescent.Manydeeplearningframeworkssupportgradient descentformanypossibletypesofconstraintsandregularisations.In thiswork,weusetwodeeplearninglibrariesKeras[41] togetherwith Tensorflow[42]. Thetwolibrariesformagenericapproachtousing gradientdescenttofitanyartificialneuralnetwork,includingsimple linearregression.

4. Problemdefinitionanddata

Inthissectionwefirstdefineourproblemandourgoal.Secondly, wedescribethedatausedinthiswork.

4.1. Problemdefinition

Thegoalofthisworkwastomeasureandpredictthedegradationof afleetofmGTsbeforeactionneedstobetaken.Theproblemisthatthere isnoexplicitmeasurementofthedegradation,whichtherefore some-howmustbeestimated.Thecurrentapproachtoestimatingdegradation usesalinearmodelforcomputingcorrectedvalues,whichwascreated usingdatafromareferencesystem.Therelationusedtocomputethe correctedpoweris:

𝑃𝑒 _𝑐𝑜𝑟 =𝑃𝑒 𝑎∗(𝑇𝑟𝑒𝑓 𝑇𝑟𝑒𝑡 )−𝑏∗(𝑇𝑖𝑠𝑎 𝑇0)+𝑐∗(𝑝𝑖𝑠𝑎 𝑝0)+𝑑∗(𝑁𝑟𝑒𝑓 𝑁1)

where𝑃𝑒 istheoutputpower,𝑇𝑟𝑒𝑡 and𝑇𝑟𝑒𝑓 arethereturntemperature anditsreferencevaluerespectively,𝑇0and𝑇𝑖𝑠𝑎 aretheinlet

tempera-tureanditsISAreferencevaluerespectively,𝑝0and𝑝𝑖𝑠𝑎 aretheambient

pressureanditsISAreferencevaluerespectively,𝑁1and𝑁𝑟𝑒𝑓 arethe

turbinerotationalspeedanditsreferencevaluerespectively,whilethe constantsa,b,canddareeitherempiricallydeterminedordefinedby modelling.Fig.4showsanexampleofthecurrentapproachwhere yel-lowcurveshowsthecorrectedpower,whichisnotverysmooth.The downwardtrendoftheyellowcurvedisusedasanindicationof degra-dation.

Thereisalsoaverylimitednumberofsensorsavailableduetothe smallscaleofthegasturbineandtheneedtokeepthecostofthe sys-temdown.Thus,wecanonlyusethefewavailablesensors.The anal-ysedsystemsarealsotestinstallationsandthesystemdesignwasstill underdevelopmentatthetimewhenthedatawascollected.Thus,an additionalcomplicatingfactoristhatthereisalimitednumberof sys-temsandnotmanyfailures.So,itisnotpossibletouseatraditional

supervisedmachinelearningapproachtolearnwhenasystemfails.Yet anotherissueisthattheeffectofanexecutedmaintenanceactionisnot knownandthus,the“state” ofthedegradationisunknownaftersuch anaction.Thedesigngoalsofthedata-drivendegradationmodelare thereforeto:

1. Estimatethedegradationdue towearrelativetotheidealoutput powerwhentherearenolossesorvariationsduetoambient vari-ablessuchasweatherconditions;

2. Estimate degradation much more smoothly thanthe current ap-proach;

3. Makeiteasytosetagenericthresholdforwhenasystemshouldbe maintained;

4. Removetheneedforareferencesystemandonlyusedatafromthe realsystems;

5. Predict thedegradationin thefutureso itis possibletoplanfor maintenanceactionsinadvance.

In order to make long-term predictions, we assume approxi-matelylineardegradation,whichisalsoinlinewiththediscussionin Section3.2.

4.2. Data

ThedatausedinthisworkcomesfromfivedifferentmicroCHP sys-temswithidentities:I,II,III,IV,andV.Thedataweresampledevery minute,butwehaveusedonlyeverysecondhoursample,whichwas deemedtobeenoughforthepurposeofthiswork.Weusethe parame-terslistedinTable1 thatwereselectedfromexperience,includingthe parametersusedtocomputethecorrectedvaluesusing thereference model(seeSection4.1)andparametersthathavebeenprovenusefulin predictingtheoutputpower.

Theseparametersarechosenduetotheirimportanceinthisspecific usecasethatmightdifferfromwhatistypicalforlargergasturbines.For instance,becausethebearinghousingontheturbinesideiscooledwith wateranddependingonthereturnwatertemperature,moreorlessheat isextractedfromthegaspatharoundtheturbine.Then,sincetheturbine outlettemperatureisacontrolledtemperatureandremainsconstantfor thesameoperatingpoint,changesinthereturnwatertemperatureresult in achangeofheatextractionandthusinturbineinlettemperature. Then,thetemperaturedropovertheturbinestronglyaffectstheturbine

(6)

Fig.5. SystemI.

outputpower,andtherefore,thereturnwatertemperatureneedstobe takenintoaccount.

5. Method:Data-drivendegradationmodel

Inordertosolvetheproblem,wedividetheproblemintotwo sub-problemsthataresolvedinsequence;oneforestimatingdegradation fromdataandanotherforforecastingfuturedegradationonlybasedon runninghours.Next,wedescribethesolutionstothetwosub-problems. 5.1. DegradationEstimation

Let ybe theoutput power, ⃗𝑥be a column vectorwith the mea-suredambientparametersliketemperature,pressure,etc.,⃗𝑡be a col-umnvectorwithtimedependentvariables,𝑛and𝑚arethenumbersof systemsandmaintenanceperiods(thatis,theperiodbetweentwo

main-tenanceactionsorsincesysteminstallation)respectively,and1≤𝑖𝑛 and1≤𝑗𝑚denoteaspecificsystemandaspecificmaintenance pe-riodrespectively.Thenwedefinethegenericmodelofdegradationas follows:

𝑦=𝑘𝑖 +𝑔(⃗𝑥)+𝑒(⃗𝑡;𝑖,𝑗) (4)

where𝑘𝑖 isaknownconstantwhichrepresentstheidealoutputpower foraspecificsystem𝑖,function𝑔 istheeffectof ⃗𝑥onthepowerand function𝑒isthedegradationovertimeduetowearofsystem𝑖in main-tenanceperiod𝑗.Thus,inthemodel,wesplitthesignalintotwo com-ponents:thevariationduetoambientconditionsandthedegradation trendduetotimedependentvariables.Inaddition,weassumea com-monbehaviourfortheambientvariableswhilethedegreeof degrada-tiondependsbothontheindividualsystemandthemaintenanceperiod.

(7)

Fig.6.SystemII.

Alsolet:

𝑓(⃗𝑡;𝑖,𝑗)=−𝑒(⃗𝑡;𝑖,𝑗)

𝑘𝑖 (5)

be the normalised degradation over time 0≤𝑓(⃗𝑡;𝑖,𝑗)≤1 where 𝑓(⃗𝑡;𝑖,𝑗)=0meansthatthereisnodegradation.Thismeansthatwecan rewriteEq.4asfollows:

𝑦𝑔(⃗𝑥)=𝑘𝑖 (1−𝑓(⃗𝑡;𝑖,𝑗)) (6)

wherethedifferencebetweenactualoutputpower𝑦andthepower ex-plainedbytheambientvariables𝑔(⃗𝑥)isequaltotheidealoutputpower 𝑘𝑖 multipliedbytheeffectofthedegradation.

Now,wecanselectathresholdforwhenmaintenanceshouldbedone asforinstance:

If𝑓(⃗𝑡)>0.25thenperformacorrectivemaintenanceaction

Noticethatselectingathresholdisnotastraightforwardproblem tosolve.Itinvolvesweighinginmanyfactors,suchas,electricityprice, gasprice,subsidies,replacementcost,typeofmaintenancecontract,age ofthesystem,expectedremaininglifeandcustomerexpectations.We assumeitcanbeselectedusingexpertknowledge,buttheproblemwill notbeaddressedfurtherinthispaper.

Let’sassumealinearmodelforfunctionsgandesothatthefollowing holds:

𝑔(⃗𝑥)= ⃗𝑐𝑇 ⃗𝑥

𝑒(⃗𝑡;𝑖,𝑗)= 𝑎𝑖 +𝑏𝑗 +𝑒⃗0𝑇 ⃗𝑡+⃗𝑒𝑖 𝑇 ⃗𝑡

(7) where⃗𝑐isacolumnvectorwithweightsexplainingthevariationdueto ambientconditionswhile𝑎𝑖 and𝑏𝑗 indicatetheremainingdegradation atthemeasurementstartorafteramaintenanceactionpersystem𝑖and maintenanceperiod𝑗 respectively,and⃗𝑒0and⃗𝑒𝑖 arecolumnvectorswith

(8)

Fig.7. SystemIII.

theindividualsystemsrespectively.Puttingitalltogether,Eq.4canbe formulatedinmatrixformasfollows:

⃗𝑦=⃗𝑘𝑇 𝑆+⃗𝑎𝑇 𝑆+⃗𝑏𝑇 𝑀+⃗𝑐𝑇 𝑋+⃗𝑒𝑇 𝑇 (8)

where:

⃗𝑦isacolumnvectorwithallpowermeasurements;

𝑋 isamatrixwithallambientvariablemeasurements⃗𝑥ascolumns; ⃗𝑘isacolumnvectorwithallknown𝑘𝑖 ;

⃗𝑎isacolumnvectorwithall𝑎𝑖 ; ⃗𝑏isacolumnvectorwithall𝑏𝑗 ;

⃗𝑐isacolumn vectorwithweightsexplainingthevariationdueto ambientvariables;

⃗𝑒isacolumnvectorwithacombinationof⃗𝑒0andall⃗𝑒𝑖 sothat⃗𝑒=[⃗𝑒0,

𝑒1𝑇 ,𝑒⃗2𝑇 ,𝑒⃗𝑛 𝑇 ]𝑇 ;

𝑆 isamatrixwithdummyvariablesforallsystemssoeachcolumn correspondstoasystemandeachcolumnisfilledwithzerosexcept oneelementthatissettooneindicatingthesystem;

𝑀 isamatrixwithdummyvariablesforallmaintenanceperiods; 𝑇 isamatrixwhereeachcolumnisoflength(1+𝑛)×lengthof⃗𝑡,

startingwith⃗𝑡(correspondingto⃗𝑒0),thenfollowedbythezero

vec-tors⃗0andanother⃗𝑡(correspondingtoaspecificsystem’s ⃗𝑒𝑖 ).For example,[⃗𝑡,⃗0,,⃗0,⃗𝑡,⃗0,… ⃗0].Thus,therearetwo⃗𝑡and𝑛−1zero vectorspercolumn.

Noticethatwewillrunintoproblemsifwenaivelyuseanordinary leastsquaresolutiontotheEq.8,andwecanendupwithasolutionfar fromexpected.Thus,weneedtoconstrainthenumberofpossible solu-tionsusingpriorknowledgeencodedasregularisationsandconstraints. Forinstance,weneedtoconsiderthatthevarianceinthemodelshould bemostlyexplainedbytheambientvariablesandthevariables affect-ingdegradation,andnottheremainingdegradationforasystemora

(9)

Fig.8. SystemIV.

maintenanceperiod.Ifwearenotcareful,wewillendupinapiece-wise linearsolutionwithslopesclosetozerowherethevarianceismostly ex-plainedbytheremainingdegradationvariables.Therefore,weproceed byaddingan𝑙1regularisationontheremainingdegradationcoefficients in ⃗𝑎and⃗𝑏tominimisetheexplainedvarianceandforcetheirweights closertozero.Also,weassumethatthedegradationismonotonicwith respecttothetimedependentvariablesunlessthereisaneffectofthe maintenanceactionssothatthe⃗𝑒⃗0.Thecodeforimplementingthe solutiontotheEq.8,with𝑙1regularisationonlyon⃗𝑎and⃗𝑏isshownin AppendixB.

5.2. Degradationforecasting

Formakingtheforecastofthedegradationweassumealinearmodel thatrelatestheestimatednormaliseddegradationtothenumberof

run-ninghours():

𝑓(⃗𝑡;𝑖,𝑗)=𝛽𝑖,𝑗 +𝛾𝑖 (9)

where𝛽𝑖,𝑗 areweightsfittedtoasystemandamaintenanceperiod re-spectivelywhile𝛾𝑖 istheslopeforasystem.Thus,dependingonwhich system andwhich maintenance period, itis possible toforecast the degradationforalargenumberofrunninghoursinthefuture. How-ever,thisrequiresthatthemodelsareupdatedforeachnew main-tenanceperiod.

Furthermore,wefittedtheabovemodeltothedatausingtheridge regressionimplementationofscikit-learnPythonlibrary2wherethe

reg-ularisationtermwasselectedusing5-foldcross-validation.Themodel wasfittedtoeachindividualsystemindependentlyofeachother.In

(10)

Fig.9.SystemV.

dition,inordertotakemorerecentdatapointsmoreimportantthan olddatapoints,weusedtherunninghoursplusthemeannumberof runninghoursassampleweights.Inthenextsection,wewillpresent theresultfromevaluatingthemodels.

6. Resultsanddiscussion

TheproposedapproachwastestedonfivemGTsystems.Inthefirst subsectionbelow,weshowtheevaluationofthedegradation estima-tionmodel.Thisexperimentshowshowwellthemodelestimatesthe degradationintermsofcorrelationtothecorrectedpowerandtothe errorofpredictingtheoutputpower.Thesecondsectionevaluatesthe approachforforecastingthedegradation.Inthisexperiment,weshow howwelltheforecastingmodelpredictstheoutputpowerforthelast 1000runninghoursincomparisontousingtheestimationmodelwhere bothrunninghoursandnumberofstartsandstopsareknown.

6.1. Estimationmodelresults

Thebelowtable(Table2)shows,foreachsystem,thePearsonr cor-relationbetweenthenormaliseddegradationcurveandthecorrected poweraswellastherootmeansquarederror(rmse)andmeanabsolute percentageerror(mapein%)forpredictingthedata.Sinceweinthis caseareinterestedinestimatingthedegradationandnotpredictingthe outputpower,thescoringfortestdataisnotveryinteresting,butthe cross-validationrmseis318,whichisquiteabithigher.

Themostimportantresultisthecorrelationtothecorrectedpower since it confirms that the estimated degradation is very similar to thedegradation trendvisible in thecorrected powerasdescribed in Section4.1.Thereportederrorsonlyindicatethatthemodel reason-ablyestimatesthepower.

TheresultfromfittingthemodeltothefivemGTsystemsarealso showninFig.5toFig.9.Thex-axisofallcurvesisthetimeintotal

(11)

run-Table2

Theevaluationresultforfittingtheestimationmodeltothedata.The

𝑟scoreisthePearsoncorrelationcoefficientbetweenthecorrected powerandtheestimateddegradationwhilethetwoothercolumns areerrorsbetweentheoutputpowerandthepredictedpower.

System r rmse mape

I 0.91 81.80 2.35 II 0.95 72.13 2.20 III 0.82 71.31 1.95 IV 0.92 62.85 1.83 V 0.95 52.49 1.50 All 0.92 70.59 2.01

ninghours(𝑡).Theupperfirstplota)ineachfigureshowsthepower(𝑦) asabluecurveandpredictedpower𝑔(⃗𝑥)+𝑒(⃗𝑡)astheyellowcurvewhile maintenanceactionsareexecutedattheverticalblacklines.They-axis showsthepowerinplota),b)andd),whereplotb)showsthepredicted powerwithoutdegradation𝑓(⃗𝑡).Theplotc)showstheproposed nor-malised(negative)degradationtrendcurve-𝑓(⃗𝑡)whilethelowerplot d)showsthecurrentdegradationapproachwiththecorrected power basedondatafromareferencesystem.

Fromthetableandfigures,wecanseethattheabilitytofitand pre-dictthedataisquitegoodforallsystems,whereonlysystemIIIhas rbelow0.9, whichcanalsobe seenin Fig.7. Overall,theproposed degradationtrendcurvesaresimilarbutsmootherthanthecorrected power.Yet,intheproposedapproach,despitetheregularisation,too muchweightisoftenputonsomeofthemaintenanceperiodsinstead ofthetrendvariables.Thiscouldbemanagedbyforcinglessweight ontheremainingdegradationvariables.Consequently,therecanbe mi-normisfitsfortheremainingdegradation,whicharevisibleasasudden smallincreaseordecreaseindegradationatmaintenanceactionsthat infacthavenoeffectonthedegradation.Noticealsothatthesystems wererunninginthefieldtrialphaseduringtheevaluation.Thismeans thatissuescouldbeintroducedunintentionallyduringmaintenance.It alsomeansthatmaintenanceactionsareexecutedinadifferentway, moreoften, thanitwillbe inafully developedandfunctioning sys-tem.Forinstance,therewerevariousreasonstoreplaceornotreplace anengine,notonlycausedbydegradation.Suchasnewmaterialsthat neededtestingorendurancetestswherethelowerpowerwasaccepted. Below,weexaminetheoutputforeachsystem.Wewillonlycomment onrelativelylargechangesindegradation,sincesmallchangescanbe duetotheabovedescribedreasons.

SystemI Fig.5 showstheoutputforsystemI,whereweknowthatthe enginewasreplacedatabout18,000hours.This isclearly visibleasalargeimprovementinthedegradationtrendin boththeplotc) andthecorrected powerinplotd).Other maintenanceactionscanbeonsub-components,whichmight havelittletonoeffectontheelectricpower,theyjustprovide boundaryconditionsforthesystemtooperateatall.

SystemII Fig.6 showsthesameforsystemII.Thereisaverylarge re-coveryofthismachineduetoareplacementoftheengine atabout4400hours.Thenthereisasmallerstepofhigher degradation atabout 5400hours,which is visible in both normaliseddegradation c)andcorrectedpowerd),butthe reasonforitisunclearfromthemaintenancelog.

SystemIII Fig.7showstheresultforsystemIIIwhereweseealargedrop inbothnormaliseddegradationc)andcorrectedpowerd)at about1800hoursduetodamagedsealingscrollengine.This wasrecoveredat2300hrsbyreplacingscrollandengine.

SystemIV Fig.8showsthecurvesforsystemIV.Also,herecanweseea largerecoverybothatabout2800hoursand11000hoursdue toreplacementoftheengineatbothinstances.Thisparticular system’slocationledtoverypollutedairinletfilters,which

Table3

Theerrorofforecasting1000runninghoursintothefutureforeachsystem usingthedegradationestimationmodelvs.theforecastingmodel.

System id Estimation (rmse) Forecast (rmse) #training/test examples

I 49.29 50.32 8151/423 II 146.45 121.01 2520/345 IV 93.66 77.26 1603/466 IV 89.71 121.63 9916/474 V 181.71 170.78 1972/173 All 108.25 105.57 24162/1881

resultedinpressuredropandthusperformancedegradation. Cleaningthefiltersresultsinapartialrestorationofthepower atabout24000hours.

SystemV Fig.9 showstheplotsforsystemV,wherewecanseethat therearemanymissingdatapoints before3000hours.We canalsoseetherecoveryfromreplacingtheengineatabout 6100hours.

6.2. Forecastingmodelresults

Inthissection,wewillevaluatetheforecastingmodelsonthefive systems.First,weillustratehowtousethemodelbyforecasting5000 hoursintotheunknownfutureforeachsystem,wheretheresultisused todecidewhentodomaintenance.Thereafter,weevaluatethemodel performancebymakingforecastsforthelast1000hoursofknowndata andcomparetheestimationandforecastingmodels.Intheformer,we trainthemodelsusingallavailabledataandthenextrapolatethe fore-casttofuturerunninghoursnotyetseen.Inthelatter,wetrainusing alldataexceptthelast1000hrs.Then,fortheremaininglast1000hrs, weusetheknownvaluesforthetimedependentvariablestoforecast thedegradationusingtheestimationmodelandcompareittothe fore-castingmodelthatonlyusesthefuturerunninghours.

InFig.10,the5000hoursforecastsforeachsystemareshownin black,whiletheestimatednegativenormaliseddegradationisinblue. Redlinesindicatewhenthenegativedegradationisbelowthe thresh-old,wheresystemIisbelowthethresholdatabout23230hoursand systemIIIatabout5367hours.So,bothsystemsareinneedof immedi-atemaintenanceserviceinordertonotoverlydegrade.

TheresultfromevaluatingtheestimationmodelisshowninTable3 andtheforecastingmodelsonthelast1000runninghoursthatwerenot usedfortraininginthiscase.Theresultismeasuredusingrootmean squared error(rmse).Thesecond columnshows thepredictionerror fromusingtheestimationmodelforforecastingwhenassumingthatall timedependentvariablesareknown(thatis,runninghoursand num-berofstartsandstops).Thethirdcolumnisthepredictionerrorusing theridgeregressionforecastingmodel,assumingthatweonlyknowthe runninghours.Itseemsthatonlyusingthehoursisequallygoodor bet-terwithregardstofoursystems,I,II,IIIandV,andtheoverallresultis betterfortheforecastingmodel.However,thisindicatesthatthe pro-posedforecastingmodelisquitereliableincomparisontousingthefull knowledgeofalltimedependentvariables.

7. Summaryandconclusions

Inthispaper,wehavepresentedanovelmethodforpredictingthe long-termdegradationof afleetofmicrogasturbines.Theproposed methodaddressedseveralissuesrelatedtothemonitoringofmicrogas turbinesdistributedovergeographicaldifferentlocations.

Themaincontributionsofourpapercanbesummarizedasfollows: Noreferencesystemisneededduetoourapproachonlyusesdata

fromtherealsystems;

The degradation estimated is relative to the initial performance (measuredwhenasystemisinstalled);

(12)

Fig.10. Systemforecasts:they-axisshowsthenormaliseddegradation,andthex-axisshowsrunninghours.Thebluecurveisestimateddegradationfromthedata whiletheblackcurvesshowthe5000hoursforecasts.Theredlinesshowwhentheforecastsarebelowthethreshold,whichindicateswhenmaintenanceservices areneeded.

Thedegradationisestimatedmuchmoresmoothlythanthecurrent approach;

Inourapproach,itiseasytosetagenericthresholdonwhenasystem shouldbemaintained;

Ourapproachisabletoforecastthefuturedegradationoverrunning hourstoenabledynamicmaintenanceplanning.

Theproblemwassolvedintwosteps.Firstbycreatingaconstrained linearregressionmodelforestimatingthedegradationfromthedata, removingtheeffectoftheambientvariables.Second,aridgeregression modelwascreatedforforecastingfromtheoutputofthefirststepwhere thedegradation wasprojected intothefutureusingonlytherunning

hoursasaninput.Thereby,theeffectofthenumberofstartandstops wasindirectlymodeledovertime.

Wesuccessfullyevaluatedthemethodonfivefieldtrialsystems.The proposedmethodwasoverallconsistentwiththecurrentdegradation approachinthattheestimateddegradationcorrelateswellwiththe cor-rectedpower(onlyonesystemwith𝑟<0.9).Wecouldalsoshowthat themethodwasabletoidentifyenginereplacementsfromthedata,and thattheforecastsareratheraccuratecomparedtorealdata.The fore-castswereequallygoodorbetterthantheestimationmodelforfourof fivesystems.

Futureimprovementstothisworkwouldbetoaddestimatesonthe uncertaintyoftheoutputfromthedegradationmodels.Forinstance, tobeabletoidentifywhenachangeindegradationatamaintenance

(13)

actionis statisticallysignificantortoestimatetheuncertaintyofthe predicteddegradation.Initialstudies,usingresamplingofdatawith re-placements,indicatethatthevarianceofthepredictionsisquitesmall.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowlgedgments

ThisworkinthispaperwaspartiallyfundedbyEuropean Commis-sionunderHorizon2020program,grantnumber723523.Theresearch ofDrEnislayRamentolhasbeenfundedbytheEuropeanResearch Con-sortiumforInformaticsandMathematics(ERCIM)AlainBensoussan Fel-lowshipProgrammeandtheFraunhoferInstituteforIndustrial Mathe-matics.

AppendixA. Microgasturbinespecification

Thisappendixcontainsadescriptionofkeyparametersofthemicro gasturbines:nominalpowers,electricalefficiency,thermalefficiencyin TableA.4,andhoursbeforemaintenanceinTableA.5.

TableA.4 mGTspecification. Parameter Value 𝑃 𝑒_𝑛𝑜𝑚 3 kW a 𝑃 𝑡ℎ_𝑛𝑜𝑚 15.6 kW 𝐸𝑡𝑎 𝑒 16% 𝐸𝑡𝑎 𝑡ℎ 78%

a Currentcommercialproduct3.2kW,systemreviewedinpaper3kW.

TableA.5 Maintenanceintervals. Time Action 7500 hrs Small 15000 hrs Large 22500 hrs Small

30000 hrs Likely engine replacement a

37500 Small

etc. ...

(14)

Theregularisationweight𝑎𝑙𝑝ℎ𝑎intheabovemodelwaschosenusing 5-foldcross-validation.

(15)

References

[1] Jardine AK , Lin D , Banjevic D . A review on machinery diagnostics and prog- nostics implementing condition-based maintenance. Mech Syst Signal Process 2006;20(7):1483–510 .

[2] Hanachi H , Mechefske C , Liu J , Banerjee A , Chen Y . Performance-based gas tur- bine health monitoring, diagnostics, and prognostics: a survey. IEEE Trans Reliab 2018;67(3):1340–63 .

[3] Aslanidou I , Zaccaria V , Rahman M , Oostveen M , Olsson T , Kyprianidis K . Towards an integrated approach for micro gas turbine fleet monitoring, control and diag- nostics. In: Proceedings of the Global Power and Propulsion Society (GPPS) Forum 2018. Zurich, Switzerland; 2018 . GPPS-2018-0021

[4] Visser WP , Shakariyants SA , Oostveen M . Development of a 3 kw microturbine for chp applications. J Eng Gas Turb Power 2011;133(4):042301 .

[5] Klein O. How german companies seize the chances of industry 4.0; 2019 . https://english.bdi.eu/article/news/industry-40/ Accessed: 2020-09-24

[6] Panfilov P , Katona A . Building predictive maintenance framework for smart envi- ronment application systems; 2018. p. 0460–70. ISBN 9783902734204 . [7] Adi E, Anwar A, Baig Z, Zeadally S. Machine learning and data analytics for the iot.

Neural Comput Appl 2020. doi: 10.1007/s00521-020-04874-y .

[8] Saqlain M, Piao M, Shim Y, Lee J. Framework of an iot-based industrial data management for smart manufacturing. J Sens Actuat Netw 2019;8:21. doi: 10.3390/jsan8020025 .

[9] Mahmood M, Martini A, Traverso A, Bianchi E. Model based diagnostics of ae-t100 micro gas turbine. Turbo Expo: Power for Land, Sea, and Air, 49828. Seoul, South Ko- rea: American Society of Mechanical Engineers; 2016. doi: 101115/GT2016-57671 . GT2016-57671, V006T05A021

[10] An D, Kim N, Choi J-H. Practical options for selecting data-driven or physics- based prognostics algorithms with reviews. Reliab Eng Syst Saf 2015;133:223–36. doi: 10.1016/j.ress.2014.09.014 .

[11] Rahman M, Zaccaria V, Zhao X, Kyprianidis K. Diagnostics-oriented modelling of micro gas turbines for fleet monitoring and maintenance optimization. Processes 2018;6:216. doi: 10.3390/pr6110216 .

[12] Balali F, Seifoddini H, Nasiri A. Data-driven predictive model of reliability esti- mation using degradation models: a review. Life Cycle Reliab Saf Eng 2020;9. doi: 10.1007/s41872-020-00111-6 .

[13] Fentaye AD , Baheta AT , Gilani SI , Kyprianidis KG . A review on gas turbine gas– path diagnostics: State-of-the-art methods, challenges and opportunities. Aerospace 2019;6(7):83 .

[14] Zhang W, Yang D, Wang H. Data-driven methods for predictive mainte- nance of industrial equipment: a survey. IEEE Syst J 2019;13(3):2213–27. doi: 10.1109/JSYST.2019.2905565 .

[15] Källström E , Olsson T , Lindström J , Håkansson L , Larsson J . On-board clutch slip- page detection and diagnosis in heavy duty machine. Int J Prognost Health Manag 2018;9(1) .

[16] Yan W , Yu L . On accurate and reliable anomaly detection for gas turbine combus- tors: A deep learning approach. In: Proceeddings of the annual conference of the prognostics and health management society 2015, 6; 2015 .

[17] Capata R. An artificial neural network-based diagnostic methodology for gas tur- bine path analysis part i: introduction. Energy, Ecol Environ 2016;1(6):343–50. doi: 10.1007/s40974-016-0041-8 .

[18] Pérez-Ruiz J, Loboda I, Miró-Zárate L, Toledo-Velázquez M, Polupan G. Evaluation of gas turbine diagnostic techniques under variable fault conditions. Adv Mech Eng 2017;9:1–16. doi: 10.1177/1687814017727471 .

[19] Fentaye A, Zaccaria V, Rahman M, Stenfelt M, Kyprianidis K. Hybrid model-based and data-driven diagnostic algorithm for gas turbine engines. Turbo expo: power for land, sea, and air, 84140. American Society of Mechanical Engineers; 2020. doi: 101115/GT2020-14481 . V005T05A008

[20] Zaccaria V , Fentaye AD , Stenfelt M , Kyprianidis KG . Probabilistic model for aero-engines fleet condition monitoring. Aerospace 2020;7(6):66 .

[21] Invernizzi C , Iora P , Silva P . Bottoming micro-rankine cycles for micro-gas turbines. Appl Thermal Eng 2007;27(1):100–10 .

[22] Agelidou E, Monz T, Huber A, Aigner M. Experimental investigation of an in- verted brayton cycle micro gas turbine for chp application. Turbo expo: power for land, sea, and air, 50954. American Society of Mechanical Engineers; 2017. doi: 101115/GT2017-64490 . V008T26A023

[23] Rahman M , Malmquist A . Modeling and simulation of an externally fired mi- cro-gas turbine for standalone polygeneration application. J Eng Gas Turb Power 2016;138(11):112301 .

[24] Nascimento MAR , Rodrigues L , Santos E , Gomes EEB , Dias FLG , Velásques EIG , et al. Micro gas turbine engine: a review. Progr Gas Turbine Perform 2013:107–41 . [25] Bauwens P . Gas path analysis for the mtt micro turbine. Delft University of Technol-

ogy; 2015 .

[26] Burnes D , Kurz R . Performance degradation effects in modern industrial gas turbines. In: Proceedings of the Global Power and Propulsion Society (GPPS) Forum 2018. Zurich, Switzerland; 2018 . GPPS-2018-0019

[27] Botros KK, Hartloper C, Golshan H, Rogers D. Assessment of Recoverable vs Unre- coverable Degradations of Gas Turbines Employed in Five Natural Gas Compressor Stations. Turbo expo: power for land, sea, and air; vol. 9. Montreal, Quebec, Canada; 2015. doi: 101115/GT2015-42078 . V009T24A003

[28] Zagorowska M, Schulze Spüntrup F, Ditlefsen A-M, Imsland L, Lunde E, Thornhill NF. Adaptive detection and prediction of performance degradation in off-shore turboma- chinery. Appl Energy 2020;268:114934. doi: 10.1016/j.apenergy.2020.114934 . [29] Li Y, Nilkitsaranont P. Gasturbine performance prognostic for condition-based main-

tenance. Appl Energy 2009;86(10):2152–61. doi: 10.1016/j.apenergy.2009.02.011 . [30] Brotherton T, Jahns G, Jacobs J, Wroblewski D. Prognosis of faults in gas turbine engines. In: Proceedings of the IEEE aerospace conference(Cat. No.00TH8484), 6; 2000. p. 163–71. doi: 10.1109/AERO.2000.877892 .

[31] Saravanamuttoo HIH, MacIsaac BD. Thermodynamic models for pipeline gas turbine diagnostics. J Eng Power 1983;105(4):875–84. doi: 10.1115/1.3227496 . [32] Escher PC , Singh P . An object-oriented diagnostics computer program suitable for

industrial gas turbines. proceedings of the 21st international congress on combustion engines. Interlaken, Switzerland: CIMAC; 1995 . International Congress on Combus- tion Engines ; 21

[33] Li Y , Singh R . An advanced gas turbine gas path diagnostic system – pythia. In: Proceedings of the 17th, international symposium on air breathing engines. Mu- nich, Germany: American Institute of Aeronautics and Astronautics; 2005. p. 1–12 . AIAA-2005-1284

[34] Puggina N, Venturini M. Development of a statistical methodology for gas turbine prognostics. J Eng Gas Turb Power 2012;134(2). doi: 10.1115/1.4004185 . 022401 [35] Tsoutsanis E , Meskin N . Derivative-driven window-based regression method for gas

turbine performance prognostics. Energy 2017;128:302–11 .

[36] Mahmood M, Martini A, Traverso A. Fault detection through model based diagnos- tics of ae-t100 micro gas turbine. Turbo expo: power for land, sea, and air, 50831. American Society of Mechanical Engineers; 2017. doi: 101115/GT2017-64619 . V003T06A026

[37] Kim MJ , Kim JH , Kim TS . The effects of internal leakage on the performance of a micro gas turbine. Appl Energy 2018;212:175–84 .

[38] Murphy KP . Machine learning: a probabilistic perspective. MIT Press; 2012 . [39] Seber G , Lee A . Linear Regression Analysis. Wiley; 2012. ISBN 9781118274422 .

ISBN 9781118274422

[40] Tibshirani R . Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 1996;58(1):267–88 .

[41] Chollet F , et al. Keras; 2015 . https://github.com/fchollet/keras

[42] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large- scale machine learning on heterogeneous systems; 2015 . Software available from tensorflow.org http://tensorflow.org/

References

Related documents

A focus is put on the mixing of the main hot flow with the cooling flows, and the main parameters investigated were total temperature and total pressure at

Sara Cajander (2017): Dynamics of Human Leukocyte Antigen - D Related expression in bacteremic sepsis.. Örebro Studies in Medical

- Develop metrological methods to improve the metrological infrastructure with industry - Industrial exploitation of quality-assured measurements in terms of traceability and

Ett genomgående problem med arbetet har varit tidigare kunskap om ämnet då inget känt fall finns för hur standardiserade dokument för de tekniska beskrivningarna skulle kunna

Gas turbines operate on the Joule-Brayton cycle which is made up of four processes. Adiabatic compression followed by heat addition at constant pressure, an adiabatic

Division of Fluid and Mechatronic Systems Department of Management and Engineering

Detta verktyg fördjupar diskussionerna och slutsatserna av klimatrelaterade risker från E:1 Riskuppfattningar genom att diskutera och peka ut vilka klimatfaktorer som

(i) examine each test quantity if it gives reasonable values, (ii) check if the considered faults are detectable and isolable, (iii) false alarms should be avoided, (iv) investigate