• No results found

Anaerobic corrosion caused by sulfate-reducing bacteria

N/A
N/A
Protected

Academic year: 2021

Share "Anaerobic corrosion caused by sulfate-reducing bacteria"

Copied!
154
0
0

Loading.... (view fulltext now)

Full text

(1)

A N A E R O B I C C O R R O S I O N C A U S E D BY S U L F A T E - R E D U C I N G B A C T E R I A

by

(2)

All rights reserved INFORMATION TO ALL USERS

The qu ality of this repro d u ctio n is d e p e n d e n t upon the q u ality of the copy subm itted. In the unlikely e v e n t that the a u th o r did not send a c o m p le te m anuscript and there are missing pages, these will be note d . Also, if m aterial had to be rem oved,

a n o te will in d ica te the deletion.

uest

ProQuest 10781173

Published by ProQuest LLC (2018). C op yrig ht of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States C o d e M icroform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway P.O. Box 1346

(3)

A thes is s u b m i t t e d to the F a c u l t y a n d the B o a r d of T r u s t e e s of the C o l o r a d o S ch oo l of M i ne s in p a rt i a l

f u l f i l l m e n t of the r e q u i r e m e n t s for the d e g r e e of M a s t e r of E n g i ne e r i ng , P e t r o l e u m E n gi ne er i ng . Golden, C o l o r a d o Da t e

ZéWûY

8

?“ Signed: Eric D. E m e r s o n A p p r o v e d : R e p o r t A d v i s o r Golden, C o l o r a d o Dr. C r a i g W. van K i rk H e a d y D e p a r t m e n t of Dr. C r a i g W. van K i rk H e a d y D e p a r t m e n t of P e t r o l e u m E n g i n e e r i n g ii

(4)

A B S T R A C T The p u r p o s e of this e n g i n e e r i n g r ep or t is to p r o v i d e a b e t t e r o v e ra l l u n d e r s t a n d i n g on the s u b j ec t of a n a e r o b i c c o r r o s i o n c a u s e d b y s u l f a t e - r e d u c i n g b a c t e r i a (S R B ). It is a c o m p i l a t i o n of s c i e n t i f i c m a t e r ia l f r om the m i c r o b i ol o gy , m e t a ll u rg y , a n d p e t r o l e u m fields. The e ff ec t s of SRB is a t opic of m a j o r c o n c e r n in the p e t r o l e u m i n d u s t r y . T he p r e s e n c e of s u l f a t e - r e d u c i n g b a c t e r i a can resu l t in s u b s t a n t i a l e c o n o m i c l osses and p o l l u t i o n of the

e n v i r o n m e n t . T h e y c a u s e the d e t e r i o r a t i o n of m e t a l s , p a r t i c u l a r l y iron a n d s t e e l , w h i c h can a f f ec t oil a n d gas p i pe li ne s, o f f s h o r e s t r u c t u r e s , w a t e r f l o o d i n j e c t io n

s y s t e m s , oil a n d gas s t o ra g e t a n k s , a n d t u b u la r s to name a f e w . T h e y g e n e r a t e h y d r o g e n s u lf i d e w h i c h can c a us e oil a n d gas r e s e r v o i r s to b e c o m e c o n t a m i n a t e d or 'sour'.

This r e p o r t w ill e x a m i n e the g e n e ra l c h a r a c t e r i s t i c s of s u l f a t e - r e d u c i n g b a c t e r i a . It will e x p l a i n and r e v i e w the c l a s s i c a l a n d a l t e r n a t i v e m e c h a n i s m s of c o r r o s i o n c a u s e d b y s u l f a t e - r e d u c i n g b a c t e r i a . It w ill e xa mi n e the p r o b le m s

t hat o cc u r as a r e su lt of t heir p r e s e n c e . This thesis will

r e v i e w m e t h o d s u s e d to d e t e c t s u l f a t e - r e d u c i n g b a c t e r i a . Finally, it w ill e x am i ne the m e t h o d s that are u s e d to c on t ro l a n d p r e v e n t the g r o w t h a nd a c t i v i t y of

s u l f a t e - r e d u c i n g b a c t e r i a .

(5)

TABLE OF CONTENTS Page A B S T R A C T ... iii L I ST OF F I G U R E S ... x L I S T OF T A B L E S ... xii A C K N O W L E D G E M E N T S . ... xiii 1 . I N T R O D U C T I O N ... 1 2. L I T E R A T U R E S U R V E Y ... 4 3. P R O B L E M S A S S O C I A T E D W I T H THE P R E S E N C E OF SRB ... 7 3.1 O F F S H O R E S T R U C T U R E S ... 7 3.2 R E S E R V O I R S O U R I N G A N D P L U G G I N G ... 10 3.3 S T OR A G E T ANKS A N D P I P E L I N E S ... 13 3.4 H Y D R O C A R B O N S ... 15 3.5 C O R R O S I O N OF S T E E L AND O T H E R A L L O Y S ... 16 3.5.1 M i l d S teel or Iron ... 16 3.5.2 S t a i n l e s s S teels ... 17 3.5.3 C o p p e r A l l o y s ... 17 3.5.4 A l u m i n u m A l l o y s ... 18 3.5.5 C o r r o s i o n of A l l o y s in S a l t w a t e r .. 19 3.6 C O N C R E T E ... 20 4 . C A SE S T U D Y ... . 21 iv

(6)

Page 5. M E T H O D S OF C O N T R O L A N D P R E V E N T I O N OF SRB ... 27 5.1 B I O C I D E S ... 27 5.1.1 I n h i b i t i o n of G r o w th ... 27 5.1.2 S e l e c t i n g and E v a l u a t i n g a B i o c i d e ... 29 5.1.3 C o n t i n u o u s B i oc i d e T r e a t m e n t V e r s u s Slug T r e a t m e n t ... 32 5.1.4 B a c t e r i a l Kill Tests ... 33 5.1.5 N o n - O x i d i z i n g B i o c i d e s ... 35 5.1.5.1 C h l o r i n a t e d P h e n o l s ... 36 5. 1.5.2 C a t i o n i c C o m p o u n d s ... 37 5. 1.5.2.2 Q u a t e r n a r y A m m o n i u m Salts ... 37 5 . 1 . 5. 2. 2 A mi n e s ... 37 5 .1 . 5 . 2. 3 C a t i on i c P o l y m e r s ... 38 5.1.5.3 A l d e h y d e s ... 38 5.1.5.4 O r g a n o S u lf u r C o m p o u n d s ... 39 5 . 1 .5 .4 .1 T h i o c y a n a t e s ... 39 5 .1 . 5 . 4. 2 S u lf on es a n d T h io n e s ... 39 5 .1 . 5 . 4. 3 T h i o c a r b a m a t e s ... 39 5.1.6 O x i d i z i n g B i o c id e s ... 40 5.1.6.1 C h l o r i n e ... 40 5.1.6.2 C h l o r i n e D i o x i d e ... 41 5.2 C A T H O D I C P R O T E C T I O N ... 41 5.3 U SE OF P R O T E C T I V E M A T E R I A L S ... 45 v

(7)

Page 5.3.1 U s e of P r o t e c t i v e C o a ti n g s O n s h o r e ... 45 5.3.2 U s e of C o n v e n t i o n a l A n t i - F o u l i n g P a i n t s a n d N o ve l A n t i - F o u l i n g C o a t i n g s O f f s h o r e ... 46 5.3.3 U s e of S e l f - P o l i s h i n g C o p o l y m e r s O f f s h o r e ... 48 5.3.4 U se of C o p p e r / N i c k e l C l a d d i n g O f f s h o r e ... 48 5.4 C H L O R I N A T I O N A N D A E R A T I O N OF S T A G N A N T W A T E R S ... 49 5.5 U S E O F N O N - A G G R E S S I V E B A C K F I L L ... 50 5.6 U S E OF N O N - M E T A L L I C M A T E R I A L S ... 51 5.7 U S E OF P H Y S I C A L A G E N T S TO K I L L THE SRB ... 52 5.7.1 H ea t ... 52 5.7.2 C o l d ... 52 5.7.3 V i s i b l e L ig h t ... 53 5.7.4 U l t r a v i o l e t L i ght ... 53 5.7.5 N u c l e a r R a d i a t i o n ... 54 5.7.6 E l e c t r o m a g n e t i c R a d i a t i o n ... 54 5.8 S U G G E S T I O N S TO M A I N T A I N A *T R O U B L E - F R E E * S Y S T E M ... . 5 5 6. M E T H O D S O F D E T E C T I O N A N D M O N I T O R I N G OF SRB ... 57 6.1 C O L L E C T I O N O F S A M P L E S ... 58 6.2 S E R I A L D I L U T I O N M E T H O D ... 59 6.2.1 Total V i a b l e C ou nt ... 62 vi

(8)

Page 6.2.2 M o s t P r o b a b l y N u m b e r ... 64 6.2.3 D i r e c t C o un t M e t h o d ... 66 6.3 A D E N O S I N E T R I P H O S P H A T E (ATP) T E S T ... 68 6.4 U S E OF M E T A L C O U P O N S ... 69 6.5 A G G R E S S I V E N E S S OF THE S OIL ... 71 6.6 D E T E R M I N A T I O N O F B I O L O G I C A L O R NON-B I O L O G I C A L G E N E R A T I O N OF H Y D R O G E N S U L F I DE ... 72 6.7 M I C R O S C O P Y ... 7 3 6.7.1 L ig h t M i c r o s c o p y ... 74 6.7.2 S c a n n i n g E l e c t r o n M i c r o s c o p y ... 74 6.7.3 T r a n s m i s s i o n E l e c t r o n M i c r o s c o p y .. 75 6.8 C O N C E N T R A T I O N OF O X Y G E N ... 75 6.9 C O N C E N T R A T I O N OF S U L F A T E ... 76 6.10 C O N C E N T R A T I O N OF S U LF I D E ... 76 7. THE S U L F A T E - R E D U C I N G B A C T E R I A ... 77 7.1 C L A S S I F I C A T I O N OF SRB ... 77 7.2 R A N G E OF T O L E R A N C E S FOR THE SRB ... 80 7.2.1 T e m p e r a t u r e ... 80 7.2.2 P r e s s u r e ... 81 7.2.3 S alt C o n c e n t r a t i o n s ... . 82 7.2.4 pH L ev e ls ... 83 7.2.5 R e d o x P o te n t i a l ... 83 7.3 THE R OL E OF THE S U L F U R C Y CL E ... 84 7.4 THE N U T R I T I O N A L R E Q U I R E M E N T S ... 87 vii

(9)

Page 7.5 S O UR C E S OF C A R B O N A N D E N E R G Y ... 88 7.6 B I O F I L M S - A M I C R O B I A L E N V I R O N M E N T ... 92 7.7 D I S T R I B U T I O N O F SRB ... 95 7.8 THE E F F E C T S OF SRB A C T I V I T Y IN N A T U R E ... 98 7.9 C H A R A C T E R I S T I C S OF A N A E R O B I C C O R R O S I O N C A U S E D B Y SRB ... 100 8. C L A S S I C I A L A ND A L T E R N A T I V E M E C H A N I S M S OF SRB IN D UC ED A N A E R O B I C C O R R O S I O N ... 102 8.1 A G E N E R A L O V E R V I E W OF E L E C T R O C H E M I C A L C O R R O S I O N ... 102 8.2 THE C A T H O D I C D E P O L A R I Z A T I O N T H E O R Y ( C L A SS IC AL THEORY) ... 104 8.3 A L T E R N A T I V E M E C H A N I S M S TO THE C A T H O D I C D E P O L A R I Z A T I O N T H E O R Y ... 108 8.3.1 Iron S u lf i de (FeS) as a D e p o l a r i z e r ... 109 8.3.2 I ron S u l f i d e (FeS) a n d B a c t e r i a l H y d r o g e n a s e as a D e p o l a r i z e r ... 112 8.3.3 H y d r o g e n S ul fi de (Hz S ) as a D e p o l a r i z e r ... 112 8.3.4 The C o r r o s i v e M e t a b o l i t e T h e o r y ... 113 9. C O N C L U S I O N ... 114 R E F E R E N C E S ... 115 A P P E N D I X A: G E N E R A L M I C R O B I O L O G Y OF THE SRB ... 121 A. 1 M O R P H O L O G Y . 121 A. 1.1 D e s u l f o v ib r i o ... 121 viii

(10)

Page A . 1.2 D e s u l f o t o m a c u l u m ... 123 A. 1.3 D e s u l f o b a c t e r ... 126 A. 1.4 D e s u l f o b u l b u s ... 127 A. 1.5 D e s u l f o c o c c u s ... 128 A . 1.6 D e s u l f o n e m a ... 128 A. 1.7 D e s u l f o s a r c i n a ... 129 A. 2 M O T I L I T Y ... 130 A. 3 G R A M R E A C T I O N ... 130 A P P E N D I X B: C U L T U R E M E D I U M S FOR THE G R O W T H OF SRB ... 132 B . 1 M e d i u m B ... 132 B.2 M e d i u m C ... 133 B . 3 M e d i u m D ... 134 B . 4 M e d i u m E ... 135 A P P E N D I X C: G L O S S A R Y 136 ix

(11)

LIST OF FIGURES F i gu r e N u m b e r T itle Page 1 S c h e m a t i c r e p r e s e n t a t i o n of b i o f i l m a c t i v i t y on a m e t a l s u rf ac e i m m e r s e d in s e a w a t e r ... 8 2 C a t h o d i c p r o t e c t i o n of a b u r i e d p i p e l i n e u s i ng a m a g n e s i u m s a c r i fi c ia l a no d e ... . 42 3 C a t h o d i c p r o t e c t i o n using a r e c t i f i e r to s u p p l y a c u r r e n t to an inert a no de ... 43 4 A n i l l u s t r a t i o n of the serial d i l u t i o n m e t h o d ... . ... 61 5 The total v i a b l e c ou nt m e t h o d u s i n g

test tubes a n d plat e s ... 63

6 The m o s t p r o b a b l e n u m be r (M P N ) m e t h o d ... 65 7 The d i r e c t c ou n t m e t h o d ... 67 8 V a r i a t i o n in 3 4 S isotope r a tios in b i o l o g i c a l a n d n o n - b i o l o g i c a l SO4 2 ™ r e d u c t i o n ... 73 9 The S u l f u r C yc l e ... ... 86 10 A s i m p l i f i e d d i a g r a m of a n a e r o b i c b i o l o g i c a l d e g r a d a t i o n ... ... 89 11 E l e c t r o c h e m i c a l r ea c ti o n s d u r i n g the c o r r o s i o n of zinc in d i l ut e h y d r o c h l o r i c a c i d ... 103 12 A n i l l u s t r a t i o n of the c l a s s i c a l m e c h a n i s m a n d a l t e r n a t i v e m e c h a n i s m ... 109 13 The i n t e r r e l a t i o n s h i p of the i ro n s u l f i de s .. 110 14 P h o t o g r a p h of m i c r o b i a l i n d u c e d p i t t i n g ... Ill x

(12)

Figu re N u m b e r T it l e Page A .1 A m o n o t r i c h o u s D e s u l f o v i b r i o d e s u l f u r i c a n s a n d a s p i r i l l o i d D e s u l f o v i b r i o d e s u l f uri cans ... 122 A. 2 D e s u l f o v i b r i o g i g a s ... 123 A . 3 D e n t i c u l a t e D e s u l f o t a m a c u l u m n i g r i f l e a n s .... 124 A . 4 A p e r i t r i c h o u s D e s u l f o t o m a c u l u m n i g r i f i c a n s .. 124 A . 5 D e s u l f o t o m a c u l u m a c e t o d o x i n s a n d s po r es ... 125 A. 6 D e s u l f o b a c t e r p o s t g a t e i ... 126 A. 7 D e s u l f o b u l b u s p r o p i o n i c u s ... 127 A. 8 D e s u l f o co c c us m u l t i v o r a n s ... 128 A . 9 D e s u l f o n e m a l i m i c o l a ... 129 A. 10 D e s u l f o s a r c i n a v a r i a b i l i s ... 129 xi

(13)

LIST OF TABLES T a ble N u m b e r T it l e Page 1 R E S U L T S F R O M THE W A T E R I N J E C T I O N S Y S T E M ... 24 2 R E S U L T S F R O M S A M P L E T AK E N B E N E A T H T U B E R C L E S ON 9Cr - IMo T U B I N G ... 25 3 N U M B E R OF B A C T E R I A P R E S E N T P E R P O S I T I V E B O T T L E ... 61 4 R E D O X P O T E N T I A L A N D C O R R O S I V E N E S S OF THE SOIL ... 71 5 A G G R E S S I V E N E S S O F THE S OI L ... . 72 6 C L A S S I F I C A T I O N A N D SOME C H A R A C T E R I S T I C S OF S U L F A T E - R E D U C I N G B A C T E R I A ... 78 7 O P T I M U M G R O W T H T E M P E R A T U R E ... 81 8 THE C A T H O D I C D E P O L A R I Z A T I O N T H E O R Y ... 106 xii

(14)

A C K N O W L E D G E M E N T S

I w o u l d like to t ha n k Dr. J am es W . C r a f t o n for his c on t i n u o u s s u p p o r t a n d g u i d a n c e t h r o u g h o u t m y g r a d u a t e p r o g r a m . I w o u l d like to t hank Dr. B r uc e C r ai g from M e t a l l u r g i c a l C o n s u l t a n t s for b e in g on m y c o m m i t t e e ,

p r o v i d i n g support, a nd for a n s w e r i n g the m a n y q u e s t i o n s that I had. I w o u l d like to t h a n k P r o f e s s o r R o b e r t T h o m p s o n for p a r t i c i p a t i n g on m y c o m m i t t e e . I w o u l d like to thank

D en n is H o r s t m a n (P E T R O L I T E ) a n d Carl C r o n (U N O C A L C o r r o s i o n C e n t e r ) for the i n f o r m a t i o n t he y p r o v i d e d in m y thesis. I w o u l d like to thank D a v i d M a y e r for l i s t e n i n g w h e n I w a n t e d

to talk a b o u t SRB or let off some steam. L a s t , but not

least, I w o u l d like to t ha nk m y p ar en ts for their

o v e r w h e l m i n g s up po r t w h i l e I was in g r a d u a t e school a nd for c o n t i n u o u s l y r e m i n d i n g me t h at r e a l i t y does in d e e d exist o ut s i d e the h a ll s of a cademia.

(15)

1. I N T R O D U C T I O N

T h e r e a p p e a r s to be a n e e d to i n te g ra t e all the d i v e r s e s c i e n t i f i c m a t e r i a l on a n a e r o b i c c o r r o s i o n c a u s e d b y

s u l f a t e - r e d u c i n g b a c t e r i a ( S R B ) . W i t h that in mind, this e n g i n e e r i n g r e p o r t a t t e m p t s to p r o v i d e a p e t r o l e u m

e n g i n e e r i n g p e r s p e c t i v e on this s u b j e c t .

T h e r e is an e x t e n s i v e b o d y of l i t e r a t u r e on the s ub je ct of a n a e r o b i c c o r r o s i o n , or s u i f a t e - r e d u c i ng b a c t e r i a (SRB), or some c o m b i n a t i o n , m uc h of w h i c h is w r i t t e n for other t e c h n ic a l b a c k g r o u n d s . Also, the l i t e r a t u r e u s u a l l y d eals w i t h a v e r y n a r r o w a s p ec t of this t o p i c , not a l l o w i n g the r e ad e r to o b t a i n a c le a r o v e ra l l u n d e r s t a n d i n g . T h e r e f o r e , this r e p o r t a t t e m p t s to p r ov i d e a b e t t e r o v er al l

u n d e r s t a n d i n g of s u l f a t e - r e d u c i n g b a c t e r i a (SRB), the

c o r r o s i o n p r o b l e m s that r es u lt f rom t h ei r activity, a n d h o w to d eal w i t h the p r o b l e m s a s s o c i a t e d w i t h t h eir p r e s e n c e .

M i c r o b i a l i n d u c e d c o r r o s i o n (MIC) is a form of c o r r o s i o n that r e su l t s f ro m the p r e s e n c e of a e r o b i c a n d /o r a n a e r o b i c b a c t e r i a , w h i c h leads to the c l a s s i f i c a t i o n : a e r o bi c c o r r o s i o n a n d a n a e r o b i c c o r r o s i o n . A e r o b i c c o r r o s i o n occu rs w h e n o x y g e n is p r e s e n t in the s u r r o u n d i n g e n v i r o n m e n t . A n a e r o b i c c o r r o s i o n o c cu rs w h e n o x y g e n is a bs e nt f r om the s u r r o u n d i n g e n v i r o n m e n t . H o w e v e r , this c l a s s i f i c a t i o n is o n l y u s e d in c o n j u n c t i o n w i th m i c r o b i a l i n du c ed c o r r o s i o n .

(16)

The a e ro b i c and a n a e r o b i c b a c t e r i a that are i n v o l v e d in m i c r o b i a l i n d u c e d c o r r o s i o n can u s u a l l y be f o un d in c o e x i s t e n c e a n d one c a n be d e p e n d e n t or i n d e p e n d e n t of the o t h e r ’s p r e s e n c e . SRB are d e p e n d e n t on t hr e e featu r es of t h ei r p h y s i o l o g y ; t h e y are a n a e r o b i c ; t he i r g r ow t h is r e s t r i c t e d to the a v a i l a b i l i t y of the n e c e s s a r y n u t r i e n t s ; a nd t h e y p r o d uc e h y d r o g e n s u l f i d e . SRB are stri c t a n a e r o b e s , in o t h e r words o x y ge n i n h ib i ts t he ir g r o w t h . T h e y c a nn o t u t i l i z e o x yg e n for t heir f or m of r e s p i r a t i o n as do m o st o r g a n i s m s . SRB u t il i ze s ul f at e for t he ir f or m of a n a e r o b i c r e s p i r a t i o n w h i c h in the p ro c e s s r ed uc es the s u lf a te (SO4 2 ~ ) to s ul fi d e (S 2 - ), hence the n am e s u l f a t e - r e d u c i n g b a c t e r i a . In the p r e s e n c e of o x y ge n the SRB r e m a i n in a d o r m a n t state a nd are r ea d y to b e c o m e a c t i ve w h e n the s u r r o u n d i n g e n v i r o n m e n t b e co m es a n a e r o b i c .

E v e n t h ou gh SRB are not a c ti v e in a e r o b ic e n v i r o n m e n t s , w h e n the s u r r o u n d i n g e n v i r o n m e n t b e co m e s s u i t a b l e for g ro wt h th eir a c t i v i t y c a n r es u lt in s u bs t a n t i a l e c o n o mi c losses and p o l l u t i o n to the e n v i r o n m e n t . M a j o r e c o n o m i c losses occur to iron a n d steel s t r u c t u r e s that are b u r i e d in soils or l oc at e d in m a r i n e e n v i r o n m e n t s . T h e y can also :

1) sour a n d plug oil a n d gas r e s e r v o i r s ; 2) g e n e r a t e h y d r o g e n s u l f i de ;

(17)

3) c o r r o d e p i p e l i n e s , i n je c t i o n systems, s t o ra g e tanks, d o w n h o l e tubulars, p u m p i ng equipment, o f f s h o r e

s t ru ctures, e t c .

C o r r o s i o n c a u s e d b y SRB is a m o r e e x t e n s i v e p r o b l e m than is c o m m o n l y r e c o g n i z e d in the p e t r o l e u m industry. U nt i l the time c om es w h e n the c o r r o s i o n p r oc e ss is m o r e f u l ly

u nd e rs to od , c o o p e r a t i o n b e t w e e n m i c r o b i o l o g i s t s a nd e n g i ne e rs is e s s e n t i a l in d e s i g n i n g an a p p r o p r i a t e p r o g r a m to c o n tr o l a n d p r e v e n t b a c t e r i a l growth. That m ea ns the e n g i n e e r must h a ve a g o o d u n d e r s t a n d i n g of the m i c r o b i a l a nd m e t a l l u r g i c a l a s p e c t s of the problem.

(18)

2. L I T E R A T U R E S U R V E Y J.H. G a r r e t t * 1 > r e p o r t e d the e x i s t e n c e of m i c r o b i a l c o r r o s i o n in 1891 w h e n he o b s e r v e d an i n c r e as e in the r ate of c o r r o s i o n of a l e a d - c o v e r e d c able w h i c h was l i n ke d to b a c t e r i a l a c t i v i t y . M .W . Beijerinck* 2 > d i s c o v e r e d the p r e s e n c e of s u l f a t e - r e d u c i n g b a c t e r i a (SRB) in 1895. In

1903, A. v a n Delden* 3 > r e p o r t e d the e x i s t e n c e of m a r i n e , salt t o l e r a nt s p ec ie s of SRB. In 1910, R.H. Gaines* 4 > w r o t e a p a p e r s h o w i ng e v i d e n c e that "iron b a c t e r i a " a nd "sulfur b a ct e r i a " w e r e , in p a r t , r e s p o n s i b l e for the c o r r o s i o n of b u r i e d ferr o us m e t a l s . T hi s i n c l u d e d b o t h a e r o b i c and

a n a e r o b i c b a c t e r i a . By 1924, it was b e l i e v e d that the p r o d u c t i o n of h y d r o g e n s u l f i d e b y SRB p l a y e d an i m po r ta nt

part in the c o r r o s i o n of b u r i e d ferrous metals. L. Elion* 5 >

d i s c o v e r e d t h e r m o p h i l i c v a r i e t i e s of SRB in 1925. In 1931, M. S t e p h e n s o n a n d L.H. Strickland* 6 > e s t a b l i s h e d t hat SRB (p a r t i c u l a r l y in the g en us D e s u l f o v i b r i o ) c o n t a i n an e n zy m e w h i c h t h e y n a m e d h y d r o g e n a s e , that uses h y d r o g e n to r e d u c e s u lf a te to sulfide. In 1934, at the P r o v i n c i a l W a t e r w o r k s in n o r t h e r n

Holland, C.A.H. v on W o l z o g e n K u h r a n d I.S. v an der Vlugt* 7 > n o t i c e d the c o r r o s i o n of f e rr o us m e ta l s b u r i e d in wet,

a n a e r o b i c , c l a y soils. T h e y o b s e r v e d that iron s u l f i d e was p r o d u c e d not o n l y on the s u r f a c e of the p i p e but in the soil

(19)

a r o u n d the c o r r o d e d p i p e . T h e y c o n f i r m e d the p r e s e n c e of SRB a n d s u g g e s t e d that the SRB act as a c a t h o d i c d e p o l a r i z i n g a ge n t b y a c t i n g as a h y d r o g e n a c c e p t o r . T h e y p r o p o s e d that the SRB c o u l d r e mo v e the a t o m i c h y d r o g e n (H ° ) f r om the

p o l a r i z e d c a t h o d e s and o x i d i z e it to e l e c t r o n s a n d p r ot o ns w h i c h was t hen u t i l i z e d to r e du c e s u l f a te to s u l f i d e .

D u r i n g the 1 9 4 0 ’s a n d 1 9 5 0 ’s, C.E. ZoBell, i n v e s t i g a t e d the role of SRB a n d o t he r m i c r o o r g a n i s m s in the p e t r o l e u m i n d u s t r y * 8 > . In 1947, ZoBell* 9 » 1 0 > i n v e s t i g a t e d the

i n j e c t i o n of the D e s u l f o v i b r i o g en us into a r e s e r v o i r to a i d in the r e le a se of h y d r o c a r b o n s as a m e t h o d of s e c o n d a r y oil r e c o v e r y . This p r o c e ss w o r k e d v e r y well in the l a b o r a t o r y but was not a p p l i c a b l e in an oil f i e ld e n vi ro n me nt . He r e p o r t e d three m a j o r d i s a d v a n t a g e s :

1) the SRB c o r r o d e iron a n d steel ;

2) they g e n e r a t e h y d r o g e n s u lf i de w h i c h c o n t a m i n a t e s the r e s e r v o i r ; 3) the SRB t h e m s e l v e s or c o r r o s i o n p r o d u c t s r e s u l t i n g from SRB c a n p lu g the r e s e r v o i r or p e r f o r a t i o n s . F r o m the 1 9 5 0 ’s t h r o u g h the p r e s e n t , J.R. P o s t g a t e * 1 1 > , a m i c r o b i o l o g i s t , has p e r f o r m e d an e x t e n s i v e a n d t h o r o u g h i n v e s t i g a t i o n of SRB. In 1979 he p u b l i s h e d a b o o k e n t i t l e d "The S u l p h a t e - R e d u c i n g B a c t e r i a " . It was the first b o ok

(20)
(21)

3. P R O B L E M S A S S O C I A T E D W IT H THE P R E S E N C E OF SRB

3.1 O F F S H O R E S T R U C T U R E S

SRB can be f o u n d i n s i de a n d o u t s id e o f f s h o r e s t r u c t u r e s , in w at e r or w a t e r / o i l e n v i r o n m e n t s a n d are u s u a l l y a c ti v e if a n a e r o b i c c o n d i t i o n s exist. The m o s t c o m m o n l y a f f e c t e d a reas on an o f f s h o r e s t r u c t u r e are w a te r i n j e c t i o n systems, oil s t or a ge tanks, c o n c r e t e g r a v i t y s t r u c t u r e s , d r i l l i n g and p r o d u c t i o n systems, a n d b a l l a s t l e g s . O u t s i d e the o ff sh o r e s t r u c t u r e the SRB c an b e f o un d b e n e a t h m a r i n e m a c r o f o u l i n g , in the s e a f l o or s ed iments, s e af l o o r p i p e l i n e s , and in

d e p o s i t e d m a t e r i a l s (d ri l l c u t t i n g s ) a r o u n d the s t r u c t u r e . A g o o d e x am p l e of m a r i n e m a c r o f o u l i n g (b i o f o u l i n g ) occurs w h e n b a r n a c l e s , m ussels, seaweed, etc., b e c o m e a t t a c h e d to

the s t r u c t u r e a n d c r e a t e m a c r o - e n v i r o n m e n t s w h i c h in turn c r e a t e m i c r o - e n v i r o n m e n t s s u i ta b l e for s u p p o r t i n g v ar io u s forms of b a c t e r i a . T h e s e e n v i r o n m e n t s i nc lu d e a n a e r o b i c c o n d i t i o n s that w o u l d s u p p o r t S R B . O n c e S RB a c t i v i t y has s t a r t e d on the s u r f a c e of the m etal the p r o d u c t i o n of s ul fi de in the b i o f i l m w i ll i n c r e a s e the e x te n t of the a n a e r o b i c zone c r e a t i n g a d d i t i o n a l s ites for SRB activity. F i gu r e 1

(22)

BULK LIQUID PHASE O x y g e n C o n c e n t r â t F a c u l t a t i v e B a c t e r i a B a c t e r i a F i g u r e 1. S c h e m a t i c r e p r e s e n t a t i o n of b i o f i l m a c t i v i t y on a m e t a l s u rf a ce i m m e r s e d in s e a w a t e r (from M a x w e l l * 1 2 > )

I n side the o f f s h o r e structure, p a r t i c u l a r l y w he re s t a g n a n t c o n d i t i o n s e x is t (b a l l a s t legs, s t o ra g e tanks, etc.)» m e a s u r e m e n t s h av e f ou n d that s i g n i f i c a n t a m ou n ts of h y d r o g e n s u lf i de c a n be g e n e r a t e d b y the S R B . The h y d r o g e n s u l f id e c o n c e n t r a t i o n c an r e ach levels h ig h e n ou g h that m a y p ose a t hr ea t to h u m a n life.

M o s t of these s t a g n a n t a r eas i n i t i a l l y c o n t a i n large v o lu me s of w a t e r a n d o x y g e n w h i c h c r ea t e a f av o ra b l e

e n v i r o n m e n t for the g r o w t h of a er ob i c bacte ri a. A f t e r the o x yg e n is c o n s u m e d b y the a e r o b i c b a c t e r i a the s t ag n a n t c o n d i t i o n s b e c o m e f a v o r a b l e for the g r o wt h of SRB a nd the p r o d u c t i o n of h y d r o g e n sulfide. U n d e r some c o n d i t i o n s b ot h o x y g e n a n d h y d r o g e n s u lf i d e can be o x i d i z e d to form sulf u ri

(23)

a c i d b y s u l f u r - o x i d i z i n g b a c t e r i a .

The b i o f i l m d e p o s i t s that are f o r m e d i ns id e the s t r u c t ur e ca n plug filters, valves, pipes, a nd e ve n p lu g the

p e r f o r a t i o n s in the t u b i ng in a w a t e r i n j e c t i o n s y s t e m or in a p r o d u c i n g well.

O u t s i d e the o f f s h o r e structure, a n a e r o b i c c o r r o s i o n is a s s o c i a t e d w i t h m a r i n e b i o f o u l i n g c o u p l e d w i t h the p r e s e n c e of b a c t e r i a or b y b a c t e r i a l a c t i v i t y in the s e d im e nt s

s u r r o u n d i n g the platform. The o r ga n i s m s p r o d u c e d e p o s i t s of g e l a t i n o u s s l ime on the m et a l s ur fa ce w h i c h is the initial stage of b i o f i l m b u i l d u p o u ts i d e the structure. The b i o f i l m m a y c o n t a i n a g g r e s s i v e m e t a b o l i t e s or p r o d u c e d e p o s i t s that c r e a te d i f f e r e n t i a l a e r a t i o n c ells w h e r e the o x y g en

c o n c e n t r a t i o n is h i g h e r at one l o c a t io n of the m e ta l than at a n o t h e r l o c a t i o n of the metal. This c re at e s an anod i c and c a t h o di c a r e a on the m e ta l w h i c h leads to i nt ense l o c a l i z e d c o r r o s i o n on the m e ta l surface. This m a y a d d to the e x i s t i n g c o r r o s i o n p r o c e s s e s that are a l r e a d y occurring.

The rate of c o r r o s i o n for steel in s e a w a t e r that c o n t a in s ac t iv e SRB is 10 to 20 t imes h i g h e r t han in s e a w a t er

a l o n e < 1 3 > . In the s e a w a t e r a r o un d the o u t s i d e of the

o ff s h o re s t r u c t u r e there e xists an i n e x h a u s t i b l e s u p p l y of s u lf a t e for the SRB to utilize. The o f f s h o r e s t r uc t u r e c a n also d i s c h a r g e t r e a t e d p r o d u c e d w a t e r f r om the r e s e r v o i r or dr i ll c u t t i n g s f rom the d r i l l i n g o p e r a t i o n that c o n ta i ns

(24)

n u t r i e n t s for the SRB to utilize.

F r o m 170 s e d i m e n t s a mp l es t ak e n in the N or t h S ea it was d e t e r m i n e d that the n u m b e r of SRB was h i g h e s t in the top

l ayers of the s e d i m e n t a n d t he i r n u m b e r s d e c r e a s e d r a p i d l y in

the f irst 20 c m (7.9 in) of depth. B e l o w 20 cm (7.9 in), the

p r e s e n c e of SRB was s p o r a d i c a n d b e l o w 50 cm (19.7 in) v e ry few w e r e d etected. If the s e d i m e n t s were m i x e d the SRB c o u l d be f ound t h r o u g h o u t the e nt i re d i s t u r b e d zone b e c a u s e

n u t r i e n t s from the top zone w o u l d a lso be m i x e d into the d i s t u r b e d z o n e < 14 > .

The a n a e r o b i c c o r r o s i o n p r o b l e m s c a u s e d b y the SRB can d e v e l o p q u it e r a p i d l y . The c o r r o s i o n is u s u a l l y v e r y

l oc a l i z e d a n d tends to be p i t t e d r a t h e r than u n i f o r m l y

c o r r o d e d . T he refore, the d a m a g e to the m et a l c a n o c cu r quite s u d d e n l y a n d u n ex pe ct e d l y.

3.2 R E S E R V O I R S O U R I N G AND P L U G G I N G

In w a t e r i n j e c t i o n s y st e m s (f r e s hw a t e r or s a l t w a t e r ) one of the p r i m a r y c o n c e r n s is the i n t r o d u c t i o n of SRB into the r e s e r v o i r . T h e ir p r e s e n c e c a n r es ul t in r e s e r v o i r plugging, p r e m a t u r e a b a n d o n m e n t of the w el l or field, s o ur i n g of the oil a n d gas, a nd c o r r o s i o n of the p r o d u c t i o n a n d i n j e ct i on e q u i p m e n t . This m a y u l t i m a t e l y r e sult in e f f e c t i v e

(25)

p e r m e a b i l i t y a nd a d e c r e a s e in the a m o u n t of r e c o v e r a b l e oil a nd g a s . If s e a w a t e r is i n j e c t e d into the r e s e r v o i r it can be a s s u m e d that the p r o b l e m s m e n t i o n e d a b o v e c o u l d be

a c c e n t u a t e d d u e to the i n t r o d u c t i o n of h i g h levels of s u lf a t e that are p r e s e n t in the s e a w a t e r .

S o u r i n g in the r e s e r v o i r m a y r e s u l t f r om three d i f f e r e n t m e c h a n i s m s : h y d r o g e n s u l f i d e m a y be p r o d u c e d b y the i n t r o d u c e d S R B ; b y f l u s h i n g out p o c k e t s of h y d r o g e n s u lf i de p r o d u c e d b y SRB d u r i n g d i a g e n e s i s ; or b y h y d r o g e n s u lfide that was p r o d u c e d b y a n o n - b i o l o g i c a l m e c h a n i s m * 1 5 > . P l u g g i n g in the r e s e r v o i r c a n be a r e s ul t of the SRB t h em se lv es . In g e n e r a l , t h e ir d i m e n s i o n s are in the o r de r of 3 to 10 m i c r o n s in l e n g t h a n d 1 m i c r o n in d i a m e t e r . W h e n the p o re t h ro a ts in the r e s e r v o i r are s m al l e r t han the size of the SRB p l u g g i n g b y the SRB t h e m s e l v e s c a n o c c u r . The SRB c a n pass t h r o u g h the r e s e r v o i r t h ro u gh f r a c t u r e p l an es or a reas w h e r e the p or e t h r o at s are l a r ge r t ha n the S R B .

T h e r e f o r e , it is t h e n p o s s i b l e to e s t a b l i s h a reas far from

the w e l l b o r e w h e r e the SRB m a y be present. SRB can also plug

the r e s e r v o i r w i t h c o r r o s i o n p r o d uc t s that are p r o d u c e d by their p r e s e n c e a n d b y b i o f i l m b u i l d u p .

S e a w a t e r m a y be h i g h l y c o r r o s i v e w h e n it c o n ta i ns

d i s s o l v e d o x y g e n , therefore, b e f o re it is i n j e c t e d into the r e s e r v o i r it is d e a e r a t e d to remo v e the d i s s o l v e d o xy g en a n d f i l t e r e d to r e mo v e the free s o l i d p a r t i c l e s . As a r es ul t the

(26)

t r e a t e d s e a w a t e r b e c o m e s f a v o r a bl e for the S R B > p a r t i c u l a r l y the b a r o t o l e r a n t , m a r i n e D e s u l f o v i b r i o species.

SRB are not a l w a y s a c t i v e in a r e s e r v o i r p r i o r to w a t e r f l o o d i n g . The c o n d i t i o n s c o u l d be ideal for SRB a c t i v i t y but t h ey are not p r e s e n t in the r e s e r v o i r or the SRB are p r e s e n t in the r e s e r v o i r but the s u p p l y of n u t r i e n t s

are not a d e q u a t e for the SRB activity; the pH m a y be too

low; or the r e s e r v o i r t e m p e r a t u r e m a y be too high. SRB m a y be p r e s e n t a n d a c t i v e in a r e s e r v o i r but s u lf i d e p r o d u c t i o n m a y be d e l a y e d or m a y not a p p e a r in the p r o d u c t i o n stream.

SRB a c t i v i t y in a r e s e r v o i r a fter w a t e r f l o o d i n g c o u l d be

a r es u lt of two causes. O ne is SRB b e i n g i n t r o d u c e d into the

reservoir. The s e c o n d is if t he y w er e p r e s e n t p r i o r to

w a t e r f l o o d i n g , an a d e q u a t e s u p p l y of n u t r i e n t s (i.e., s ul fa te from seawater) c o u l d b e c o m e available. S o m e t i m e s r e s e r v o i r w a t e r c a n n o t s u p po rt SRB a c t i v i t y but w h en i n j e c t i o n w a t e r is i n t r o d u c e d into the r e s e r v o i r a nd a l l o w e d to m i x w i th the r e s e r v o i r water, it m a y p r o v i d e c o n d i t i o n s for SRB a c t i v i t y a nd s u l f id e g en er at io n. O x y g e n m a y be i n t r o d u c e d into the r e s e r v o i r that w o u l d p e r m i t a e r o b i c d e g r a d i n g b a c t e r i a to u t i l i z e the h y d r o c a r b o n s a n d p r o d u ce s u b s t r a t e s that c o u l d be u s e d b y the SRB as a c a r b o n / e n e r g y source.

The i n j e c t e d w at e r m a y cool the r e s e r v o i r m a k i n g it

s u i t a b l e for the SRB to g r o w and b ec om e active. In the N or t h

(27)

a n d the i n j e c t e d s e a w a t e r m a y d e c r e a s e the t e m p e r a t u r e to 50 °C (122 °F) or l o wer to d i s t a n c e s of 100 m e t e r s (328 feet) from the i n j e c t i o n w e l l * 1 5 > . This s u bs t a n t i a l d e c r e a s e in r e s e r v o i r t e m p e r a t u r e a l l o w s for SRB activity.

It was b e l i e v e d that c h e m i c a l l y p r o d u c e d h y d r o g e n s u lf id e c o u l d o nl y o ccur at t e m p e r a t u r e s a b ov e 150 °C (302 °F) a n d at t e m p e r a t u r e s b e l o w this, the h y d r o g e n s u l f i de w as p r o d u c e d by the SRB. T he r e h av e r e c e n t l y b e e n some m e c h a n i s m s p r o p o s e d that c o u l d a c c o u n t for the g e n e r a t i o n of h y d r o g e n s u lf id e at t e m p e r a t u r e s b e l o w 150 °C. T h e y are: "1) T h e r m a l d e g r a d a t i o n of o r g a n i c s ul fu r c o m p o u n d s in oil at t e m p e r a t u r e s g r e a t e r than 80 0 c (176 °F); 2) t h e r m o c h e m i c a l s ul fa t e r e d u c t i o n at t e m p e r a t u r e s g r e a t e r t h an 80 - 120 °C (176 - 248 °F); and, 3) r e a c t i o n of s u l f at e w i th h y d r o c a r b o n s at t e m p e r a t u r e s b e l o w 80 °C (176 °F) if mass t r a ns f e r is not limited'^ 1 5 > . It is p o s s i b l e to d e t e r m i n e if the s u lf i de was b i o l o g i c a l l y or c h e m i c a l l y g e n e r a t e d (see s e c t i o n 6.6). 3.3 S T O R A G E T ANKS A N D P I PE L I N E S

S t o r a g e tanks p r o v id e ideal e n v i r o n m e n t s for the g r o w th of SRB. O n c e SRB b e c om e a c t i v e in the s t o ra g e tanks it is

(28)

v i r t u a l l y i mpossible, to c o n t ro l the g r o w t h of S R B . C ar ef ul m a n a g e m e n t of the s t o r e d h y d r o c a r b o n s is i m p o rt a n t in order to a v o i d a n y p o s s i b l e c o nt a m i n a t i o n , p a r t i c u l a r l y due to the p r e s e n c e of SRB.

U n d e r n e a t h the h y d r o c a r b o n p ha s e in a s t or a ge tank there u s u a l l y exis t s a layer of w a t e r (fresh, salty, or b r a c k i s h water) a n d p o s s i b l y a l ayer of s e d i m e nt s a n d / o r sludge. S u l f a t e r e d u c t i o n can o cc u r in the w a t e r l a ye r a n d / o r s e d im en t a n d the p r o d u c t i o n of h y d r o g e n s u l f i d e can

c o n t a m i n a t e the s t o re d oil a n d / o r gas. O nc e again, if o x ygen is p r e s en t a e r o b i c oil d e g r a d i n g b a c t e r i a c a n p r o d uc e

s u b s t r a t e s for the SRB to utilize. If d i s s o l v e d o x y g e n is a d d e d to the w a t e r zone to i nh i bi t SRB growth, the d e s ig n a l l o w a n c e s m u s t be m a d e to the s t or a ge tank to a l l o w for the i n cr ea se in c o rrosion.

Inside a p i p e l i n e the c o r r o s i o n is u s u a l l y due to b i o f i l m b u i l d u p (plugging) or SRB a c t i v i t y o c c u r r i n g in m i cr o- ni c h e s, crevices, cracks, insi de tubercles, or u n d e r n e a t h the

biofilm. SRB a c t i v i t y on the e x t e r i o r of the p i p e l i n e is s o me t im e s a r es u lt of the p i p e l i n e s b e i n g b u r i e d in c la y or c l a y e y soils. T h is type of e n v i r o n m e n t m a y e v e n t u a l l y b e c o m e w a t e r l o g g e d a n d a n a e r o b i c c r e a t i n g an e n v i r o n m e n t s u i te d for

SRB growth. The c o r r o s i o n p r o b l e m s in this type of

e n v i r o n m e n t can u s u a l l y be d e t e c t e d w h e n e x c a v a t i n g the soil s u r r o u n d i n g the pipe. T h e r e is a smell of h y d r o g e n s ul fide

(29)

('rot t en e g g ’ s m e l l ) a nd the soil is s t a i n e d b l a c k (FeS p r e c i p i t a t e ).

3.4 H Y D R O C A R B O N S

S u l f i d e g e n e r a t i o n b y the SRB can sour oil a nd gas in the reservoir, s t or ag e f ac ilities, or any l oc a le w h er e h y d r o g e n s u lf i d e is p r e s e n t w i t h h y d r o c a r b o n s . If d i s s o l v e d s u lf u r is c o n t a i n e d in the c r u de oil the SRB c a n u t i l i z e the s u lfur and g e n e r a t e h y d r o g e n sulfide.

SRB c a n be i n t r o d u c e d into the r e s e r v o i r d u r i n g a c i d i z i n g a n d f r a c t u r i n g p r o g r a m s , w a t e r f l o o d p r o g r a m s , d u r i n g the

d r i l l i n g p r o c e s s , or c o u l d a l r e a d y be in the r e s e r v o i r . T h e y are u s u a l l y e a sy to d e t e c t in m ost w a t e r a nd rock samples o b t a i n e d from the r e s e r v o i r .

It is g e n e r a l l y a c c e p t e d that SRB c a n n o t u t i l iz e

h y d r o c a r b o n s for a c a r b o n / e n e r g y s o u r c e . H o w e v e r , there have b e e n some q u e s t i o n a b l e r e p o rt s to the c o n t r a r y . T h er e have not b e e n a n y r e ce nt m i c r o b i o l o g i c a l s tu di es i n di c a t i n g that h y d r o c a r b o n s can be d e g r a d e d u n de r a n a e r o b i c c o n d i t i o n s . If a n a e r o b i c / a e r o b i c c o n d i t i o n s exist, a e r o b i c oil d e g r a d i n g b a c t e r i a c an p r ov i d e s u b s t r a t e s (fatty acids, a l c o h o l s ) for

the SRB to utilize. "There are o rg anic c o n s t i t u e n t s of c rude

(30)

s u b s t r a t e s for [SRB] ,r< 1 5 > . This c a n o c c ur in o i l / w a t e r e m u l s i on s in the p r e s e n c e of oxygen.

3.5 C O R R O S I O N OF S T E EL A N D O T H E R A LL OY S

3.5.1 M i l d S te el or Iron

W h e n m i l d steel or iron is e x p o s e d to c ul t u r es of SRB the m e t a l b e c o m e s c o a t e d w i th a f il m of iron sulf i de (FeS). The

iron s u lf i d e f o r m a t i o n is a r es ul t of the ferrous iron on the m e t a l ' s s u rf a ce r e a ct i ng w i t h the h y d r o g e n s u lf id e g e n e r a t e d

b y the SRB. SRB can g e n e r a t e o t he r forms of s ul fi de s (HS-,

S 2 *) d e p e n d i n g on the pH of the s u r r o u n d i n g e n v i r o n m e n t but the r e a c t i o n a l wa y s p r o d u c e s iron sulfides.

The f il m m a y i n i t i a l l y p r ot e c t the u n d e r l y i n g m e ta l from

the SRB a n d f rom o ther forms of c o rrosion. W h e n the

film weakens, forms a crack, or b e c o m e s detached, the n e w l y e x p o s e d m e ta l b e co m e s s u s c e p t i b l e to an a g g r e s s i v e p i tt i n g attack. This o ccurs b e c a u s e the n e w l y e x p o s e d m e t a l acts as

an a no de a n d the film acts as a cathode. The p i t t i n g a t ta c k

is a g g r e s s i v e b e c a u s e of its a u t o c a t a l y t i c nature. T hat is, the a node (the n e w l y e x p o s e d metal) is quite small w hi l e the

c a t h o d e (the film) is q uite large. The t e n d e n c y is for the

(31)

for e l e c t r on s b y the cathode. As a result, the m e ta l pits v e r y r a pi d l y w h i c h c a n p e r f o r a t e the metal.

3.5.2 S t a i n l e s s S t ee ls

The same p r o c e s s i n v o l v e d in the c o r r o s i o n of m i l d steel

or iron o cc ur s w i t h the s t ai n le s s steels. A film of iron

s u lf i de forms a r o u n d the m e ta l w hi ch l a ter can b ec o me

damaged. O nc e the f il m is d a m a g e d c o u p l e d w i t h the p r e s e n c e of SRB an a g g r e s s i v e p i t t i n g a tt a ck can ensue.

S t a i n l e s s stee ls s i t u a t e d in s e a w a t e r that are p r o t e c t e d b y c a t h o d i c p o l a r i z a t i o n (cathodic p ro te c ti o n ) can e x p e ri e n c e a d e c r e a s e in the p r o t e c t i v e effe c ts of c a t h o d i c p o l a r i z a t i o n

w h e n b a c t e r i a are present. This r es ul ts in an i nc re as e in

the rate of c o r r o s i o n (This s u bj ec t is d i s c u s s e d f ur th er in s e c t i on 5.2).

M o n e l s a n d o t he r c o r r o s i o n r es i st a n t a l l o y s are also a f f e c t e d b y SRB in a n a e r o b i c e n v i r o n m e n t s a n d are subj ec t p i t t i n g attack.

3.5.3 C o pp e r A l l o y s

(32)

a n d c o p p e r salts r e s u l t i n g from the c o r r o s i o n of c o p p e r w e re

u s u a l l y t oxic to all organisms. This is not the c ase for

b a c t e r i a , p a r t i c u l a r l y SRB, in f a c t , t he y are v e r y r e s i s t a n t to h i g h c o n c e n t r a t i o n s of copper. C o p p e r , b r o n z e s , c o p p e r steels, a n d c o p p e r n i c k e l a ll oy s are s e r i o u s l y a f f e c t e d b y m i c r o b i a l g r o w t h * 1 6 > .

Again, a s u lf i d e f ilm (c u p r ou s sulfide) forms on the s u rf a c e of the m e t al a nd w h e n b r ea k s o c cu r in the f ilm the e x p o s e d a re a s b e c o m e a n o d i c and the s ul f i de film b e c o m e s cathodic. The e x p o s e d a re a s b e c o m e sites for p o t e n t i a l p i t t i n g attack. The c u p r o u s s ul fi d e f ilm can a lso f or m in the d e f e c t s of the c u pr o u s o xi de film. T he se r e gi o ns a p p e a r to act as local a n od e s that p r o m o t e r a p i d c o r r o s i o n d u r i ng p e r i o d s of oxygenation* 1 7 > .

3.5.4 A l u m i n u m A l lo ys

As w i th the steel, p i t t i n g a t t a ck o cc ur s on the a l u m i n u m w h e n it is i m m e r s e d in seawater. The m e c h a n i s m is b e l i e v e d to be a r e su l t of c a t h o d i c d e p o l a r iz a t i on .

SRB in an a q u e ou s p h a s e can incr e as e the rate of c o r r o s i o n of a l u m i n u m from 3 to 100 t i m e s * 17 > .

(33)

3.5.5 C o r r o s i o n of A l l o y s in S a l t w a t e r

M o s t c o r r o s i o n s tu di e s p e r f o r m e d in m a r i n e e n v i r o n m e n t s u s u a l l y use a r t i f i c i a l s e a w a t e r or s e a w a t e r that is o l d and s t a g n a n t . This can c r e a t e r es ul ts that are not c o n s i s t e n t wi t h o b s e r v a t i o n s that are m a de in the field. W he n c o r r o s i o n s t ud i e s are p e r f o r m e d c o r r e c t l y in the m a r i n e e n v i r o n m e n t , it has b e e n f o u nd that a l m o s t i m m e d i a t e l y a f t e r the m e ta l is p l a c e d in the s e a w a t e r , a s u r f ac e f il m of m i c r o o r g a n i s m s a t t ac h t h e m s e l v e s to the m e t a l .

Kalinenko< 18 > f o un d that b a c t e r i a l c o l o n i e s f or m ed on aluminum, b r a s s , a n d b r o n z e c o u p on s w h e n i m m e r s e d in fresh s e a w a t e r . He also f ou n d that the b a c t e r i a l c ol on ie s

a c c e l e r a t e d the e l e c t r o c h e m i c a l p r oc e s s of c o r r o s i o n . W h e n the s e a w a t e r is polluted, it is e a si e r for the b a c t e r i a to a t t a c h t h e m s e l v e s to the m e t a l and c o l o n i z e its s u r f a c e . The f o ll o w i n g m e t a l s w e re i m m e r s e d in p o l l u t e d s e aw a t e r to o b s e r v e the l ev el s of b a c t e r i a l c o l o n i z a t i o n : aluminum, b r a s s , c o p p e r , 70/30 c o p p e r nickel, s t a i nl es s steel

(AISI 304), a n d titanium. T i t a n i u m was the m o st d e n s e l y

p o p u l a t e d , f o l l o w e d b y the s t a i n l es s s teel (AISI 304), aluminum, b r a s s , 70/30 c o p p e r nickel, a n d c o p p e r * 1 9 > . A c c e l e r a t e d rates of c o r r o s i o n h a v e a lso b e e n o b s e r v e d on c o pp e r n ic ke l a l l oy s a n d c h r o m e c o n t a i n i n g steels w h en i m m e r s e d in p o l l u t e d seawater* 2 0 > .

(34)

3.6 C ON C RE T E

C o n c r e t e is u s e d e x t e n s i v e l y in the p e t r o l e u m i n d u s t r y on o f f s h o r e s tr uctures, for the p l u g g i n g of wells, a n d to form a b a r r i e r b e t w e e n the c a s i n g a nd f o r m a t i o n r o c k . SRB can

g e n e r a t e h y d r o g e n s u l f id e in soils or w a t e r w h i c h c a n m i g r a t e to the a e ro b i c zone w h e r e b a c t e r i a of the g e nus T h i o b a c i l l i o x i d i z e the h y d r o g e n s u l f i d e to s ul f ur i c acid. The s u lf u ri c a c i d then a t t a c k s the conc re te . The h y d r o g e n s u lf id e does not have to be b i o l o g i c a l l y p r o d u c e d to c au s e this d a m a g e , it c an be c h e m i c a l l y p r o d u c e d or n a t u r a l l y o c c u r r i n g .

(35)

4. C ASE S T U D Y

A n oil f i el d was e x p e r i e n c i n g u n u s u a l l y h i g h rates of c o r r o s i o n on u n c o a t e d 9% C h r o m e - 1% M o l y b d e n u m (9Cr - IMo)

i nj e c t i o n w e ll tubing. S o m e of the 9Cr - IMo t u bi n g was

s e v e r e l y c o r r o d e d a ft e r 9 to 16 m o n t h s of s e r v i c e . The

e x t e r i o r of the t ub in g c o n t a i n e d l arge pits (1 to 2" by 2 to 6 ” ) c o u p l e d w i th thick s cale deposits. It was i n i t i a l l y b e l i e v e d that the c o r r o s i o n p r o b l e m s were a r e su l t of:

1) m e t a l l u r g i c a l i n c o m p a t i b i l i t y b e t w e e n the 9Cr - IMo a n d the w a t e r in the system;

2) a c t i v e SRB g e n e r a t i n g Hg S u nd e r the c o r r o s i o n d e p o s i t s ;

3) SRB a c t i v i t y o c c u r r i n g in the s t a g n an t a reas of the a n n u l u s .

A m a j o r c h e m i c a l c o m p a n y was c o n t r a c t e d to i d e n t i f y the p l a n k t o n i c a nd s es s i le b a c t e r i a in the i n j e c t io n w at e r and

u n d er the deposits. A n a l y s i s of the f ield w a t e r was

p e r f o r m e d in the f i e l d a n d then later in the l a b o r a t o r y .

Five g a l l o n s of i n j e c t i o n w a t e r was o b t a i n e d a nd sent to the c h e m i c a l company. It was u s e d to m a ke c u l t u re m e d i u m s and d i l u t i o n tubes for p l a n k t o n i c a n d s e ss il e b a c t e r i a counts. The c u l t u r e m e d i u m s w e re m ad e to c u l t i v a t e a e r o b i c b acteria,

(36)

a n a e r o b i c b ac te ri a, a n d SRB. The a e r o b i c m e d i u m was m a de up of a p h e n o l red d e x t r o s e b r o t h . T he a n a e r o b i c m e d i u m was m a d e up of a t h i o g l y c o l l a t e b r o t h . The SRB m e d i u m was m ade up of a P o s t g a t e M e d i u m B w i t h acetate.

P l a n k t o n i c b a c t e r i a l e vels in the w a t e r i n j e c t i o n s y st em w e re c o n d u c t e d w i t h the c u lt u r e mediums. A total b a c t e r i a c o u n t was p e r f o r m e d u si ng an ATP P ho to m et e r . The sessile b a c t e r i a l e ve ls w er e d e t e r m i n e d b y s c r a p p i n g c o r r o s i o n

d e p o s i t s off of m et al c o u p o n s that w e re i n s t a l l e d one m o nt h p r i o r .

S p e c i al s e s s il e b a c t e r i a c o u po n h o l d e r s were i n s t a l l e d in s e l e c t e d i n j e c t i o n w e ll s in the system. E a c h c o u p o n h o ld e r c o n t a i n s six r o u n d c o u p o n studs of 0.5 c m 2 s u rf a ce a r e a . The c o u p o n studs w e r e o r i g i n a l l y i n t en d ed to be m a de out of 9Cr - IMo b u t t h ere was not e n ou g h time to m a n u f a c t u r e the special

studs. The studs that w er e u s e d w er e m a n u f a c t u r e d out of

m i l d steel.

D a t a was c o l l e c t e d from i n j e c t i o n w e l l s a n d at the w a t e r i n j e c t i o n plants. The f o l l o w i n g tests w e r e p e r f o r m e d on site :

1) pH level

2) H y d r o g e n s u l f id e c o n c e n t r a t i o n 3) S o lu b le iron c o n c e n t r a t i o n 4) O x y g e n c o n c e n t r a t i o n

(37)

5) B i c a r b o n a t e c o n c e n t r a t i o n 6) T e m p e r a t u r e

7) SRB c ou nt

8) A e r o b i c b a c t e r i a c ou n t 9) A n a e r o b i c b a c t e r i a c o u nt

10) Total b a c t e r i a c o u n t using an A T P Phot om et er .

R e s u l t s of the tests f r o m the w a t e r i n j e c t i o n s ys te m f o l l o w in T ab l e 1.

The 9Cr - IMo t ub i ng was p u l l e d from one of the i n j e ct i o n

wells. The e x t e r i o r of the t ub in g c o n t a i n e d scale buildup,

p i t s , a nd tubercles. The t u b e r c l e s (a p p r o x i m a t e l y 1 c m in d i a m e t e r ) w e r e b r o k e n . The c o r r o s i o n p r o d u c t s and f luid c o n t a i n e d w i t h i n the t u b e r c l e w ere r e mo v e d w i t h a syringe. S erial d i l u t i o n was p e r f o r m e d on these s a m pl es to d e t e r m i n e the n u m b e r of a e ro b i c b a cteria, a n ae r o b i c b a c t e r i a , and

s u l f a t e - r e d u c i n g b a c t e r i a . The pits w ere a p p r o x i m a t e l y 1 - 2 m m d ee p a n d h a d a s m oo th l a y e r e d a p p e a r a n c e . The e x p o s e d pit was a c l a s s i c a l e x a mp l e of p i t t i n g c a u s e d b y the p r e s e n c e of S R B . The o t h er c o r r o s i o n p i t s that w e re not SRB i n du c ed were s h ar p a n d jagged. A T P a n a l y s i s was a lso p e r f o r m e d to

d e t e r m i n e the total n u m b e r of b a c t e r i a p r e s e n t . R e s u l t s can be f ound in T a b l e 2.

(38)

TAB LE 1. RE SU LT 'S FR OM TH E WA TE R I N J E C T I O N S Y S T E M 1 U".i jD Lu W G O 1 3 jC Cl TJ 'c n G en 1 t o 0 m Cl O c G ro •TJ O X O S= 1 j= O O 6 O C LU 1 to U’l o Cl I— 1 6 i U"l I Cl 6 |Çn 1 o ’ Cl Cl CM G i n i Cl CO CM € O o ro cn i a> i r-- j3 LU U’l CD G m I G G Cl T3 d G C 1 U"i 3 3 Cl c X to Iri o "O T i O 0 G o c LU 1 ü> at LO U'l I— 1 G G 1 U'l 1 cn CD G Cn i e e rf m c Cl Cl O Cl CM g UO C'-J T .A. o 1 CO -Ü Lu U’l o O XI a : i _C 3 Cl "O

i m CTi O Cl CT' Ill I-Vi

to u -o c l LU 1 ÜÔ U'l ai - I G 1 -O U"i ! e Cl o Cl Cl "T z 0 i n i CL to r r o O d r f i 1 "ai z t~ Oi LU Œ o C a H— QC t e XI Œ 1—- h -Lu CC Z 11' _û U’I —1 1— LU 1.0 c o zo z CJ LU o a. U’l w Z 9 r CL LO • ri •i' o o LU Z jD UO TD i.n i z z H— Cl O LU LU Œ CL c CCi LO U'l 1 CD o z CC LO 3D LU • r-t O LU - LU Cl Ci s ÜD —i i cc z CD Cl w CJ LU O CC 1 o 0- Z —1 Ci çr CL ÛD i ]= cc >c LU a z cc LU CL a : i 1 Cl X o 1— LO o 1.0 Œ 'X LO

(39)

TA BL E 2. R E S U L T S FR OM SA MP L E TAKE N B E N E A T H T U B E R C L E S ON 9C r - IM o T U B I N G CC t— I i—i in i CL LU 1 LU h— 1 o h— 1 o o U CL 1 o o CC h- 1 in œ iCD CD •JO Ü_ >- 1 O CO 1 - ! 6 1 ai i in x i LU ID 1 1 o I o CO -h | o o CO L 1 CO o o o CL S 1 O O r. LU -U 1 Œ U 1 nj | _o 1 e i LO 01 1 LU X 1 1 1 co m i o o O 'M |o o o o CL L 1 o o CD CD LU d' 1 o -■ CD CC -U 1 ■r.O Z U 1 CC ID 1 _o 1 6 1 01 1 1 o 1 o o CD ni i o o CD CD CO -h |o - CD CL L 1 o o CD CD in at i ••■o *-•O -U 1 o o O O y i o i— i « ID 1 JO 1 i in un i t— L h- L 1 o LU CD m CJ LU •X O' i n X LU JL X LU X LU 1 Q I— X U a t— X u —J 1 CD 1 CO iD o h— CO 'D 0- 1 CL X CL CL X CL 1 CL o Li_ H* CL CD U_ 1— cc O -U O 10 LO 1 z X in J2 j/l X un Û 1o t— LU CL o t— LU CL (S3 ü_ O u O CD i un u 3 un3 CJ 3 1 CD CLce: i O CD CL CL 1 O LU 1 CLe:LU LU CL X LU LU CL 1 CL CDÜ3 L •If S CO 1— L 01 0- 1 CD CL X CJ JO CL X X CJJO t— 1 O U- H LU 01 CJli_H- LU ai

(40)

F r o m the r e su lt s of the initial tests p e r f o r m e d on the w a t e r i n j e c t i o n system, the a s s u m p t i o n s m a d e p r io r to the tests w e r e c o r r e c t .

1) T he re are c o m p a t i b i l i t y p r o b l e m s w i t h the 9Cr - IMo t ub i ng a n d w a t e r in the s y s t e m . The l arge c o r r o s i o n d e p o s i t s on the e x t e r i o r of the tubi ng is i n di ca t iv e of the i n co m p a ti b il i t y .

2) T h e re is a v e r y large n u m b e r of s e ss i le SRB l o c a t e d u n d e r n e a t h the c o r r o s i o n deposits.

3) T h er e is a l arge n u m b e r of s e s si le SRB a t t a c h e d to the m et al c o u p on s in the s t a g n a n t areas.

The r e su l t s f ro m the A T P test i n d i c a t e d that the total n u m b e r of b a c t e r i a p r e s e n t was c o n s i d e r a b l y l o wer t han the ac t ua l n u m be r d e t e r m i n e d w i t h c u lt u r e mediums. The lower A T P P h o t o m e t e r r e su l t s w er e p r o b a b l y a c o n s e q u e n c e of the solids in the test m e d i u m c r e a t i n g i n t e r f e r e n c e .

(41)

5. M E T H O D S OF C O N T R O L A N D P R E V E N T I O N OF SRB

5.1 B I O C I D E S

B i o c i d e s are c h e m i c a l s u s e d to kill, c o n t r o l , a nd p r e v e n t the g r o w t h or a c t i v i t y of m i c r o o r g a n i s m s in i n d u s tr i al or p e t r o l e u m systems. B i o c i d e s are also r e f e r r e d to as

b a c te r i c id e s , m i c r o b i c i d e s (sic), and m i c r o b i o c i d e s . The p r i m a r y o b j e c t i v e s of a b i o c i d e is to kill m i c r o o r g a n i s m s a n d to k e e p c o r r o s i o n p r o d u c t s or solids from f or mi ng d eposits. This w i l l p r e v e n t s u i t a b l e e n v i r o n m e n t s for m i c r o b i a l growth. 5.1.1 I n h i b i t i o n of G r o w t h The c o r r o s i o n p r o b l e m s c a u s e d b y SRB are p o o r l y u n d e r s t o o d a n d t h e y are d i f f i c u l t to m o n i t o r , c o n t r o l , and treat. The a p p a r e n t a b s e n c e of SRB in a s y s t e m does not n e c e s s a r i l y m e a n that the s y s t e m is u n de r c o n t r o l . On the o ther hand, the p r e s e n c e of SRB in a s y s t e m does not

n e c e s s a r i l y m e a n that p r o b l e m s exist. T h e r e f o r e , it is d i f f i c u l t to i m pl e m e n t an e f f e c t i v e b i o c i d e p r o g r a m .

T h e re has b e e n a c o n s i d e r a b l e a m ou n t of r e s e a rc h and t es ting d o ne on the e f f e c t i v e n e s s of b i o c i d e s on S R B . T h er e

Figure

TABLE 2.RESULTSFROMSAMPLETAKEN BENEATHTUBERCLESON9Cr - IMo TUBING CC t —   Ii—i  in iCL LU  1LU h—   1 oh—  1ooU  CL  1ooCC h-  1in œ iCD CDÜ_ &gt;- 1•JOO  CO  1-  !6  1ai iin  x   iLU  ID  11  oI   oCO -h  |ooCO  L  1CO oo  oCL S   1OO   r.LU -U  1Œ  U  1
TABLE 6.CLASSIFICATIONAND SOMECHARACTERISTICSOFSULFATE-REDUCINGBACTERIA 1   eu m m m eu d1  0-331  U-u-u-UU -uO   11  &lt;TI■V0)IV-V •Vi  enenenenen enŒt—   1i  eu&lt;u01eueu«uCti O   11  cccccCD Œ   I1  111liiLU  11€ee6eeCÜ  t1  ITImIViVen■VL.LL1 CDCDCDCD
TABLE 6.CLASSIFICATIONAND SOMECHARACTERISTICSOFSULFATE-REDUCINGBATERIA(CONTINUED) !   4: % 4'1  -UuSi -uiTroro roi  menmenœ fr­»4111ee: i;j1  LcÜ3 Œ1  1ir1LUi  eeeex1  iTtroroLL1  CDCDCDCDinLU exex LU1  OoOOo  s:1  ZzZZü
Figure  A . 10.  Desulfosarcina  v a r i a b i l i s ,  bar  =  10  microns (from  P o st ga te&lt;11&gt; ).

References

Related documents

Vilka åtgärder skulle ditt bolag, utöver de som redan vidtagits, vilja att regeringen prioriterar för att stödja näringslivet med anledning av coronakrisen..

When flow pulsations are involved, the integration time should be equal to a multiple of the period of the mean flow velocity.. It allows then to considerably reduce the sampling

6 : Heat and contour plot of sammon map of the adult FDC design estimation method euclidean parameter and utility space with 1 breakpoint; including 20 001 randomly sampled points,

We examined caspase-1 activation in human neutrophils after incubation with Staphylococcus epidermidis isolated from prosthetic joint infections and normal skin flora..

For convenience, we recapitulate the basic steps of our approach to determine systematically double-coset decompositions of given space groups into double cosets

Výsledkem diplomové práce bude aplikace pro snadné ovládání obvodu ispLSI 1016EA přes paralelní port, který bude sloužit k výuce studentů metody Boundary Scan.. Program

Ja det blir ju dom fördelarna som vi pratade om att man får begrepp och man får en förförståelse kanske för andra ämnen man berör andra ämnen man man kanske inte går in så

[r]