• No results found

Investigating subphotospheric dissipation in gamma-ray bursts by fitting a physical model

N/A
N/A
Protected

Academic year: 2021

Share "Investigating subphotospheric dissipation in gamma-ray bursts by fitting a physical model"

Copied!
94
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

∼ 1050−54 −1

∼ 2 5× 1010

(10)

0.0 2.5 5.0 7.5 Redshift 0.0 0.1 0.2 0.3 Nor m al is ed fr eq u en cy

(11)

Λ H0 = 67.3 Ωλ= 0.685

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

∼ 2

T90

(20)

0.01 0.1 1 10 100 1000 T90(s) 0 50 100 150 200 250 300 350 Num b er of GRBs T90

(21)

∼ 1 1015

(22)

∼ ∼ 107

(23)
(24)
(25)

c K K′ t′= Γ ! tβ cx " , x′= Γ(x− vt) K′ K′

(26)

v x K t = 0 β = v/c Γ Γ = # 1 1− β2. L′= x′1−x′0 K′ L = x1−x0= L′/Γ K 1/Γ K′ K 1/Γ T = ΓT′ T T′ K K′ β 1/(1 + z) Eobs= Elab/(1 + z) z Γ >> 1 K′ K θ β t0 t1 ∆tobs= ∆tΓ(1− β cos θ) = ∆t/D D = Γ(1 1 − β cos θ). ν =Dν′ T =DT

(27)

θ θ =−π D∼ 1/2Γ θ = 0 β(Γ) D∼ 2Γ θ′ =±π/2 sin θ =±1/Γ Γ ≫ 1 θ ∼ ±1/Γ 1052 e± LE = 4πGM mpc/σT G σT LE(1M⊙) ∼ 1038 −1

(28)

Γ = η η ≡ L/ ˙M c2 aT04= L/(4πr02c), a T0= ! L 4πr2 0ca "1/4 . ∆r ∼ r0 V′= 4π∆rr2= 4πr 0Γ(r)r2 Eobs ∝ Γ(r)V′(r)T′(r)4= Γ(r)2r2r 0T′(r)4, dS = (dU + pdV )/T S′ = V′(u′ + p′)/T′ u p p′= u′/3∝ T′4 S′= V′u′1 + 1 3 T′(r) ∝ r0Γ(r)r 2T(r)3= const, T (r) = Γ(r)T′(r) = const rs rs ≡ ηr0 η≡ L/ ˙M c2 γ∼ η rs rs/r0 rs

(29)

T′(r)∝ r−2/3 Γ(r) = $ r r0 r < rs η r > rs, T (r) = $ T0 r < rs T0(r/rs)−2/3 r > rs, V′(r)∝ $ r3 r < r s r2 r > r s, T (r) r < rs r0 r0/c r0 τ = 1 τ τ = (LσT)/(8πrβΓ3mpc3) σT mp r τ = 1 rph= (LσT)/(8πβΓ3mpc3)

(30)

∼ r0 δt = r0/c ∆Γ ∼ η η ∆v ∼ c/2η2 ∆r = r0 rd = 2r0Γ2 t′ merge= ∆r′/c = Γr0/c

tmerge= r0/c = ∆tobs ∆tobs

m1, m2 Γ1, Γ2 Γ1, Γ2≫ 1 Γf = [(m1Γ1+ m2Γ2)/(m1/Γ1+ m2/Γ2)]1/2. e = 1−m(m1+ m2)Γf 1Γ1+ m2Γ2 , m1∼ m2 Γ1≫ Γ2

(31)

Γf 1− 10% B γe ve Psync= 4 3σTcβ 2γ2 e B2 8π,

(32)

σT B2 8π νcrit= 3 2γ 3 eνBsin α, α νB = νB(γe, B) νcrit P (ν)∝ ν1/3 ν crit νcrit P (ν)∝ ν−p−12 , p νc= ν(γc) P (ν)∝ ν1/3 ν < νc P (ν)∝ ν−1/2 < ν c < ν < νcrit ν > νcrit γm< γc γm> γc γm γm > γc γc γm < γc γe > γc

(33)

γe Eγe ≪ mec2 E EIC= Eγe2, EIC Eγe∼ mec2 γenec2 E−1

(34)

10

1

10

2

10

3

Energy (keV)

10

1

10

2

10

3

EF

E

(k

eV

s

− 1

cm

− 2

)

Total

(35)

N (E) = % KEαexp&E E0 ' , E≤ (α − β)E0 K [(α− β) E0](α−β)Eβexp (β− α), E > (α− β)E0 , N (E) α β E0 K

(36)

Epeak= (2+α)Eα−β 0 Eiso Epeaklab ∝ E η iso, η L(Epeaklab )γ erg s−1, L Elab peak γ N (E) = A ! E 100 keV "α e− (α+2)E Ep , α Ep νFν A −1 −2 −1 Epeak α β

(37)

10

1

10

2

10

3

10

4

Energy (keV)

10

1

10

2

10

3

10

4

EF

E

(k

eV

s

− 1

cm

− 2

)

Band CPL BB α =−2/3 β = −3 E0 = 100 α = /3/2 Ep= 200 50 kBT = 50 kB EFE Epeak α β > 100

(38)

0 500 1000 1500 Epeak(keV) 0.000 0.001 0.002 0.003 0.004 Ar b . n or m −1 0 1 2 α 0.00 0.25 0.50 0.75 1.00 1.25 Ar b . n or m 2 4 β 0.0 0.5 1.0 1.5 Ar b . n or m Epeak α β α∼ 1 α = −2/3 α = −3/2

(39)

α

α > −3/2

α < 1

(40)
(41)

r0

(42)

10−14 0.1 ∼ 8 · 10−7 1 1052 −1 L0,52 τ εd εe εb Γ εpl εpl = 0 ∆r ∼ r0 r0 rd rd= L0,52σT 4πτ c3Γ3m p = Γ 2r 0. ∆t = rd/Γ2c t′ dyn = Γ∆t rd→ 2rd τ → τ/2 ∆r′ V′ = 4πr2 dct′= 4πrd2∆r′t′/t′dyn t′ Nshell = L0,52∆t/Γmpc2 u′ e− = εeu′int = εeεdL0,52/4πr2dcΓ2 u′γ = aT (rd)′4 A = uγ/ue−

(43)

L0,52 r0 Γ η rd τ εdL0,52 εe εb 2rd 2.3rd

(44)

S = Psync/PIC = u′B/uγ′ u′B = εbu′int

θ = kBT′/mec2

θe−

γchar′ θe− = γchar′ /2 γ′char = 2εeεd(mp/me)

γchar′

δtloss= E/(dE/dt) =

γ′

charmec2/(4/3)cσTγ′2charu′γ(1 + S) γ ∼ 1

tloss = δtlossγchar′

tloss/tdyn ≈ 1/((4/3)A(1 + S)γ′charτ ) = (3/4)Γ 2/3 2 (30τ )−1(0.44 + 0.48εB,−0.5εd,−1) εb= 10−6 εd= 0.1 τ≤ 1 Γ! 105 τ τ ∼ 1 a = 2τ−2/3

(45)

100 101 102 103 104 105 106

Energy (keV)

10−2 10−1 100 101 102 103

EF

E

(k

eV

s

− 1

m

− 2

)

2rd [L0,52= 0.1 τ = 1 εd = 0.05 εb = 0.1 Γ = 350] [L0,52 = 10 τ = 10 εd = 0.1 εb = 10−6 Γ = 100] [L0,52= 10 τ = 20 εd = 0.2 εb = 10−6 Γ = 350] [L0,52 = 0.1 τ = 20 L0,52 = 0.1 εd = 0.2 εb = 0.1 Γ = 200] 104− 105 ∼ 30% rd 2.3rd

(46)

2.3rd 2rd

L0,52=

100 τ = 35 εd= 0.05 εb= 10−6 Γ = 250 104− 105

(47)

a b a∈ N b ∈ N L0,52 Γ τ > 1 τ " 35 τ τ 0.1− 300L0,52 1051− 3 · 1054 −1 1055 −1 εdL0,52a εd a 50 500 Γ≥ 100 Γ = 50 Γ Γ = 1000 εd 0.4

(48)

εe εb 0.9 10−6

(49)
(50)
(51)
(52)

−1 −1

−1

∼ 10%

(53)

Eγ ≥ 2mec2 Z

(54)

−20 0 20 40 60 Time(s) 0 2000 4000 6000 8000 10000 Co u nt s ∼ 300 ! 150 " 150 ◦

(55)

0.2 10 140

6 2

16.5× 106 2

100 −1

(56)
(57)
(58)

0 5 10 15 20 Time (s) 0 .00 0 .02 0 .04 0 .06 0 .08 Ar b . n or m . 0 5 5 10 10 20

(59)

−1 −1 −1 −2 −1 E I R(I, E) f (E) −1 −2 −1 C(I) −1 −1 f (E) = C(I)R(I, E)−1. R(I, E) C(I) = * ∞ 0 f (E)R(I, E)dE. C(I)

(60)
(61)

L(θ) = P(d|θ) d θ −2 ln(L) N P(N|S) = (ST ) N N ! e −ST, S θ T d c P(Nd,c|Sd,c) = P Nd + i=1 Nc + i=1 P(Nd,c|Sd,c). χ2 χ2 Bd,c ˆ Bd,c σd,c Bd,c∼ N ( ˆBd,c, σd,c)

(62)

P(Nd,c|Sd,c(θ), ˆBd,c, σd,c) = L(θ) ∝ ⎧ ⎪ ⎨ ⎪ ⎩ 0Nd i=1 0Nc i=1e − ! (Sd,c(θ)+ ˆBd,c)T− σ2d,c T2 2 " , N = 0. 0Nd i=1 0Nc i=1(Sd,c(θ) + ˜Bd,c)Nd,ce − ! (Sd,c(θ)+ ˜Bd,c)T + ( ˜Bd,c− ˆBd,c)2 2σ2 d,c " , N > 0 . Sd,c ˜ B = 1 2 1 ˆ B− S(θ) − σ2T2+ 2 (S(θ) + σ2T2− ˆB)2− 4(σ2T S− σ2N− ˆBS(θ)) 3 . d c B˜d,c χ2

(63)

T T0 T T0 T T T N T T0 p p = P(T ≥ T0|H0)≈ n N, n T ≥ T0 H0

(64)

P(θ|d) = 4 P(θ)P(d|θ) P(θ)P(d|θ)dθ, P(θ|d) θ d P(θ) P(d|θ) θ 4P(θ)P(d|θ)dθ Z P(θ) θ

(65)

Z P(drep|d) = * P(drep|θ)P(θ|d)dθ, drep d θ p ppp pb= P (T (drep) > T (d)|d) . p P(θ|d) T T p

(66)

ppp

ppp

(67)

92.7− 100.2 68.3 95 99.7

(68)

92.7− 100.2 X Y X Y ρX,Y = E [(X− µX)(Y − µY)] σXσY ,

(69)

72− 144

E[X] µX σX

X Y

rxy=

5n

i=1(xi− ¯x)(yi− ¯y)

#5n

i=1(xi− ¯x)2#5ni=1(yi− ¯y)2

,

xi ith n X

¯

x y

(70)
(71)
(72)
(73)
(74)
(75)

T90 α =−2/3 β = −3 E0 = 100 α = /3/2 Ep= 200 50 kBT = 50 kB EFE Epeak α β

(76)

L0,52 r0 Γ η rd τ εdL0,52 εe εb 2rd 2.3rd 2rd [L0,52= 0.1 τ = 1 εd= 0.05 εb= 0.1 Γ = 350] [L0,52= 10 τ = 10 εd= 0.1 εb= 10−6 Γ = 100] [L0,52 = 10 τ = 20 εd= 0.2 εb= 10−6 Γ = 350] [L0,52 = 0.1 τ = 20 L0,52 = 0.1 εd = 0.2 εb= 0.1 Γ = 200] 104− 105 2.3rd 2rd L0,52 = 100 τ = 35 εd = 0.05 εb = 10−6 Γ = 250 104− 105 0 11

(77)

0 5 5 10 10 20

92.7− 100.2 68.3 95 99.7

(78)
(79)
(80)
(81)

γ

(82)
(83)
(84)

γ

γ

(85)
(86)
(87)

γ

(88)
(89)
(90)
(91)
(92)
(93)
(94)

References

Related documents

Given the limited number of sources at the time, bursts from BATSE and Konus were combined into a single sample after verifying that consistent ACFs were obtained when using

The uncertainty in the correction factor for the three-layer model was, as previously mentioned, assessed by determining (with Monte Carlo simulations) the potential variation in

The last factor that contributes is the interaction rate probability per particle and unit time that a proton with energy E will interact with a photon and create a pion; if we

10-11-14 Gamma-Ray detection in Space 2/29..

Primary scientific goals include the study of AGNs, Gamma-Ray Bursts, Galactic sources, unidentified gamma-ray sources, diffuse Galactic gamma-ray emission, high-precision

 How can gamma-rays be studied using radio detection techniques..  Discuss backgrounds to gamma-ray identification,

• Low angular resolution is sufficient to identify if incident radiation is polarized or not, but a very high resolution is needed to determine the polarization angle. •

QED  strong magnetic fields  refractive index n  1  frequency-dependent decoupling of photon polarization states  frequency-dependent polarization phase lags 