• No results found

Model Error Modeling and Control Design

N/A
N/A
Protected

Academic year: 2021

Share "Model Error Modeling and Control Design"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

LennartLjung

Department of Electrical Engineering

Linkping University, S-581 83Linkping, Sweden

WWW: http://www.control.isy.liu .se

Email: ljung@isy.liu.se

2000-03-07

REG

LERTEKNIK

AUTO

MATIC CONTR

OL

LINKÖPING

Report no.: LiTH-ISY-R-2220

Forthe IFACSymposium on System Identi cation, SYSID2000,

SantaBarbara, CA, July 2000

Technicalreportsfrom theAutomatic Controlgroupin Linkpingare available

by anonymous ftp at the address ftp.control.isy.liu.se. This report is

(2)

DESIGN

Lennart Ljung 



Divisionof AutomaticControl,LinkopingUniversity,

SE-58183, Linkoping, Sweden, email: ljung@isy.liu.se

Abstract: Model validation and estimating the size of a possible model error is a

central aspect of System Identi cation. In this contribution we discuss the model

errorconceptsandmodelerrormodelingforcontroldesign.Ofspecialinterestishow

to makeuse of periodic inputs, and how to deal with non-linear errormodels. The

discussionislimitedto SISOmodelsandstabilityrobustnessissues.

1. INTRODUCTION

Inthiscontributionweshallconsider the

estima-tionoflinearmodels,ofthetype

y(t)=G(q;)u(t)+H(q;)e(t) (1)

Thisisofcourseastandardtopicintheliterature,

e.g.,(Ljung 1999a). Theparameter vector will

be estimated using a prediction error method,

leading to an estimate ^



N

with corresponding

transferfunction estimate

^ G N (q)=G(q; ^  N ) (2)

Thisestimatewill thenbeused todesigna

regu-lator

u(t)=K(q)(r(t) y(t)) (3)

sothat theclosed loopsystem

y(t)= K(q) ^ G N (g) 1+K(q) ^ G N (q) (4) behaveswell.

Theproblemisthat ^

G

N

willonlybean

approxi-matedescriptionofthetruesystem.Theextensive

literature on robust control design, e.g., (Zhou

et al. 1996), (Skogestad and Postlethwaite1996)

deals with thequestion to ensure good behavior

oftheclosed loopsystem,despiteinaccuraciesin

themodel ^

G

N .

When the model has been identi ed from data,

the uncertainty of the model. The interplay

be-tweentheestimationandthedesignprocesseshas

receivedsubstantialattentionoverthepastyear,

e.g.,(SmithandDoyle1992),(Kosutetal.1992a),

(RanganandPoolla1996),(Skelton1989),(Gevers

1993),(Kosutet al.1992b),(SmithandDullerud

1996),(Poollaetal.1994).

Part of this problem is to estimate, in reliable

way, the model error or model uncertainty, not

assuming that the true system canbe described

withinthechosenstructure(1).See,e.g.,(Ninness

and Goodwin 1995), (Ljung 1999b) Then it is

mostlyassumedthatthetruesystemislinear,and

givenby atransferfunction G

0

(q),and thatthe

modelerroriscapturedbyestimatesofthesizeof

thefrequencyfunction

~ G N (e i! )= ^ G N (e i! ) G 0 (e i! ) (5)

In this contribution we shall consider the more

general situation of possibly non-linear model

errors,anddiscusstherolesthatanexplicitmodel

errormodelwillplayinsuchaset-up.

The discussion is con ned to

single-input-single-output systems/models and to stability

robust-nessissuesonly.Thisis asimpli cationanddoes

(3)

2. MODELVALIDATIONANDMODEL

ERRORMODELING

To validate a model is to confront it with facts

aboutthesystem.Anidealsituationisthatthere

is prior knowledge about the system which can

becompared withthe model's properties. Often,

however,theonly\facts"thatareathandarethe

datathemselves.Itisdesirablethatthedataused

forvalidation arenotthesameasforestimation,

a separate \validation data set" should be used.

It then boils dow to comparing what the model

thinkstheoutputshouldbewithwhattheactual

measured output turned out ot be. That is, the

residuals, the model left-overs, should be

exam-ined:

"(t)=y(t) y^

N

(t) (6)

Herey^isthesimulatedoutput

^ y N (t)= ^ G N (q)u(t) (7) ^ G N

isthenominal model, whichmaybetheone

estimated in (2), be may alsobechosenin other

ways.

Ifanoisemodel ^

Hhasbeenestimateditisnatural

toconsidera lteredversion

" F (t)= ^ H 1 N (q)"(t) (8)

andsubjectthatto theanalysis below.

2.1 Classical Correlation AnalysisofResiduals

One of the most basictests, (Draper and Smith

1981),is to computethecorrelation betweenthe

regressors, in our case the past inputs, and the

residuals: ^ r N ()= 1 N N X t=1 u(t )"(t) (9)

Itis customaryto plottheseestimatesasa

func-tion of  and compare with theirstandard

devi-ations to check if they are signi cantly di erent

from zero.If not,wehavenot tracedany

signi -cantin uenceofuin",sowecannotsaythatthe

model ^

Ghasnot pickedupall thein uence ofu

ony.(Notethedoublenegation:wearenotsaying

that\ ^

Ghaspickedupall...").Itisconvenientto

form '(t)=  u(t 1) ::: u(t M)  T (10) h M N = 2 6 4 ^ r N (1) . . . ^ r N (M) 3 7 5 = 1 N N X t=1 '(t)"(t) (11)

Under theassumption that " iswhite noisewith

variance,hhasanormaldistributionwithzero

meanandvariance=NR

N ,where R N = 1 N N X t=1 '(t)' T (t) (12)  M N = 1 N k N X t=1 '(t)"(t)k R 1 N (13)

will in this case have a  2

distribution, and the

familiar  2 -test  M N < (14)

isbasedonthis.Theresultistypicallypresented

as a plot of the autocorrelation of the residuals

andaplotof (9).SeeFigure1.

Notethatotherkindofdependencescanbetested

quiteanalogouslybyletting'(t)beother,

nonlin-ear,functions ofpastinputs:

'(t)=f(u t

) (15)

2.2 CorrelationAnalysisasModelErrorModeling

0

5

10

15

20

25

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Correlation function of residuals. Output # 1

lag

−25

−20

−15

−10

−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

0.2

0.3

Cross corr. function between input 1 and residuals from output 1

lag

Fig. 1. Traditional residual analysis: Auto- and

cross-correlation functions with uncertainty

regions.

Theinformationfromthecrosscorrelation

analy-sisbetween"andu,canalsobeinterpretedasan

implicitFIRmodel forthetransferfunction ~

Gin

"(t)= ~

G(q)u(t)+w(t) (16)

from u to ". For control purposes, it is much

more e ective to present the (amplitude)

fre-quency function of this model error model, with

uncertaintybounds asinFigures 2{4.Thedata

usedin these guresaresimulatedfromasecond

orderARMAXmodel.Itisclearthatconventional

model validation corresponds to increasing the

modelcomplexityuntilthemodelerrormodelhas

uncertaintyboundsthatincludezero(asinFigure

4), since then there is no clear evidence that ~

G

is not zero { the estimated model is then not

falsi ed. But it is also clear that the two plots

together;themodelandits\sidekick",themodel

errormodel,canbeusedforcontroldesign,evenif

themodelisfalsi ed.LookatFigure3.According

(4)

well beused forcontrol designiftheinformation

inthelowerplotistakenintoaccount.

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Fig. 2. Upper plot: Amplitude Bode plot of a

rstordermodelwithestimateduncertainty

bounds. The true system is also plotted.

Lowerplot:Themodelerrormodelcomputed

asa20:thorderARXmodelfromutoy ^ Gu

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Fig. 3. As in previous gure, but second order

ARXmodel

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Fig. 4. As in previous gure, but second order

ARMAXmodel.Herethemodelerrormodel

containszeroinitsuncertaintyregion,which

meansthatthetopmodelisnotfalsi ed.

GAINS

3.1 TheGeneralForm

A model error model is a description of how u

a ects ".We willtypicallynotbeinterestedin a

detailed suchdescription{that shouldrather be

doneasamoredetailednominalmodel.Primarily

wefocusonbounds onthegainof such amodel.

To go well together with linear control design,

we shall work with combinations of frequency

weightings and unstructured, unknown models

withbounded(estimated)gain.Thatmeansthat

thegeneralstructureofthemodelfromuto"can

bedepictedasinFigure5.Formallywehave

w " ~ g mem u W 1 W 2

Fig.5.Themodelerrormodel

" F (t)=W 1 2 (q)"(t); u F (t)=W 1 (q)u(t) (17) " F (t)=g~ mem (u t 1 F )+w(t) (18) Here, W 1 and W 2

are given linear lters,

super-scriptt 1denotesallthesignalvaluesuptotime

t 1,andg~

mem

is anuncertainmodel. The

bot-tomlineisthat,withsomeamountofcon dence,

basedonthemeasureddata,andpossiblyonprior

information,weshouldbeabletosaythatitsgain

isboundedby1: k~g mem k 1 <1 (19)

Normalization can always be achieved using W

1

andW

2

.Weshallshortlydiscusshowtoestimate

suchabound.

Themodel~g

mem

cancome indi erentshapes.It

couldbe

 Linear Time Invariant. In this case we can

take either W

1 orW

2

to be unity, since all

theblocksinin Figure5commute.

 LinearTimeVarying.

 GeneralNon-Linear.

3.2 Estimating the Gain of the Model Error

Model: DistinguishingModel Errorfrom Noise

Theestimationtaskistodeterminethe ltersW

i

andestimatethegainofg~

mem in " F (t)=g~ mem (u t 1 F )+w(t) i.e.estimate sup t sup t k~g mem (u t )k ku t k

(5)

to determine this gainwithout prior knowledge.

Even in the linear case, an arbitrarily thin

res-onance peak will require an arbitrarily long

se-quence of data, due to theuncertaintyprinciple.

After having considered a nite data record, no

guarantee canbe given for the \true"gain. The

estimate of the gain will always re ect the data

thathavebeenmeasured,possiblyinconjunction

withpriorknowledge.

A rstfundamental problemistodistinguishthe

model error ~g

mem

from the noise contribution

w. Loosely speaking, the noise w would be that

contribution to " that would not change if u is

changed.Thisproblemisaddressedin(Smithand

Dullerud 1996) by looking at trade-o s between

modelerrorsizeandhardamplitudeboundsonw.

From astatistical perspective,it ismorenatural

totryand\correlateout"w.Therearetwobasic

methodsforthat:

 Useaperiodicinput,andeliminate/reducew

byaveragingovertheperiods.

 Build a(parametric) model of ~g

mem

in (18)

assuminguandwtobeindependent.

3.3 UsingPeriodicInputs

Suppose the noise contribution is additive as in

(18)andthat uisperiodicwith periodP. Then,

afteratransienthasdiedout,alsoy^

N

(t)(see(7))

will be periodicwith thesameperiod. Moreover,

thepartof y that originatesfrom theinputwill,

under weak assumptions, also be periodic with

periodP.Letydenotetheoutputoveroneperiod,

obtained by averaging over all the periods, and

similarlyfor" F (t):  " F (t)=W 1 2 (q)(y(t) y^ N (t)); t=1;:::;P

From(18)wenowhave

 " F (t)=~g mem (u t 1 F )+w(t)

where w will tend to zero asN tends to in nity

(moreandmoreperiodsareaveragedover).

A simpleunder-bounding estimateof thegainof

~ g mem is \ k~g mem k 2 = P P t=1  " 2 F (t) P P t=1 u 2 F (t) (20)

A natural choice of lter is W

1 (q) =

^

G (q) (the

nominalmodel).Thismakes

u F (t)=y^ N (t) (21) Moreover,W 2 canbechosenas W 2 (q)= ~ H(q),a

\noisemodel"fory(t) y^

N (t),  y(t) y^ N (t)= ~ H(q)(t) (22)

with (t) beingwhite noise. That will makethe

numeratorin(20)assmall aspossible.Notethat

thismakes \ k~g mem k 2 = P P t=1 [W 1 2 (q)(y(t) y^ N (t))] 2 P P t=1 ^ y 2 N (t) (23)

a measure of the proportion of \unexplained"

output variation.Thishasacloserelationshipto

themultiplecorrelationcoeÆcientusedinresidual

analysis,page33in (DraperandSmith1981).

3.4 GeneralLinearBlackBoxModelErrorModels

The model error model concept gives us more

freedom in investigating the residuals than the

classical residual correlation test, which

essen-tiallyemploysaFIRmodel.Amoregenerallinear

model "(t)= ~ G(q)u(t)+ ~ H(q)w(t) (24)

could improve the estimate of the error model,

sinceamodelofthedisturbanceisused.

Insteadofparametriclinearmodels,wemayapply

spectral analysis to try and extract any linear

in uence of uon ",(Kosut 1986),(Stenman and

Tjarnstrom2000).Inanycase,thereisaclose

re-lationship between the Blackman-Tukeyspectral

analysisestimateofthistransferfunctionandthe

oneobtainedbyaFIR-model.

Once we have a speci c, linear model of the

in uence from uto ", along with an uncertainty

(con dence) region, the error model in Figure 5

is directly de ned:Take W

2 =1 and W 1 as ~ G N +

. Here  is the estimated variance error (at a

certain con dence level), so that the amplitude

curve of W

1

corresponds to the upper curves in

(thelowerplotsof)Figures2-4.Ifnononlinearity

hasbeendetectedin theerrormodel,this choice

ofW

i

inFigure5givesacorrectdescriptionofthe

erroranduncertaintyassociatedwiththenominal

model.

3.5 Non-linear Model Error Models

Intheliterature,mostmodelerrordiscussionsas

well as the identi cation-for-control approaches

aredealtwithinasettingwhere\thetruesystem"

isahighorderlinearmodel,andthemodelsareof

lowerorder.In practicaluse,itis ofcourse more

common that the model errors are ignored

non-linearities rather than unmodeled linear

dynam-ics. From a model error perspective, this simply

meansthatweshould testnon-linearmodels:

" F (t)=g~ mem (u t 1 F )+w(t) (25)

(6)

neural network NNFIR model, cf (Sjoberg et al. 1995): " F (t)=~g mem (u F (t 1);:::;u F (t m);)+w(t) (26)

Thenumberoflaggedinputscanbechosen

rela-tivelysmall here,likem=5orso.Toappreciate

thesize (gain) ofanyestimated non-linearity(in

particularforcontrolapplications)itisnaturalto

usethesup-norm

k~g mem k 1 = sup u1;:::;um j~g mem (u 1 ;u 2 ;:::;u m ;)j^ 2 u 2 1 +:::+u 2 m (27)

Then alsodetermine theworstcase valueof this

gaininaproperlychosencon denceregionforthe

estimate:^ k~g mem k=sup ^ 2 k~g mem (u(t 1);:::;u(t m);)k^ 1 (28)

4. ROBUSTCONTROLDESIGN FOR

UNCERTAINSYSTEMS

4.1 LinearModelErrors

Once a model with its model error uncertainty

is delivered, the question is how to design a

controller that will stabilizethe systemrobustly.

Bythiswewouldmeanthatthechosencontroller

should stabilize allmodels inthe \region"de ned

bythe nominalmodelandthe model error model.

Incasewehaveusedalinearmodelerrormodel,

this region is easily depicted in the frequency

domain. It will look likea strip in the Bode, or

Nyquistplot.SeeFigures2-4,i.e.

G2G=fGj jG(e i! ) G nom (e i! )j<(!)g (29)

How to achieverobust stability forsuch aset of

modelsiswellknown:ChoosearegulatorK,such

thatthecomplementarysensitivityfunction

T = G nom K 1+G nom K (30)

islessthantheinverserelativemodelerrorbound:

jT(e i! )j< G nom (e i! ) (!) ; 8! (31) H 1

techniques canbeused to determine ifsuch

aKexists,forgivenG

nom

and.See,e.g.(Zhou

etal.1996).

4.2 Frequency Weighted Non-linearModel Error

Model

The error model (18) corresponds to a closed

loop block diagram as in Figure 6. This can be

y ~ g mem G nom u K W 1 W 2

Fig. 6. Block diagram of the feedback loop with

model error

rearranged to be seen as feedback between the

non-linear part of the error model ~g

mem and KW 1 W 2 =(1+KG nom

)(keepingin mindthat we

onlyconsiderSISOmodelshere).Supposethatwe

normalizeW

1 W

2

sothatthegainofthenon-linear

partissubjectto k~g mem k 1 <1 (32)

The small gaintheorem tellsus that stability is

assuredif W 1 (e i! )W 2 (e i! )K(e i! ) 1+K(e i! )G nom (e i! ) <1 8! (33)

Comparingwith (31)werealizethat we just can

considerthesetofpossiblesystemdescriptionsto

belinearandgivenby

G2G=fGj jG(e i! ) G nom (e i! )j<::: (34) <W 1 (e i! )W 2 (e i! )g

By stabilizing any linear model in this set, i.e.,

achieving(31)for=W

1 W

2

,wehavealsomade

thelinearcontroldesignrobustagainstnon-linear

model errorsof the type (18).(Considering only

stabilityrobustness.)

5. ESTIMATINGNON-LINEAR FREQUENCY

WEIGHTEDERRORMODELS

Whendealingwithnon-linearmodelerrormodels

forcontroldesign,theoptionoffrequency

weight-ing isessential.As anexample,supposethetrue

systemis ~ y(t)= 1 (q 1)(q ) u(t) (35) y(t)=f(~y(t)) (36)

forsomestatic,linearlybounded, nonlinearityf.

Suppose,forsimplicity,thatthenominalmodelis

G

nom

(q) = 1=(q 1)(q ) so the model error

isthisnominalsystemfollowedbythestatic

non-linearityf(y) 1.Suppose that kf(y) 1k<1.

Thegainofthismodelerrormodelisin nite,due

tothein nitegainofthelinearpart.So,thiserror

modeldoesnotdomuchgoodforcontroldesign.

IfwenowpicktheweightingsW

1

(q)=1=(1 q),

(7)

weightingW

2

in (33)is no majorproblem, since

thedenominatoralsohasin nitegainatzero.

NotethatitisonlytheproductW

1 W

2

thata ects

therobustnesstest,whilethesplitintoW

1 andW

2

mayhavea substantial in uence onthe norm of

~ g

mem

.Thisgivesanextradimensiontothemodel

error modeling. In loose terms the weightings

should be chosen so as to minimize k~g

mem k 1 whileletting W 1 W 2

haveashapethat suits(33).

A morecomprehensive discussionof howto deal

with this freedom has to be deferred to another

occasion.Somehintsare, however,asfollows:

 Using W

2 =

^

H (the nominal noise model)

reducesthe poweroftheoutput of the

non-linearblock as much aspossible, givingthe

possibilityofasmallergainofthenon-linear

part.

 Using W

1 =

^

G (the nominal model), will

focustheerrormodelontherelativeerror.

6. CONCLUSIONS

Building linear models may be deceptive. Given

any data set,of arbitrary length, wecan always

build a linear model, that will pass standard

residual analysis validation tests. The reason is

that any (non-linear, time-varying) system from

whichquasistationaryinput-outputsequencesare

collected,hasalinearsecondorderequivalent.We

cannotdistinguishthetruesystemfromthislinear

model, using just secondorder tests.This means

that the standard linearidenti cation setup will

deliveramodelwithuncertainty

^

G

where the(variance)error will tendtozero as

moredata are processed. Subjecting the data to

themodel-error-modeltreatmentdescribedinthis

contributionwillgiveamodel

^

G; =W

1 W

2

where  will tend to zero, only if non-linearity

testsshownosignofnon-linearities.Otherwise

will re ect aremaining uncertainty/model error.

However,ifwejust consider stabilityrobustness,

itwillbesafetotreatthesystemasalinearone,

withthegivenuncertainty, evenifnon-linearities

havebeendetected.

7. REFERENCES

Draper, N.R. and H. Smith (1981). Applied

Re-gressionAnalysis,2nded.. Wiley,NewYork.

Gevers,Michel (1993).Towards ajointdesign of

identi cationandcontrol?.In:Essayson

con-trol:Perspectivesinthetheoryandits

appli-cations (H L Trentelman and J C Willems,

Kosut, R., M. K. Lau and S. P. Boyd (1992a).

Set-membership identi cation of systems

with parametric and nonparametric

uncer-tainty.IEEETrans.AutomaticControl

AC-37,929{941.

Kosut, R.L.(1986).Adaptivecalibration:An

ap-proach to uncertainty modeling and on-line

robust control design. In: Proc. 25th IEEE

Conference on Decision an Control. Vol. 1.

Athens,Greece.pp.455{461.

Kosut,R.L.,G.C.GoodwinandM.P.Polis(Eds)

(1992b). Special Issue on System

Identi ca-tionforRobustControlDesign,IEEETrans.

AutomaticControl,Vol37.

Ljung,L.(1999a).SystemIdenti cation-Theory

for the User. 2nd ed.. Prentice-Hall. Upper

SaddleRiver,N.J.

Ljung, Lennart (1999b). Model validation and

model errormodeling. In:The 

Astrom

Sym-posiium on Control (B. Wittenmark and

A. Rantzer, Eds.). Studentlitteratur. Lund,

Sweden.pp.15{42.

Ninness, B. and G. C. Goodwin (1995).

Es-timation of model quality. Automatica

31(12),1771{1797.

Poolla,K.,P.P.Khargonekar,A.Tikku,J.Krause

and K.Nagpal (1994). A time-domain

ap-proachto model validation.IEEE Trans.on

AutomaticControl AC-39,951{059.

Rangan, S. and K. Poolla (1996). Time-domain

validation for sample-data uncertainty

mod-els. IEEE Trans. Automatic Control

AC-41,980{991.

Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste,

B. Delyon, P.Y. Glorennec, H. Hjalmarsson

andA. Juditsky(1995).Nonlinearblack-box

modeling in system identi cation: A uni ed

overview.Automatica31(12),1691{1724.

Skelton, R. E. (1989). Model error concepts in

controldesign.Int.J.Control49,1725{1753.

Skogestad, S.and I.Postlethwaite(1996).

Multi-variableFeedbackControl.JohnWiley.New

York.

Smith,R.andG.E.Dullerud(1996).

Continuous-time control model validation using nite

experimental data. IEEE Trans. Automatic

ControlAC-41,1094{1105.

Smith, R. and J.C. Doyle (1992).Model

valida-tion:aconnectionbetweenrobustcontroland

identi cation. IEEE Trans. Automatic

Con-trolAC-37,942{952.

Stenman,AndersandFredrikTjarnstrom(2000).

A nonparametric approach to model error

modeling. In: Preprints of the 12th IFAC

Symposium onSystemIdenti cation. To

ap-pear.

Zhou, K., J. C. Doyle and K. Glover (1996).

Robust and Optimal Control.Prentice-Hall.

References

Related documents

One control strategy is linear (Linear Quadratic Regulator), and the other two control strategies are nonlin- ear (exact linearization and non-interacting control via dynamic

On the basis of the experience gained since the 2000's, the main challenges highlighted by professionals in this area are the following: Cyber security, Digital Twins

Anledningen till denna tolkning var för att andra beskrivningar uttryckligen stod till män eller barn, men inte när det kom till kvinnorna, även när det stickade objekten skulle

The scheduling algorithm should provide users, in the system, high enough bit rates for streaming applications and the admission prioritisation should prevent web users to get access

Our simulation results indicate that a system-maximizing scheduler negates much of the poor order statistics normally apparent in the multiuser broadcast situation, making joint

Till detta syfte knöt vi tre delambitioner: att försöka svara på varför man engagerar sig i politiska partier över huvud taget, att föra en diskussion om huruvida avhopp

Tryck på den lilla vita pilen i Program FPGA knappen för att köra alla nivåer upp till Program FPGA med inkluderad nedladdning till kortet. Trycker man bara på Program FPGA så

För grupper och organisationer blir berättandet av historien också ett sätt att hålla samman medlemmarna och jämka de gemensamma idéerna med det praktiska utfallet..