• No results found

Behavior of rocks and rock masses in relation to military geology, The

N/A
N/A
Protected

Academic year: 2021

Share "Behavior of rocks and rock masses in relation to military geology, The"

Copied!
106
0
0

Loading.... (view fulltext now)

Full text

(1)

THE BEHAVIOR OP ROCKS MD ROCK MASSES

IB RELATION TO MILITARY GEOLOGY

By

(2)

ProQuest Number: 10781375

All rights reserved INFORMATION TO ALL USERS

The qu ality of this repro d u ctio n is d e p e n d e n t upon the q u ality of the copy subm itted. In the unlikely e v e n t that the a u th o r did not send a c o m p le te m anuscript and there are missing pages, these will be note d . Also, if m aterial had to be rem oved,

a n o te will in d ica te the deletion.

uest

ProQuest 10781375

Published by ProQuest LLC(2018). C op yrig ht of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States C o d e M icroform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway P.O. Box 1346

(3)

$EG

ti3

A t h e s is submitted to th e Faculty and the Board o f Trustees of the Colorado School o f Hines in p a r tia l f u lf illm e n t of the requirements fo r the degree o f Master o f Mining Engineering*

Signed a** Wilmot H* MeCutohen Golden, Colorado Date # 18d8 4 V

r

I

. Approvedi C* W, L ivin gston Golden, Colorado Date /<£- , 1948

(4)

A bstract

Following a b r ie f in trod u ction g iv in g a gen eral c l a s s i f i c a t i o n of rooks in the e a r th 's c ru st which are o f In te r e st to the m ilita r y g e o lo g is t , Table 1 i s presented to summarise the e f f e c t of various fa c to r s on th e p h y sica l p rop erties o f rooks. Accompanying d e fin itio n s f a c i l i t a t e the in te r p r e ta tio n o f the ta b le and provide a reference o f terms used in sub­ sequent d isc u s s io n s .

The p rop erties o f e l a s t i c i t y and p l a s t i c i t y in rocks are trea ted in Chapter 2m Some other c h a r a c te r is tic phenomena o f importance in the study o f rock s tr e n g th s, such as creep , f a t ig u e , and endurance, are a lso

mentioned.

F ailu re o f rock specimens under s t r e s s i s given a d e ta ile d stu d y. F i r s t , th e accepted c l a s s i c a l th eo ries of f a ilu r e are s ta te d b r ie f ly j then the Mohr S tr e ss Diagram i s developed fo r a number o f types o f load­ in g s , ending w ith a general s ta t e o f s t r e s s . Using the Mohr S tr e ss Dia­ gram, a c a r e fu lly co n tr o lle d laboratory experiment on rook specimens i s analysed to deduce th e manner o f f a ilu r e o f rooks and th e form of th e envelope of ru p ture.

Chapter 4 d isc u sse s sev era l examples o f s t a t i c and dynamio loadings on rock m asses, including s t r e s s d is tr ib u tio n around a tunnel opening, propagation o f e l a s t i c s t r a in , and crater b la s tin g . The l a s t part of the chapter i s devoted to a d isc u ssio n of th e p r in c ip le s o f s im ilitu d e as they may be used in th e study o f m ilita r y g eo lo g y . A s p e o lf ic example in volvin g the deton ation of an atomic bomb above an underground tunnel i s

*

presented as. an i l l u s t r a t i o n o f th e a p p lic a tio n o f th ese s im ila r ity p r in c ip le s .

(5)

Page I

X

4

8

8 10

X 0

12

IS 13 14 14 17 18 19 21 27 28 31 34 34 36 37 40 42 A A ym 44 43 47 48 33 53 58 61 71 73 TABLE OPCOBTENTS Introduction

Hooke in the E arth's Crust D e fin itio n s

E l a s t i c i t y and P la s t ic it y o f Rooks E l a s t i c i t y

P l a s t i c i t y

Stages o f Deformation F atigue and Endurance

F ailu re of Hook Specimens Under S tr e ss C la s s ic a l Theories o f Failure Mohr's S tr e ss Diagram.

Simple ten sio n T r ia x ia l loading Pure shear

Pure shear and compression General s ta t e o f s tr e s s

Further d isc u ssio n o f f a ilu r e of rocks Envelope o f rupture

The form o f the envelope of rupture

Influence o f the interm ediate p r in c ip a l s tr e s s Summary of methods o f f a ilu r e

P h ysical Behavior of Rook Masses Under S ta tio and Dynamic Loadings

S t a tic S tr e sse s Around a Tunnel Opening Hanna1s s o lu tio n

Character o f s t r e s s d is tr ib u tio n Dynamic Loadings

General con sid eration s S ta te of s tr e s s on a body

R elations between s tr e s s e s and s tr a in s Propagation o f e l a s t i c deformations Repeated deformations

Wave motions

Dynamic loadings in volvin g rupture

The Concept o f S im ilitu d e as an Aid t o th e Study o f M ilita r y Geology

Appendix Bibliography

(6)

ILLUSTRATIONS

O p p o site

F ig u re No* S u b je c t Page No*

X S t r e s s - S t r a i n Diagram 9

2 Deformat ion-Tim e Diagram 9

3 Sim ple t e n s i o n 15

4 Mohr S t r e s s Diagram f o r Sim ple t e n s i o n 15

5 T r i a x i a l lo a d in g 18 6 Mohr S t r e s s Diagram fo r , t r i a x i a l lo a d in g 18 7 P ure S h ear 19 8 Mohr S t r e s s Diagram f o r p u re sh e a r 19 9 P u re s h e a r and co m p ressio n 20 10 G en eral S ta te o f S t r e s s 21

11 E q u ilib riu m o o n d itio n s on a body i n

g e n e r a l s t a t e o f s t r e s s 22

12 Mohr S t r e s s Diagram f o r g e n e r a l s t a t e o f

s t r e s s (Method A) 23

13 R e s o lu tio n o f S t r e s s Components 25

14 D e riv a tio n o f Mohr S tr e s s Diagram f o r

g e n e r a l s t a t e o f s t r e s s (Method B) 25 15 Mohr S t r e s s Diagram f o r g e n e r a l s t a t e of

s t r e s s (Method B) 27

16 Specimens o f ro c k t e s t e d t o f a i l u r e un d er

v a r io u s lo a d in g s 28

17 Mohr S t r e s s Diagrams f o r specim ens o f

> F ig u re 16 show ing en v elo p e o f r u p tu r e 29 18 In f lu e n c e o f m o is tu re and p o r o s ity on Mohr S t r e s s diagram 32 19 S t r e s s d i s t r i b u t i o n around a tu n n e l a* R a d ia l S t r e s s p a t t e r n 37 b . T a n g e n tia l s t r e s s p a t t e r n 37 o* S h ear s t r e s s p a t t e r n 37 d* P a t t e r n of s h e a r p la n e s o f w eakness 43 20 S t a t e o f s t r e s s on a body 46

(7)

F ig u re No*

21

22

S u b je c t

B l a s t i o d e fo rm a tio n s from a dynamic lo a d E l a a t i o d e fo rm a tio n s a t a d i s t a n t p o i n t from th e im pulse O p p o site Page Ho» 50 53 23 P a t t e r n o f s h e a r w eakness aro u n d a o r a t e r c h a rg e and o u tl in e o f t y p i c a l o r a t e r s 60

(8)

TABLES T able I I I The In f lu e n c e o f V ario u s F a o to rs on th e P h y s ic a l P r o p e r t ie s o f Rooks V alues of th e P r i n c i p a l S t r e s s e s and o f - th e S h e a r and Normal Components on th e P la n e s o f Weakness f o r V a rio u s P o in ts Around a C i r c u l a r Tunnol Opening

O p p o site Page No»

4

(9)

AC KNCMLB DGXENTS

I w ish t o e x p re s s my a p p r e c i a tio n f o r th e c o u r te s y e x te n d e d me by th e S t r u c t u r a l R esearch L a b o ra to ry o f th e U n ite d S t a t e s Bureau o f R e c la m a tio n , D enver, C o lo ra d o , i n making a v a i l a b l e th e r e s u l t s o f v a lu a b le e x p e rim e n ts p e r t i n e n t t o th e s u b je c t o f t h i s t h e s i s *

Thanks a r e a ls o due t o P r o f e s s o r s C* W# L iv in g s to n , H enry Baboook, and W* H. J u rn e y o f th e F a c u lty o f th e C o lo rad o S chool o f Mines f o r t h e i r h e l p f u l c r i t i c i s m s and s u g g e s tio n s *

(10)

1

THE "BEHAVIOR OF ROCKS AND ROCK MASSES IN RELATION TO MILITARY GEOLOGY

Chapter I

I n tr o d u c ti o n

Rocks In th a E arth * s C ru s t

The e a r t h ’ s c r u s t i s g e n e r a l l y d e f in e d a s th e s i l i c e o u s zone forming

th e o u te rm o s t la y e r o f th e e a r th * The d e p th o f th e c r u s t i s more o r l e s s a r b i t r a r i l y ta k e n a t a b o u t t e n m ile s * A t p r e s e n t* th e m i l i t a r y g e o l o g i s t i s co n ce rn e d w ith o n ly th e up p er p o r t i o n o f th e © rust* down to a d e p th o f s e v e r a l hun dred f e e t , w hich f a l l s w ith in t h e rang© o f m o d erate d e p th s a s p r e s e n t- d a y m ining o p e r a tio n s go* T h is u p p e r l a y e r

o f th e e a r t h c o n s i s t s o f " ro c k s " —h a r d , c o h e s iv e m a t e r i a l composed o f m in e ra ls o r a g g re g a te s o f m in e r a ls bound to g e th e r i n t o a d e f i n i t e u n i t . Rocks a r e i n tu r n g e n e r a l l y c o v e re d w ith a m a n tle o f decomposed* uncon­ s o l i d a t e d m in e ra l and o rg a n ic m a t e r i a l known a s s o i l * The b o u n d ary betw een th e lo w e r l i m i t o f th e m a n tle and th e u p p e r l i m i t o f th e "bed­ ro c k " i s u s u a ll y n o t w e ll- d e f in e d inasm uch a s th e u p p e r zone o f th e b e d -ro c k h as u s u a ll y undergone a l t e r a t i o n and d ecay from i t s o r i g i n a l s t a t e th ro u g h th e a c t i o n o f th e a g e n ts o f w e a th e rin g and e ro s io n * This d is c u s s io n w i l l b e co n ce rn e d m a in ly w ith th e p h y s ic a l p r o p e r t i e s o f the b e d -ro c k as i t i s fo u n d i n i t s more o r l e s s u n a l t e r e d , c o h e s iv e , and c o n s o li d a te d s t a t e *

A p p ro x im a te ly tw en ty m in e r a l s , c a l l e d " ro o k -fo rm in g m in e r a ls , 0 make up th e g r e a t m a j o r ity o f th e m in e ra l a g g re g a te s o f w hich ro c k s a r e composed* N o tab le among th e ro o k -fo rm in g m in e ra ls a r e t h e

(11)

t

f e l d s p a r s , m ic a s , p y ro x e n e s , a m p h ib o lo s, q u a r tz and c a l e i t e .

Rooks a r e g e n e r a l l y c l a s s i f i e d a c c o rd in g to t h e i r modes o f o r i g i n a s ( 1 ) ig n eo u s r o c k s , o r th o s e d i r e c t l y d e r iv e d from a magma* ( 2 ) s e d im e n ta ry r o c k s , o r th o s e s e c o n d a r ily d e riv e d ro c k s form ed th ro u g h th e d i s i n t e g r a t i o n , t r a n s p o r t a t i o n , and s u b se q u e n t in d u r a tio n o f p r e ­ v io u s ly e x i s t i n g r o c k s ; and (3 ) m etam orphic r o o k s , o r ro c k s w hich w ere o r i g i n a l l y ig n eo u s o r s e d im e n ta ry and w h ich have b een p a r t l y o r w h o lly r e c o n s t i t u t e d a s a r e s u l t o f t h e a c t i o n o f h e a t and p r e s s u r e a t d ep th *

Each o f th e Inroad c l a s s i f i c a t i o n s o f r o c k s — ig n e o u s , s e d im e n ta ry , and m etaraorphie—may i n tu r n be s u b d iv id e d i n t o f u r t h e r g e n e ti c c a t e g o r i e s . The ig n eo u s ro c k s a r e , f o r exam ple, c l a s s i f i e d a s e x t r u s i v e (form ed

th ro u g h th e c o o lin g o f th e m o lte n magma on th e e a r t h ’ s s u r f a c e ) and i n t r u s i v e (form ed th ro u g h t h e c o o lin g o f th e magma i n a r e l a t i v e l y d e e p - s e a t e d e n v iro n m en t)* Examples o f e x t r u s i v e ig n eo u s ro o k s a r e r h y o l i t e s , b a s a l t s , s c o r i a , o b s id ia n , and o th e r v o lc a n ic g la s s e s * The i n t r u s i v e ig n e o u s ro c k s o f n o te a re g r a n i t e s , s y e n i t e s , m o n z o n ite s , g a b b r o s , and p e r i d o t i t e s * The i n t r u s i v e s a r e , i n th e o r d e r g iv e n , p r o g r e s s i v e ly more b a s ic in c o m p o sitio n * G ra n ite s ta n d s a s t h e m ost a c i d i c o f th e i n t r u s i v e ig n e o u s r o c k s , w h ile g a b b ro and d i o r i t e c o n ta i n a much l a r g e r p r o p o r tio n o f b a s i c m in e ra ls *

S e d im e n ta ry ro c k s a l s o f a l l i n t o two m ain s u b d iv is io n s : n am ely , ( 1 ) th o s e form ed th ro u g h th e c o n s o li d a tio n o f c l a s t i c fra g m e n ts

(s a n d s to n e s and s h a l e s ) and ( 2 ) th o s e form ed th ro u g h th e p r e c i p i t a t i o n o f s o l i d m a t e r i a l from s o l u t i o n ( lim e s to n e s ) * M etam orphic r o c k s , on th e o th e r h a n d , a r e u s u a l l y c l a s s i f i e d a c c o rd in g t o th e d e g re e o f d i a s tro p h is m t o w hich th e y have b een s u b je c te d * Low d e g re e o r low ”ra n k n m etam orphies c o n s i s t of su ch ro c k s a s s l a t e s , w h ile th e h ig h e r

(12)

5

ra n k m etam orphics ar© su ch ro c k s a s g n e is s e s and s c h i s t s #

A f u r t h e r d e t a i l e d c l a s s i f i c a t i o n o f ro c k s a c c o rd in g to mode o f o r i g i n o r m in e ra l c o m p o sitio n i s o f no s i g n i f i c a n t i n t e r e s t t o t h i s d i s c u s s i o n . However, any p a r t i c u l a r ro o k may e x h i b i t c h a r a c t e r i s t i c f e a t u r e s o f t e x t u r e and s t r u c t u r e w hich may a f f e c t i t s p h y s ic a l p ro p e r­ t i e s t o a marked d e g re e . E x tr u s iv e ig n e o u s ro c k s a r e c h a r a c t e r i s t i c a l l y f i n e g r a in e d and q u i t e o f te n e i t h e r g l a s s y o r s c o r ia c e o u s . An im p o rta n t s t r u c t u r a l f e a t u r e o f i n t r u s i v e ig n e o u s ro c k s i s th e p re s e n c e o f i n t e r ­ lo c k in g c r y s t a l l i n e m in e r a l s . C l a s t i c s e d im e n ta ry ro c k s a re u s u a ll y c h a r a c t e r i s e d by m in e ra l p a r t i c l e s h e ld to g e th e r by a c em en tin g agent* M etamorphic ro c k s may e x h i b i t th e s t r u c t u r a l c h a r a c t e r i s t i c s o f b o th s e d im e n ta ry and ig n eo u s ro c k s a n d , in a d d i t i o n , have su ch u n iq u e f e a t u r e s as b a n d in g , f o l i a t i o n , s c h i s t o s i t y , and gneissos© s t r u c t u r e *

Rocks a t o r d in a r y c o n d itio n s o f te m p e ra tu re and p r e s s u r e , and even u n d er th e en v iro n m en t o f m o d erate d e p th s , a r e i n h e r e n t l y b r i t t l e sub­ s t a n c e s , I n d iv i d u a l ro c k specim en s a r e a b le t o w ith s ta n d a r e l a t i v e l y la r g e co m p ressiv e lo a d b e fo re r u p t u r e , b u t a r e n o t ic e a b ly weak i n s h e a r and ev en w eak er i n te n s io n * The ro o k m asses w hich c o n s t i t u t e th e e a r t h 1 s c r u s t a r e w eaker s t i l l when c o n s id e re d i n r e l a t i o n t o th e t e c t o n i c

f o r c e s t o w hich th e y a r e s u b je c te d . As a co nsequence o f th e a c t i o n o f th e s e e a r t h f o r c e s , c e r t a i n w ell-know n f e a t u r e s a s f o l d s , f a u l t s , j o i n t ­ i n g , c le a v a g e , and f o l i a t i o n a r e p r e s e n t t o p ro d u ce p la n e s o f d is c o n ­ t i n u i t y o r zones o f s t r u c t u r a l w eakness w hich s e r v e t o f u r t h e r red u ce th e s t r e n g t h o f th e ro c k m a ss. O th er s t r u c t u r a l c h a r a c t e r i s t i c s o f ro c k m asses su ch a s b e d d in g , d e g re e o f c o n s o l i d a t i o n , d e g re e o f a l t e r a t i o n , g r a d a t io n from one ty p e o f ro c k t o a n o t h e r , p o r o s i t y , and m o is tu re c o n te n t a f f e c t th e p h y s i c a l and m ech an ical p r o p e r t i e s o f ro c k m asses* The accom panying t a b l e (T ab le I ) , t o g e th e r w ith th e d e f i n i t i o n s g iv e n

(13)

TA B LS I (C o n t’ d ) •I'T^TT «T° C^xpox©A ^ v f r a r sepjdoioo iC^TPT^TH *ofq!i8H gJUOSSTO^ /'VTOf -*swTd L^Susj^g sntnpoj? s,S uno^ 09 © *H HP ft © P« O ft fft S © C © H u M

3

6M O ( P o +■ + ■ 4 --tJ © c •H n3

S

® bO-P © © (4 5 “ <M © *—-> 31 © KJ ft O £ o -p K •© © H > I 4 “ + ♦ t rG ft P © •H •P «w 53 X> • 1 O •P 6 WT5 © d •H <—1 © © • P * P ft oj O ft M © ft bO«H p fl © O § A 3 S O R G P o O O © ft O rP ft O o a •Hi © © ft ft © P ft <3 .ft £ O © O rP ft •H C ft >> 05 © O ft o *H © H a rP ft © •P © ft G rP >P •H ■£ p p A r-i 25 © 05 bO , rP P* © © P ■3T3 © ft -P 53, ft © G •P •s © © ft P« O ft •P §# ■H r-i 23 O <sj a bO 'd +3 t i « © © p p «j C "© O »P O rP • O © © © ,M tH ^ O G a o P o u © •H ♦ o d tJ © p 05 X? •H r-i O © £ © O X o o « o p ft 4 4 -~4te 4 " 4 4 -4 ~ © © ftbO ® J f « id •© a? *P 3 A a g. ( 4 O © a p 3 d © b 2S d X <w cjs o o p © © t—i bO S3 d pt—r bO • r l u p d A P bJ3 ft •P 'ft

s

p o p rP © r-t r-i © h (0 ft* • U) ft £ © •p P 05 © ft § O A ***» © © §© u o © T d & © © s bO © t3 d o p © © © ft o £ tp “ h In d ic a te s in c re a s e s , w h il e — in d ic a te s d e c re a s e s

(14)

In fl u e n c e of V a ri o u s F a c to rs on P h y si c a l P ro p e rt ie s of R o c k s © o fl ft ft *H f t © f t ca r-i Q ft O P P CO © >» e •H ft © M W O r-i > P* O 03 P © P © ft © P H O © O P© ft *—I S3 ^—- © O © •HO^« U © 3 Vi (0 H © ft © ft © *4 © © ft O P M 55 D O C a p a b le of m or e p la s ti c or " e la s ti c o -v is c o u s " d e fo rm a ti o n s , § If c o a rs e r g ra in e d

(15)

b e lo w , w i l l s e r v e t o i l l u s t r a t e th e e f f e c t o f v a r io u s f a c t o r s on t h e p h y s ic a l b e h a v io r o f ro c k m asses# I t sh o u ld be remembered t h a t any number o f su ch f a c t o r s may b e o p e r a tin g a t any one tim e to p ro d u ce a r e s u l t a n t e f f e c t w hich may b e d i f f e r e n t from th e b e h a v io r u n d e r any one o f th e component f a c t o r s .

D e f in i tio n s

(S ee A ppendix f o r l i s t o f sym bols u sed h e r e in )

E l a s t i c i t y . The a b i l i t y o f a}b o d y , when deform ed t o a c e r t a i n

!

e x t e n t by a sy stem o f a p p lie d f o r c e s , t o r e g a in i t s o r i g i n a l sh ap e upon rem oval of th e f o r c e s . The d e g re e o f e l a s t i c i t y o f m a t e r i a l s i s m easured by th e amount o f d e fo rm a tio n ( s t r a i n ) , e x p re s s e d a s a f r a c t i o n o f th e o r i g i n a l l i n e a r d im e n s io n , w hich a body w i l l u n d erg o u n d e r a g iv e n s t r e s s ( f o r c e p e r u n i t a r e a ) w ith in th e ra n g e o f e l a s t i c a c t i o n o f th e m a t e r i a l . S t e e l , f o r ex am p le, i s a much l e s s e l a s t i c s u b s ta n c e th a n r u b b e r , b e c a u se a g iv e n s t r e s s i n s t e e l w i l l pro d u ce much l e s s e l a s t i c d e fo rm a tio n th a n w i l l th e same s t r e s s in ru b b e r# Inasm uch as i n any s tu d y o f e l a s t i c i t y , Hooke’ s law i s assumed to h o ld below th e e l a s t i c l i m i t — t h a t i s , f o r any m a t e r i a l th e a p p lie d s t r e s s i s p r o p o r tio n a l t o th e r e s u l t i n g s t r a i n — Young’ s modulus h a s b e en u sed t o d e s c r ib e t h e r e l a t i v e e l a s t i c i t y o f tw o m a t e r i a l s # S in c e Young’ s m o d u lu s, E Z w i l l have a much l a r g e r

s t r a i n

v a lu e f o r s u b s ta n c e s such as s t e e l th a n i t w i l l f o r a m a t e r i a l l i k e r u b b e r , i t i s r e a d i l y s e e n t h a t , t h e low er th e v a lu e o f t h e e l a s t i c m odulus, th e more e l a s t i c a s u b s ta n c e m ust b e . C h a r a c t e r i s t i c s o f e l a s t i c i t y w i l l be d is c u s s e d f u r t h e r I n th e n e x t c h a p t e r .

P l a s t i c i t y . The p r o p e r ty o f a b o d y , w h ereb y , when i t i s s u b je c te d to a d e fo rm a tio n by th e a p p l i c a t i o n o f a sy stem o f f o r c e s , i t rem ain s

(16)

deform ed upon rem oval of th e fo r c e s * In o th e r w o rd s , an i d e a l l y p l a s t i c body sh o u ld e x h i b i t no e l a s t i c re c o v e ry * A ll s o l i d s e x h i b i t b o th e l a s ­ t i c i t y and p l a s t i c i t y t o v a r y in g d e g re es* S te e l u n d e r o rd in a ry c o n d itio n s o f te m p e ra tu re and p r e s s u r e e x h i b i t s e l a s t i c p r o p e r t i e s u n d e r s t r e s s e s below th e s o - c a l l e d " e l a s t i c l i m i t " (beyond w hich Hooke’ s law no lo n g e r h o l d s ) , th e n w ith in c r e a s in g s t r e s s e s i t d is p la y s p l a s t i c b e h a v io r u n t i l ru p tu r e * Rocks u n d er th e same c o n d itio n s show v e r y l i t t l e i f any p l a s t i c d e fo rm a tio n beyond th e e l a s t i c l i m i t and b e fo re ru p tu r e * However, w ith i n c r e a s in g d e p th and c o n f in in g p r e s s u r e , ro c k s may e x h i b i t a c o n s id e r a b le amount o f p l a s t i c d e fo rm a tio n *

* V is c o s ity * The r e s i s t a n c e o f f e r e d by a f l u i d t o th e r e l a t i v e m o tio n o f i t s p a r t i c l e s . A v is c o u s d e fo rm a tio n i s c h a r a c te r iz e d by a c o n tin u o u s d is p la c e m e n t o f th e p a r t i c l e s o f th e f l u i d body a t a r a t e p r o p o r tio n a t e t o t h e r a t e o f a p p l i c a t i o n and m agnitude o f th e a p p lie d s h e a r in g lo a d . Such dependence on th e ra t© o f a p p l i c a t i o n o f th e s h e a rin g lo a d d i s ­ t i n g u i s h e s v is c o u s flo w from p l a s t i c f lo w , f o r in th e l a t t e r ty p e o f d e fo rm a tio n th e s h e a r s t r e s s n e c e s s a r y t o p ro d u ce p l a s t i c s h e a r i s v e r y n e a r ly in d e p e n d e n t o f th e r a t e o f sh ear* E l a s t i o o - v i s o o s i t y * A s u b s ta n c e i s c a l l e d " e l a s t i c o - v i s c o u s " when i t e x h i b i t s e l a s t i e p r o p e r t i e s (and p e rh a p s p l a s t i c p r o p e r t i e s a s w e ll) u n d e r lo a d s o f s h o r t d u r a t i o n , y e t u n d e r r e l a t i v e l y s m a ll lo a d s o f lo n g d u r a tio n deform s v is c o u s ly * In such m a t e r i a l s th e c o e f f i c i e n t o f

v i s c o s i t y i s q u i t e h ig h * An example o f e l a s t i c - v i s c o u s m a t e r i a l i s s e a l ­ in g wax* Rooks a r e s a i d by some a u t h o r i t i e s to b e e l a s t i c - v i s c o u s *

C re e p * A slow d e fo rm a tio n o f a m a te r ia l when s u b je c te d t o r e l a t i v e l y s m a ll s t r e s s e s a c ti n g o v e r a r e l a t i v e l y lo n g p e rio d o f tim e .

(17)

w hich a body f a i l s t o e x h i b i t b e f o r e f a i l u r e under a g iv e n c o n d itio n o f lo a d in g . Rooks a t o r d in a r y c o n d itio n s o f te m p e ra tu re and p r e s s u r e a r e s a id t o be b r i t t l e .

H a rd n e s s . As u se d h e r e i n , h a rd n e s s r e f e r s to th e a b i l i t y o f a body t o s ta n d a b r a s i o n . Such a d e s c r i p t i v e term can o n ly be a p p lie d w ith r e f e r e n c e t o a g e n e r a l l y a c c e p te d s t a n d a r d , o r s c a le o f h a r d n e s s ,, t o w h ich a g iv e n m a t e r i a l i s compared* I n th e t e s t i n g o f h a rd n e ss o f m in e ra l s p e c im e n s, Moh’ s s c a le i s th e u s u a l l y a c c e p te d c r i t e r i o n . I n t h i s s c a l e , t a l c i s a s s ig n e d a h a rd n e ss o f 1 , gypsum 2 , c a l o i t e 3 , f l u o r i t e 4 , a p a t i t e 5 , o r th o c la s e 6 , q u a r tz 7 , to p a z 8 , corundum , 9 and diamond 10.

T o ug h n ess. The p r o p e r t y o f a body by v i r t u e o f w hich v/ork may b e done on th e body when s t r e s s e d beyond i t s e l a s t i c l i m i t .

S t r e n g t h . The p a r t i c u l a r c o m b in a tio n o f s t r e s s e s w hich a m a t e r i a l c a n u n d erg o b e f o r e f a i l u r e e i t h e r b y r u p tu r e o r p l a s t i c flo w u n d e r a g iv e n s e t o f c o n d itio n s o f tim e and te m p e r a tu r e . Fundam ental s t r e n g t h i s th e s t r e n g t h o f a m a te r ia l r e g a r d l e s s o f th e tim e p e r io d o v er w hich th e s t r e s s e s m y b e a p p l i e d .

P o r o s i t y . The amount o f v o id s i n a g iv e n volume o f m a t e r i a l i n r e l a t i o n t o th e amount o f s o l i d s i n th e same volum e.

E la s t ic C onstants.

a . Modulus o f E l a s t i c i t y (Y oung's M odulus) u> — s t r e s s s ** s t r a i n V b . P o is s o n 's r a t i o * The r a t i o o f th e l a t e r a l u n i t s t r a i n t o th e l o n g i t u d i n a l s t r a i n su ch a s fo u n d i n a t e s t specim en s u b je c te d t o a s im p le a x i a l lo a d . P o i s s o n 's r a t i o - m - l a t e r a l I l o n g i t u d i n a l

(18)

7

c * s kQar modulus o r modulus o f r i g i d i t y # The r a t i o o f th e a p p lie d s h e a rin g s t r e s s t o th e r e s u l t i n g s h e a rin g s t r a i n #

fl r Ss r S

- 7 7 -

2(T+'iIJ

d . Modulus o f F l e x i b i l i t y # The r e c i p r o c a l o f th e modulus o f r i g i d i t y , o r A #

G

e . Modulus o f volume e l a s t i c i t y # (Lama’ s c o n s ta n t)

\ mE

- - ( y t n ) ' ( r - - s )

f• C o m p r e s s ib ility f a c t o r # A p r o p o r t i o n a l i t y f a c t o r w h ich may be u sed to d eterm in e th e c o m p r e s s ib ili t y o f a m a t e r i a l u n d er a g iv e n c o n fin in g pressui*©. F o r h y d r o s t a t i c p r e s s u r e 5

K I 5(l-2m)

E

g# I n c o m p r e s s ib il ity f a o t o r ( k ) # A lso c a l l e d th e wB ulk M odulus, 11 i s th e r e c i p r o c a l o f t h e c o m p r e s s i b i l i t y f a c to r #

k* Modulus o f R e s i l i e n c e # The e n e rg y a b so rb e d p e r u n i t volume o f a m a te r ia l when s t r e s s e d to th e e l a s t i c l i m i t . F or specim ens t e s t e d i n sim p le t e n s i o n o r co m p re ssio n th e modulus o f r e s i l i e n c e , U, i s :

2 TT 1 1 “ • t ' l c e t ^ L . V e l o c i t i e s o f Wave p r o p a g a tio n . a# C o m p re ss io n a l, l o n g i t u d i n a l , o r p rim a ry w aves: *» = b# S h e a r, o r tr a n s v e r s e w aves: v s = V - y - n S e— 5— : - J - S L V 2w (l + m) Y w

(19)

C h a p te r 2

E l a s t i c i t y and P l a s t i c i t y o f Rocks

E l a s t i c i t y

G e n e ra l. An e l a s t i c d e fo rm a tio n i s one w hich d is a p p e a rs c o m p le te ly upon r e l e a s e o f th e s t r e s d c a u s in g th e d e fo rm a tio n . As a lr e a d y in d ic a te d u n d e r th e d e f i n i t i o n o f e l a s t i c i t y i n C h ap ter 1 , th e r e i s a d e f i n i t e r e l a t i o n , e s t a b l i s h e d by e x p e rim e n t, betw een e l a s t i c s t r e s s and e l a s t i c s t r a i n — t h a t i s , th e y a re p r o p o r tio n a l to one a n o th e r w i t h i n a c e r t a i n r a n g e . T his e l a s t i c p r o p e r ty o f p r o p o r t i o n a l i t y i s known a s Hooke’ s Law and i s one of th e fu n d a ­ m e n ta l p r e c e p ts on w hich i n v e s t i g a t i o n s o f e l a s t i c b e h a v io r a r e b a s e d . A h a r d , r i g i d s u b s ta n c e su ch as s t e e l w i l l behave i n a t r u l y e l a s t i c m anner u n d e r a sm a ll s t r e s s a c c o rd in g t o th e d e f i n i ­ t i o n o f e l a s t i c i t y , b u t a h ig h ly e l a s t i c s u b sta n c e such as ru b b e r w i l l n o t behave i n a t r u l y e l a s t i c m anner. When s t r e t c h e d s lo w ly , ru b b e r does n o t im m e d ia te ly r e t u r n to i t s o r i g i n a l sh ap e a f t e r th e r e l e a s e o f s t r e s s . I t would seem , t h e r e f o r e , t h a t th e h a r d e r and more r i g i d a m a t e r i a l i s , th e more t r u l y e l a s t i c i s i t s b e h a v io r u n d e r a s m a ll s t r e s s . Rocks a s e n c o u n te re d n e a r th e e a r t h ’ s s u rfa c e a l l y th e m selv e s more n e a r ly t o th e h a r d e r s u b s ta n c e s and behave i n a more o r l e s s t r u l y e l a s t i c m anner u n d er sm a ll s t r e s s e s *

S t r e s s - S t r a l n D iagram . An i d e a l i z e d ” s t r e s s - s t r a i n ” diag ram f o r a ro c k specim en i s shown i n F i g . 1 . The specim en has b e e n ' s u b je c te d t o a s lo w ly a p p l i e d , s im p le , a x i a l l y c o m p re ssiv e lo a d u n d e r o r d in a r y c o n d itio n s o f te m p e ra tu re and a tm o sp h e ric p r e s s u r e . I f th e ro c k specim en behaved i n a t r u l y e l a s t i c m anner, th e l i n e QA

(20)

fcUpTUft-E.

po in j

S j R . A I N

Figure 1

S tr esa -S tr a in Diagram fo r Rook,

p L A S j l C O G j r o a ^ N A f i O N E L A S - p C A f J S f t * E f f E C j I L A 4 J I C R.E COV E t Q • L o A O l K C i C O A M £ U C £ D t, : Lo a o i m^ ft e l e a s e d : U L j I M A f E <2. £ C O V E f t - Y

Figure 2

(21)

i n t h e diagram would be s t r a i g h t * A c tu a l specim ens t e s t e d , how ever, i n d i c a t e t h a t th e s t r e s s - s t r a i n r e l a t i o n s h i p i s n o t e n t i r e l y i n a c c o rd a n c e w ith Hooke’ s Law, s o t h a t th e l i n e QA e s t a b l i s h e d by

e x p e rim e n ts on ro o k s i s s l i g h t l y curved* Inasm uch a s th e a r e a u n d e r th e c u rv e d l i n e OA r e p r e s e n ts th e a c t u a l work done on th e sy ste m , i t i s e v id e n t t h a t l e s s p o t e n t i a l e n e rg y i s s to r e d up in th e body th a n w ould be p o s s ib le i f th e ro c k had behaved i n a t r u l y e l a s t i c manner*

The h o r i z o n t a l l y sh ad ed p o r t i o n o f Fig* 1 i n d i c a t e s th e amount o f p o s s i b l e e l a s t i c p o t e n t i a l e n e rg y w h ic h , th ro u g h a phenomenon c a l l e d R e l a x a t i o n " , i s n o t s t o r e d i n th e body d u rin g d e fo rm a tio n * R elax a­ t i o n may be d e s c rib e d a s th e p ro c e s s w hereby c e r t a i n p o r ti o n s o f th e ro c k make u se of some o f th e p o t e n t i a l s t r a i n e n e rg y a s h e a t e n e rg y o f p a r t i c l e v ib r a ti o n * M oreover, upon g ra d u a l r e l e a s e o f th e lo a d , t h e r o c k sp ecim en does n o t r e t u r n t o i t s o r i g i n a l sh ap e a lo n g th e same l i n e a s i n lo a d in g th e specim en* f o r a c e r t a i n s t r e s s on th e lo a d in g cu rv e OA i s a s s o c i a t e d w ith a g r e a t e r s t r a i n on th e u n lo a d in g cu rv e* The a r e a b etw een th e lo a d in g cu rv e and th e u n lo a d in g cu rv e i s th e amount o f s to r e d p o t e n t i a l e n e rg y l o s t as h e a t , w hich i s d i s s i p a t e d i n p ro ­ du cin g a change i n th e i n t e r n a l s t r u c t u r e o f th e ro c k in lo a d in g i t t o a c o n d itio n c o rre sp o n d in g t o p o i n t A* T his lo s s o f e n e rg y i s c a l l e d " h y s t e r e s i s o f s t r a i n * "

I f a t p o in t A th e sp ecim en i s s u b je c te d t o f u r t h e r l o a d , i t would f i n a l l y f a i l by r u p tu r e a t a p o i n t B, c o rre sp o n d in g t o a s t r e s s v a lu e Bf • The e n t i r e d e fo rm a tio n b e fo re r u p tu r e would be a p p ro x im a te ly e l a s t i c , as a lr e a d y in d ic a te d *

C re e p * The d e fo rm a tio n i l l u s t r a t e d i n Fig* 1 i s b ro u g h t a b o u t on a specim en d u rin g a r e l a t i v e l y s h o r t tim e ex p erim en t* I n a d d i t i o n t o t h i s ty p e o f d e fo rm a tio n , i t may b e o b serv ed t h a t , i f th e specim en

(22)

10

i s deform ed t o a p o in t su ch a s A by th e c o rre sp o n d in g s t r e s s A*, and th e n i f th e s t r e s s i s k e p t c o n s ta n t o v e r a p e rio d o f tim e , th e ro o k w i l l c o n tin u e to deform in e v e r d e c r e a s in g amounts o v e r e q u a l tim e

i n t e r v a l s u n t i l th e d e fo rm a tio n v i r t u a l l y c e a se s* T h is phenomenon, c a l l e d c r e e p , i s th o u g h t t o be a n o th e r m a n if e s t a t io n o f r e la x a ti o n * I f th e s t r e s s A* i s removed a f t e r th e c re e p deform a.tion o c c u r s , th e specim en w i l l in tim e u s u a l l y r e g a in i t s o r i g i n a l s h a p e , o r n e a r ly so* T hus, th e ro c k may s t i l l be c o n s id e re d a s b e h av in g more o r l e s s e l a s ­ t i c a l l y u n d er " c re e p d e fo rm a tio n s* " P l a s t i c i t y I f th e phenomenon o f r e l a x a t i o n i s e x te n d e d to a c o n s id e r a ti o n o f th e b e h a v io r o f ro c k s u n d er much h ig h e r c o n f in in g p r e s s u r e s th a n o rd in a ry a tm o sp h e ric p r e s s u r e — t h a t i s , a t p r e s s u r e s t o be found in th e e a r t h a t d e p th — i t w i l l be fo u n d t h a t th e ro c k specim en w i l l behave i n an e l a s t i c m anner u n d e r much h ig h e r s t r e s s e s and i n a d d i tio n w i l l u n d e r­ go a ty p e o f flo w d e fo rm a tio n from w hich i t w i l l n o t re c o v e r i t s

o r i g i n a l shape* The ty p e o f flo w d e fo rm a tio n w hich p ro d u ces a p erm anent " s e t " i n th e ro ck specim en i s c a l l e d " p l a s t i c flow *" I f th e c o n f in in g p r e s s u r e i s h ig h e n o u g h , th e ro c k specim en may undergo a c o n s id e r a b le amount o f p l a s t i c d efo rm a tio n *

S ta g e s o f D efo rm ation

Rocks a re made up o f a g g re g a te s o f m in e ra l m a t t e r , bonded to g e th e r by v a rio u s m eans. I t i s e v id e n t t h a t each o f t h e m in e ra l c o n s t i t u e n t s may e x h i b i t i n d iv id u a l e l a s t i c and p l a s t i c p r o p e r t i e s w hich make i t c o n c e iv a b le t h a t u n d e r a g iv e n lo a d in g some m in e ra l c r y s t a l s may be u n d e rg o in g p l a s t i c d e fo rm a tio n w h ile o th e r c r y s t a l s a r e s t i l l i n t h e i r

(23)

e l a s t i c r a n g e . This h e te r o g e n e ity of a c t i o n u n d e r s t r e s s has been

y

advanced by B u rg ers to e x p la in th e d e v ia tio n o f ro c k s and o th e r

V

Houwink, " E l a s t i c i t y , P l a s t i c i t y , and S t r u c t u r e o f M a tte r " , Cambridge U n iv . P r e s s , 1940.

p o l y c r y s t a l l i n e m a t e r i a l s from a t r u l y e l a s t i c b e h a v io r . The in n e r te n s io n s a r i s i n g betw een t h e e l a s t i c a l l y and p l a s t i c a l l y deform ed p o r ti o n s may, i n a d d i t i o n t o th e d e fo rm a tio n s a lr e a d y d e s c r ib e d ,g iv e r i s e to an " e l a s t i c a f t e r - e f f e c t , " o r slow re c o v e ry from d e fo rm a tio n a f t e r r e l e a s e o f th e l o a d .

We may th e n summarize ( s e e P ig . 2) 'th e d e fo rm a tio n s p roduced on a t y p i c a l ro c k specim en u n d e r s u i t a b l e c o n d itio n s o f te m p e ra tu re and c o n f in in g p r e s s u r e as f o llo w s :

1 . S m all lo a d s p ro d u c in g t r u l y e l a s t i c a c ti o n o f a l l c r y s t a l l i n e m a tte r and b o n din g m a t e r i a l .

2 . I n c r e a s in g lo a d s t o produce a p l a s t i c d e fo rm a tio n o f a few o f t h e c r y s t a l s ( o r bonding m a t e r i a l ) , so t h a t th e r o c k a s a whole b eh av es a s e s s e n t i a l l y e l a s t i c b u t w ith p o t e n t i a l e l a s t i c a f t e r ­ e f f e c t and h y s t e r e s i s p ro d u c e d .

3 . S t a t i c lo a d in g o v e r a p e rio d o f tim e ( c r e e p ) , g iv in g r i s e t o a s u f f i c i e n t r e l a x a t i o n and i n t e r n a l a d ju s tm e n t o f th e ro c k s t r u c t u r e to produce a more f a v o r a b le e q u ilib r iu m w ith th e e x t e r n a l lo a d s*

4* I n c r e a s in g lo a d s resum ed. D efo rm atio n o f th e c r y s t a l l i n e m a tte r and bonding a g e n ts i s so p re p o n d e ra n t t h a t , i f th e lo a d w ere r e l e a s e d , th e e l a s t i c p o t e n t i a l e n erg y o f th o s e c r y s t a l s s t i l l u n d e r­ g o in g e l a s t i c d e fo rm a tio n i s i n s u f f i c i e n t t o r e s t o r e th e ro c k t o i t s o r i g i n a l sh a p e . A "p erm an en t s e t " i s p ro d u c e d .

(24)

12

5 . F u r th e r in c r e a s in g o f lo a d in g . P l a s t i c d e fo rm a tio n s o c cu r t o su ch a d e g re e t h a t th e e l a s t i c e le m e n ts no lo n g e r a r e a b le t o form any c o n c e rte d r e s i s t a n c e t o th e d e fo rm a tio n , hen ce a p p r e c ia b le y i e l d i n g i s e v id e n c e d w ith s m a ll in c r e a s e o f lo a d . P l a s t i c flo w i s d o m in an t.

I f , b e f o r e th e s t a t e o f d e fo rm a tio n in 5 above b e g i n s , th e lo a d w ere g r a d u a lly r e l e a s e d , th e fo llo w in g s ta g e s o f re c o v e ry o f th e ro c k w ould be o b s e rv e d :

1 . An e l a s t i c re c o v e ry (accom panied by h y s t e r e s i s ) from a c o n s id e r a b le p r o p o r tio n o f th e d e fo rm a tio n p ro d u c e d .

2 . A re c o v e ry from c r e e p , com bined w ith th e e l a s t i c a f t e r - e f f e c t m en tio n ed p r e v i o u s l y , to f u r t h e r re d u c e th e am ount o f d e fo rm a tio n p ro d u c e d .

A p o r ti o n o f th e d e fo rm a tio n w i l l s t i l l rem ain w hich was b ro u g h t a b o u t by th e p l a s t i c flo w . The ro c k w i l l n o t r e c o v e r from t h i s p l a s t i c d e fo rm a tio n .

F a tig u e and Endurance

Under r e p e a te d lo a d in g c y c le s o f th e n a tu r e ^ u s t d e s c rib e d i t i s p ro b a b le t h a t th e chan ges b ro u g h t a b o u t upon th e i n t e r n a l s t r u c t u r e of th e ro c k by h y s t e r e s i s , p l a s t i c d e fo rm a tio n s o f some o f th e

c r y s t a l s o r bond in g m a t e r i a l , and l o c a l i z e d s t r a i n s w i l l b r in g a b o u t th e e v e n tu a l f a i l u r e o f th e m a t e r i a l u n d e r lo a d in g s below th o s e n e c ­ e s s a r y to r u p tu r e th e ro c k d u rin g a s in g le t e s t . Yfhether th e s e f a c t o r s c o m p le te ly e x p la in t h e r e d u c tio n i n s t r e n g t h o f a ro c k u n d er r e p e a te d lo a d in g s i s p ro b le m a tic a l* However, i t i s s u f f i c i e n t t o know t h a t such r e p e a te d s t r e s s e s a c t u a l l y do re d u c e th e s t r e n g t h s o f ro c k s *

(25)

Chapter 3

F a i l u r e o f Rook Specim ens Under S t r e s s

Many v a r i e t i e s o f ro c k s have b een s u b je c te d t o s ta n d a r d l a b o r a to r y t e s t s t o d e te rm in e t h e i r a b i l i t y t o w ith s ta n d m e c h a n ic a lly in d u ced s t r e s s e s . U n f o r t u n a te ly , ro c k s have n o t b een t e s t e d a s e x h a u s tiv e ly a s have some o f th e more common s t r u c t u r a l m a t e r i a l s su ch a s s t e e l o r c o n c r e te ; n e v e r t h e l e s s , th e d a ta a v a i l a b l e from ro c k t e s t s i s s u f f i ­ c i e n t t o j u s t i f y a t h e o r e t i c a l d is c u s s io n o f th e m anner o f f a i l u r e o f ro c k s u n d e r s t r e s s .

A . C l a s s i c a l T h e o rie s o f F a i l u r e

S e v e ra l t h e o r i e s o f f a i l u r e have been advanced to e x p la in th e c a u se o f th e commencement o f i n e l a s t i c a c t i o n o r th e manner o f f a i l u r e o f a m a t e r i a l . F a i l u r e o f e l a s t i c a c t i o n i s ta n ta m o u n t t o r u p tu r e i n a b r i t t l e m a te r ia l such a s r o c k u n d e r o r d in a r y c o n d itio n s o f tem p era­ t u r e and a tm o sp h e ric p r e s s u r e . B r i e f l y sum m arized, th e s e c l a s s i c a l t h e o r i e s o f f a i l u r e a r e :

1 . Maximum S t r e s s T h e o ry . T his th e o ry s t a t e s t h a t i n e l a s t i c a c t i o n b e g in s a t a p o in t o n ly when th e maximum norm al s t r e s s ( t e n s i l e ) a c r o s s any p la n e th ro u g h th e p o i n t ex ceed s th e s t r e s s c o rre s p o n d in g t o th e p r o p o r tio n a l l i m i t o f th e m a te r ia l i n a sim p le t e n s i o n t e s t .

2 . Maximum S t r a i n T h e o ry , T h is th e o r y p o s t u l a t e s t h a t t h e s t r a i n a s s o c i a t e d w ith th e f a i l u r e o f a m a t e r i a l i n a sim p le t e n s i l e t e s t m ust n o t be ex ceed ed a t an y p o i n t i n a body i f th e m a t e r i a l i s n o t to f a i l e l a s t i c a l l y .

3 . Maximum S tr a in -B n e rg y T h e o ry . The "modulus o f r e s i l i e n c e " ( s e e d e f i n i t i o n s ) i s used a s th e c r i t e r i o n o f e l a s t i c f a i l u r e in t h i s

(26)

/

14

t h e o r y . The maximum s tr a in - o n e r g y s t o r e d p e r u n i t o f volume by th e body u n d e r any com plex sy stem o f s t r e s s e s m ust n o t exceed t h a t w hich c a n be s t o r e d p e r u n i t volume by th e body as d e term in e d by a sim p le t e n s i o n t e s t .

4 . Maximum S tr e s s - D i f f e r e n c e Theory o r Maximum S h ear Theory* (G u e st* s Law ). T his th e o r y s t a t e s t h a t th e f a c t o r p ro d u c in g f a i l u r e o f e l a s t i c i t y i s th e g r e a t e s t s h e a r s t r e s s in th e m a t e r i a l ( o r t h e g r e a t e s t d if f e r e n c e betw een th e p r i n c i p a l s t r e s s e s ) .

j /

The maximum s t r e s s th e o ry h a s been m o d ifie d by 0 . M ohr. I n s te a d

^ M ohr, 0 . , “ T ech n isch e M echanik” , p p . 1 9 2 -2 3 4 , W. E r n s t u , S .# 3 rd E d ., B e r l i n , 1928.

o f p la c i n g r e l i a n c e on th e maximum s h e a r s t r e s s alo n e as a cau se o f f a i l u r e , Mohr s t a t e s t h a t o f a l l p la n e s h av in g th e same norm al

com ponent, t h a t w hich s u s ta in s the g r e a t e s t s h e a r s t r e s s i s th e p la n e on w hich i n e l a s t i c s t r a i n w i l l o c c u r . As f a r a s ro c k s a r e c o n c e rn e d , i t

seems m ost p l a u s i b l e to a c c e p t M o h r's h y p o th e s i s , w ith s e v e r a l im p o rta n t am endm ents, i n o r d e r t o e x p la in th e f a i l u r e o f t h e i r i n e l a s t i c a c t i o n . B efo re d is c u s s in g f a i l u r e f u r t h e r , i t i s a d v is a b le to e x p la i n i n d e t a i l Mohr’ s S t r e s s D iagram , w hich sh o u ld be u n d e rs to o d i n o rd e r to f u l l y a p p r e c ia te th e manner o f ro o k f a i l u r e s . Inasmuch a s m ost r e f e r e n c e s do n o t in c lu d e a th o ro u g h d is c u s s io n o f t h i s v a lu a b le g r a p h ic a l means o f r e p r e s e n t in g a s t a t e o f s t r e s s , a com prehensive a n a ly s is i s in c lu d e d i n th e fo llo w in g p a ra g rap h s*

Mohr’ s S t r e s s D iagram .

1 . Sim ple T e n s io n . F ig u re 3a i l l u s t r a t e s a ro c k body s u b je c te d t o a n a x i a l t e n s i l e l o a d , F , d i s t r i b u t e d u n ifo rm ly o v e r th e c r o s s

(27)

V J S f i S I ON dx <*r a .

F ig u r e 3

- S H £ * f c .

F ig u r e 4

Mohr S t r e s s Diagram f o r F i g . 3

^ C O A A f R . e s S I OVI

(28)

s e c t i o n o f th e body ta k e n a t p o in t P p e r p e n d ic u la r to th e d i r e c t i o n o f F* The " f o r c e i n t e n s i t y * ” o r " s t r e s s , ” a c r o s s such a p la n e i s p^ * F <• A.# w here A i s th e c r o s s s e c t i o n a l a re a* T h is p a r t i c u l a r p la n e i s known a s a " p r i n c i p a l s t r e s s p la n e ” f o r th e p o in t P , su ch a p la n e b e in g d e f in e d a s one on w hich th e r e i s no s h e a rin g o r ta n g en ­ t i a l s t r e s s # I t can be shown t h a t f o r th e s t a t e s o f s t r e s s on th e many p la n e s w hich may b e p a ss e d th ro u g h p o i n t P u n d e r any sy ste m o f e x t e r n a l f o r c e s , th e r e w i l l be t h r e e and o n ly th r e e su ch p r i n c i p a l s t r e s s p la n e s * F u rth erm o re ^ th e t h r e e p r i n c i p a l s t r e s s p la n e s a re m u tu a lly p e r p e n d ic u la r . T h u s, th e d i r e c t i o n s o f th e th r e e p r i n c i p a l

s t r e s s e s — a c ti n g alw ays norm al t o t h e p r i n c i p a l p la n e s o f s t r e s s — a r e a l s o m u tu a lly p e rp e n d ic u la r* I n & g e n e r a l c a s e , none o f th e p r i n c i p a l s t r e s s e s w i l l be e q u a l, so t h a t , i f we d e s ig n a te th e s e s t r e s s e s as p ^ , p £ , an d p ^ , and i f P i > P2 > * V th e n p^ i s th e maximum p r i n c i p a l s t r e s s * pg i s th e in te r m e d ia te p r i n c i p a l s t r e s s , and pg i s th e minimum o r l e a s t p r i n c i p a l s t r e s s * I n th e p a r t i c u l a r ty p e o f lo a d in g shown i n Fig* 3 a , pgS pg - 0*

Through th e p o i n t P , o f Fig* 3 a , a random p la n e such a s a - a may be p a s s e d , making an a n g le / w ith th e p la n e o f th e maximum p r i n c i p a l s t r e s s * Upon th e s m a ll b o d y , dV, o f u n i t th ic k n e s s shown i n F ig s * 3a and 3b th e fo llo w in g e q u ilib r iu m o f f o r c e s e x i s t s ;

Z F X * 0 X F y ^Q

S g C o s/ d l* sn s i n / d l s nc o s / dx + s s s i n / dx = p^dx c o s / c o s /

S o lv in g th e above e q u a tio n s f o r s s and S&, th e sh o a r and norm al com ponents o f a r e s u l t a n t s t r e s s , B , on th e p la n e a - a , we o b ta in t

(29)

c 16

s s 8 J p i s i n 2/ ( 1 )

8n * i P i + "k Px ©os2/ ( 2 )

The r e l a t i o n s h i p betw een s s and sn may be re p r e s e n te d geo­

m e t r i c a l l y by th e c o n s t r u c t i o n shown i n Pig* 4* The h o r iz o n ta l a x is i n th e draw ing m easu res t e n s i l e s t r e s s from th e o r i g i n , 0 , to th e l e f t , and th e v e r t i c a l a x i s r e p r e s e n t s s h e a r s t r e s s ( t h e s ig n o f th e s h e a r s t r e s s i s a r b i t r a r y ) . A le n g th 0 2 , e q u a l to th e m agnitude o f p i , i s l a i d o u t a lo n g th e h o r i z o n t a l a x is and w ith C a s a c e n te r a c i r c l e o f r a d iu s -g p^ i s d e s c r ib e d th ro u g h p o in ts 0 and 2* An a n g le 2 / i s m easured o f f from th e h o r i z o n t a l a x i s , i t s r a d iu s CA i n t e r s e c t i n g th e c i r c l e a t A. Thus th e a b s c is s a and o r d in a te o f p o in t A r e p r e s e n t th e m agnitude o f th e norm al and s h e a r com ponents o f s t r e s s on p la n e a - a s in c e e q u a tio n s ( 1 ) and ( 2 ) a r e s a t i s f i e d by th e g e o m e tric a l con­ s t r u c t i o n . L ength OA i s t h e r e s u l t a n t s t r e s s , R. The c i r c l e ,

t h e r e f o r e , r e p r e s e n ts th e l o c i o f a l l p o i n t s , such a s A , whose

c o o r d in a te s d e te rm in e th e s h e a r and norm al s t r e s s com ponents on p la n e s p a sse d th ro u g h p o in t P .

The random o r i e n t a t i o n o f th e specim en i n F ig . 3a and hence th e random d i r e c t i o n o f w ith r e s p e c t to t h e ax es of t h e Eohr d iag ram i n F ig # 4 i l l u s t r a t e th e method o f u s in g a “p o l e ," P , t o d e te rm in e th e p o in t A by draw ing p a r a l l e l l i n e s to th o s e o f F i g . 3a on t h e s t r e s s c i r c l e i n s t e a d o f la y in g o f f th e a n g le 2$ i n th e p ro c e d u re j u s t s t a t e d . A l i n e i s drawn from p o i n t 2 p a r a l l e l t o th e d i r e c t i o n o f th e maximum p r i n c i p a l s t r e s s p la n e i n Fig# 3a# I t s p o in t o f i n t e r s e c t i o n w ith th e s t r e s s p la n e i s c a l l e d th e " p o le " f o r th e c i r c l e . Any l i n e , su ch a s PA, drawn from th e p o le p a r a l l e l to a random p la n e th ro u g h p o in t P

(30)

i n th e specim en w i l l g iv e th e r e q u ir e d i n t e r s e c t i o n ( e . g . p o in t A) w ith th e s t r e s s c i r c l e f o r t h a t p la n e . I t i s more c o n v e n ie n t,

g e n e r a l l y , t o o r i e n t th e h o r iz o n ta l a x is i t s e l f p a r a l l e l to th e maximum s t r e s s p la n e so t h a t th e p o le P w i l l c o in c id e w ith th e i n t e r s e c t i o n o f th e c i r c l e w ith th e h o r i z o n t a l a x i s . The p o le i n th e Kohr d iag ram i s o f p a r t i c u l a r u se i n l o c a t in g th e d i r e c t i o n s o f th e p r i n c i p a l s t r e s s e s and p r i n c i p a l s t r e s s p la n e s i n c ase th e p r i n c i p a l s t r e s s d i r e c t i o n s a r e th e unknown q u a n t i t i e s .

2 . T r i a x l a l L o ad in g . C o n sid e r now a n o th o r c o n d itio n o f lo a d - in g such a s i s o b ta in e d in a " t r i a x i a l co m p ressio n " t e s t i n g m ach in e. I f an im p e rv io u s j a c k e t su rro u n d s th e specim en as i t i s immersed i n a l i q u i d u n d e r a c o n f in in g p r e s s u r e , p , and th e n th e specim en I s sub­ je c t e d t o an a x i a l p r e s s u r e , A p , in a d d itio n t o th e p r e s s u r e p , we have f o r a u n i t volume o f th e specim en c u t o u t by p la n e s p a r a l l e l t o th e d i r e c t i o n s o f th e p r i n c i p a l s t r e s s e s th e lo a d in g shown in F i g . 5 a . In t h i s s k e tc h = p + A p , and pg s - p . The s t r e s s pg i s a c tin g i n a d i r e c t i o n p e r p e n d ic u la r to th e p la n e o f th e p a p e r .

F o llo w in g th e p ro c e d u re o f r e s o lv in g th e f o r c e s n e c e s s a ry f o r e q u ilib r iu m o f a sm all volume dV ( F i g . 5b) i n a h o r i z o n t a l and v e r t i c a l d i r e c t i o n and s o lv in g f o r s fi and s g i n term s o f p ^ , p ^ , and we

I f we p l o t th e Mohr s t r e s s c i r c l e t o r e p r e s e n t th e r e l a t i o n g iv e n i n e q u a tio n s (7 ) an d ( 8 ) , i t w i l l a p p e a r as i n P i g . 6 . Kota t h a t th e s ig n o f th e s h e a rin g s t r e s s i s m e re ly c o n v e n tio n a l, d ep en d in g upon o b ta in :

«n * I ( P i + P3) + i ( P i - Pj)oos 2 /

s s = i (pt - P3 ) sin 2/

( 3 )

(31)

a.

« - P. i

b

Figure 5

IsK&tOK 2 — CO*sp«.£$$iOW F ig u r e 6

(32)

18 w h e th er th e a n g le / i s g r e a t e r or l e s s th a n 9 0 ° , C om pressive s t r e s s e s a r e ta k e n in th e p o s i t i v e d i r e c t i o n o f th e h o r i z o n t a l a x i s , w h ile t e n s i l e s t r e s s e s a r e c o n s id e re d n e g a t i v e . QZ r e p r e s e n ts a g a in th e m ag n itu d e o f p ^ , l a i d o f f in a d i r e c t i o n to th e r i g h t o f th e o r i g i n ( t o s i g n i f y c o m p re s s io n ). OX r e p r e s e n ts th e v a lu e o f p , a l s o a 3

c o m p ressiv e s t r e s s . An i d e n t i c a l s t r e s s c i r c l e would have been ob­ ta in e d i f th e e le m e n ta l volume dV and th e p la n e a - a had b een d is p o s e d i n th e same a t t i t u d e w ith r e s p e c t t o p as i t i s w ith r e s p e c t to p

2 3 i n F i g . 5 a , inasm uch as p - p i n t r i a x i a l lo a d in g . 2 3 I n F i g . 6 th e o r i e n t a t i o n o f th e h o r iz o n ta l a x i s i s p a r a l l e l to th e p la n e o f th e maximum p r i n c i p a l s t r e s s , so t h a t th e p o le P , d e s c r ib e d i n F i g . 4 , c o in c id e s w ith p o i n t X in F i g . 6 * The l i n e XA i s p a r a l l e l to th e p la n e a - a o f F i g . 5 . The li n e OA r e p r e s e n ts th e m ag n itu de o f th e r e s u l t a n t s t r e s s , R, on th e p la n e a - a , and 9 i s th e a n g le betw een th e r e s u l t a n t and t h e norm al to t h e p la n e a -a *

3* Pure S h e a r. A n o th er ty p e o f s p e c i a l lo a d in g w hich may be im posed upon a body i s t h a t o f ’’p u re s h e a r . ** I f th e sp ecim en i n F i g . 7 i s s u b je c te d t o a co u p le a s shown, th e r e s i s t a n c e t o d e fo rm a tio n i s s e t up a s a s h e a rin g s t r e s s a lo n g th e p la n e a - a a s i t i s in f lu e n c e d t o move i n r e l a t i o n t o a p a r a l l e l p la n e a * - a * . The s h e a rin g s t r e s s i s I * P J A, assum ing t h a t th e s h e a rin g s t r e s s i s d i s t r i b u t e d u n ifo rm ly o v e r th e c r o s s - s e c t i o n a l a r e a A c u t o u t by th e p la n e a-& .*

* T h is a ssu m p tio n i s p ro b a b ly n o t J u s t i f i e d f o r th e s t r e s s c o n d itio n a t any p o in t th ro u g h o u t th e sp e c im e n , f o r i t i s p ro b a b le t h a t a com plex s t r e s s d i s t r i b u t i o n i s e v id e n t n e a r th e b o u n d a rie s o f th e sp ec im e n . The

same com plex s t r e s s d i s t r i b u t i o n p ro b a b ly e x i s t s i n t h e sim p le t e n s i l e t e s t sp ecim en a lr e a d y d e s c r ib e d , b u t i n e ac h c a s e , i f th e specim en i s s u f f i c i e n t l y l a r g e , th e fu n d a m e n tal d e f i n i t i o n f o r s t r e s s ^ L e .

s - F o rce d iv id e d by a r e a , sh o u ld be s u f f i c i e n t l y v a l i d f o r p o i n t s w e ll i n th e i n t e r i o r o f th e b o d y .

(33)

--- CL d * t i l l

F ig u r e 7

- X - -F i g u r e 8

(34)

An e le m e n ta l cube in th e body, shown i n Fig* 7b i s a c te d upon by th e t a n g e n t i a l or s h e a r in g s t r e s s e s , T, on i t s s u rfa c e s * A random p la n e b - b , p a sse d th ro u g h th e elem en t w i l l , from th e re q u ire m e n ts o f e q u ilib r iu m o f th e f r e e b o d y , have a norm al t e n s i l e s t r e s s e q u al i n m agnitude to T a c tin g a c r o s s th e p la n e (w ith no s h e a r com ponent) i f

& - 450 , and a norm al co m p ressiv e s t r e s s e q u a l to T i n v a lu e i f

& - 1 3 5 °. Then th e c o m p ressiv e s t r e a s (= T, & *135°) may be c o n s id e re d th e maximum p r i n c i p a l s t r e s s and the t e n s i l e s t r e s s

P g (s T» /3 = 4 5 ° ) th e minimum p r i n c i p a l s t r e s s * Under th e c o n d itio n s o f lo a d in g s p e c i f i e d , th e in te r m e d ia te p r i n c i p a l s t r e s s i s s Q, w hich a l g e b r a i c a l l y i s a c t u a l l y in te r m e d ia te in v a lu e betw een p^ and p^*

The e q u ilib r iu m c o n d itio n on a sm a ll volume dV i n Fig* 7o may be e x p re s s e d i n te rm s o f sn , s g , T, and f o r any a s s ig n e d v a lu e o f

Q • From su ch c o n d itio n s we o b ta in th e r e l a t i o n s ; s n • T s i n 2& (5 )

s s - T cos 2j3 ( 6 )

On th e o th e r h an d , i f s„ and s„ w ere d e term in e d i n term s o f t h e i rJX 5 r e l a t i o n t o th e p r i n c i p a l s t r e s s e s , p^ and p ^ , and th e a n g le

( s 135° - /3 ) , th e r e s u l t i n g e q u a tio n s would be i d e n t i c a l w ith e q u a tio n s (3 ) and ( 4 ) .

’The s t r e s s c i r c l e f o r !lp u re s h e a r" i s shown in F ig , 8 , Note th e p o s i t i o n o f th e p o le P f o r t h i s diagram * I f t h e t e n s i l e s t r e s s p^ i s c o n s id e r e d th e maximum p r i n c i p a l s t r e s s , th e n th e p o le P w ould be throw n i n t o p o s i t i o n P* as shown*

4# Pure S h ear and Com pression* I f a specim en such as th e one shown i n Fig* 7a were " f i r s t s u b je c te d t o a u n ifo rm h y d r o s t a t i c p r e s s u r e .

(35)

b

V

C .

4

a

(36)

p , b e fo re th e im p o s itio n o f th e c o u p le F , th e q u e s tio n a r i s e s as t o th e e f f e c t o f t h i s c o n f in in g p r e s s u r e upon th e Mohr Diagram o f Fig* 8 * I n c o n fo rm ity w ith th e d is c u s s io n u n d er P a r . 3 , l e t th e c o u p le F a o t i n t h e p la n e o f th e p a p e r as i n F i g . 9a* T hus, th e in te r m e d ia te p r i n c i p a l s t r e s s pg i s e q u a l to th e c o n fin in g p r e s s u r e , p* A ls o , l e t th e m agnitude o f p be l e s s th a n t h a t o f T . Then th e m ag n itu d es o f th e o th e r p r i n c i p a l s t r e s s e s w i l l bet

p-^ » T + p (c o m p re ssiv e s t r e s s ) j v. Pg = T - p ( t e n s i l e s t r e s s )

As b e f o r e , th e p la n e o f th e minimum p r i n c i p a l s t r e s s w i l l c o r r e s ­ pond t o 0 - 4 5 ° , and th e p la n e of th e maximum p r i n c i p a l s t r e s s w i l l o c c u r when 0 ~ 1 3 5 °. S o lv in g f o r s n and s s (F ig * 9a) i n t e r n s o f T,

0 , and p , we o b ta in t en = T s i n 20 - p (7 ) j s s - T cos 2 0 ( 8 ) F ig u re 9c i l l u s t r a t e s th e Mohr Diagram f o r p la n e s p a r a l l e l to th e d i r e c t i o n o f p g , w h ile F ig . 9d shows th e s t r e s s r e l a t i o n s a c r o s s p la n e s p a r a l l e l to th e d i r e c t i o n o f p g . As m ig h t be s u rm is e d , b o th th e s t r e s s c i r c l e s of F i g s . 9c and d co u ld r e s u l t i n a specim en from an a x i a l c o m p ressiv e s t r e s s • p 4- T, a l a t e r a l c o m p ressiv e s t r e s s o f p^ s p , and a l a t e r a l t e n s i l e s t r e s s o f pg = T - p a t r i g h t a n g le s t o th e d i r e c t i o n o f p ^ . P r a c t i c a l d i f f i c u l t y would p e rh a p s be e n c o u n te re d in p ro d u c in g such s t r e s s e s , how ever, so t h a t i t w ould seem , fro m an

e x p e rim e n ta l p o in t o f v ie w , t h a t th e " i n d i r e c t ap p ro ach " u t i l i z i n g t r i a x i a l co m p ressio n and a superim posed couple would f u r n i s h th e means o f s e c u rin g su ch a c o n d itio n o f lo ad in g *

(37)

z

M — ^ P_ -/> o ^ ys>. o

F ig u r e 1 0 ,

(38)

I t sh o u ld be n o te d fro m th e d is c u s s io n s o f p u re s h e a r and pu re s h e a r combined w ith c o n f in in g p r e s s u r e , t h a t , w henever a p la n e i n a body u n d er a s t a t e o f s t r e s s has o n ly a s h e a r o r t a n g e n t i a l s t r e s s a c t i n g upon i t w ith no norm al com ponent, th e n one o f th e p r i n c i p a l s t r e s s e s has a d i f f e r e n t s e n s e i n r e l a t i o n t o th e o th e r two p r i n c i p a l s t r e s s e s *

5* G en eral S t a t e o f S t r e s s * Thus f a r , s e v e r a l s p e c i a l c o n d i­ t i o n s o f lo a d in g have been c o n s id e re d * In each c a s e , th e p la n e s p a sse d th ro u g h a c e r t a i n p o in t i n a body in a s t a t e o f s t r e s s have been

p a r a l l e l t o one o f th e th r e e p r i n c i p a l s t r e s s d ir e c t i o n s * I t i s p o s s ib le to examine th f s t a t e o f s t r e s s on o th e r p la n e s a t random d i r e c t i o n s t o t h e p r i n c i p a l s t r e s s ax es as w e l l . Two m ethods o f c o n s tr u c ti n g M o h r's S t r e s s Diagram w i l l be p r e s e n te d . The f i r s t m ethod i s b a se d upon th e same “e q u ilib r iu m o f f o r c e s ” ap p ro ach u sed h e r e t o f o r e , w h ile th e seco n d method u t i l i z e s th e p r i n c i p l e o f

r e s o l u t i o n o f s t r e s s com ponents* a* Method A*

F ig u re 10 r e p r e s e n t s a v e ry s m a ll body a t p o in t P w hich i s bounded by p la n e s norm al t o th e th r e e p r i n c i p a l s t r e s s e s and by a f o u r t h p la n e , ABC, whose norm al i n t u r n makes d i r e c t i o n a n g le s

and Y w ith th e p r i n c i p a l s t r e s s d ir e c t i o n s * D enote th e d i r e c t i o n o f th e s t r e s s p^ by ZO* p^ by YG, p^ by XQ* F o r c o n v en ie n c e o f i l l u s ­ t r a t i o n , a l l th e p r i n c i p a l s t r e s s e s i n t h i s d e r i v a t i o n a r e assumed c o m p re s s iv e , a lth o u g h th e p ro o f i s a p p li c a b le t o any s ig n s o f th e p r i n c i p a l s t r e s s e s . F u r th e r l e t

(39)

EMS7 fLH$. 0X1 P ° Y = P*

a*

b .

Figure I I

Figure 12.

Mohr S tr e s s Diagram for General S ta te o f S tr e ss

( Method A)

References

Related documents

‘John Kerry’s Opening Remarks at Session on Investing in Climate Solutions - United States Department of State John Kerry Virtual Leaders Summit on Climate Opening Remarks’.

90 have evaluated home- based exercise exclusively and have reported that a 12-week home-based exercise programme for people with mild to moderate MS is a safe and ef- fective way

This study examines the relationship between Israel and the United States, focusing on one of the two actors, the United States, by looking at The United States presidencies

Depending on the circumstances, this task can be more difficult when agency officials have the sole responsibility for registering documents, which is the case

Det beror enligt Swen- son inte på att amerikanska löner bestäms lokalt, svenska löner centralt, utan på skill- naden mellan segmentalism och solidarism. Swenson visar att

This study used data from the PALS to examine the extent to which the source of one’s calling (external, internal, or both) influences the relationship between living a calling

Paper II: Derivation of internal wave drag parametrization, model simulations and the content of the paper were developed in col- laboration between the two authors with

Include all work with adults, 4-H Club members, and older youth Home production of family food supply (a).. Food preservation