• No results found

Capabilities of Angle Resolved Time of Flight electron spectroscopy with the 60 degrees wide angle acceptance lens

N/A
N/A
Protected

Academic year: 2021

Share "Capabilities of Angle Resolved Time of Flight electron spectroscopy with the 60 degrees wide angle acceptance lens"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

JournalofElectronSpectroscopyandRelatedPhenomena224(2018)45–50

ContentslistsavailableatScienceDirect

Journal

of

Electron

Spectroscopy

and

Related

Phenomena

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e l s p e c

Capabilities

of

Angle

Resolved

Time

of

Flight

electron

spectroscopy

with

the

60

wide

angle

acceptance

lens

Danilo

Kühn

a,∗,1

,

Florian

Sorgenfrei

a,1

,

Erika

Giangrisostomi

b

,

Raphael

Jay

a

,

Abdurrahman

Musazay

b

,

Ruslan

Ovsyannikov

b

,

Christian

Stråhlman

b,2

,

Svante

Svensson

c

,

Nils

Mårtensson

c

,

Alexander

Föhlisch

a,b

aInstitutfürPhysikundAstronomie,UniversitätPotsdam,Karl-Liebknecht-Str.24/25,D-14476Potsdam,Germany

bHelmholtz-ZentrumBerlinfürMaterialienundEnergieGmbH,Albert-Einstein-Straße15,12489Berlin,Germany

cDepartmentofPhysicsandAstronomy,Box516,75120Uppsala,Sweden

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19December2016

Accepted27June2017

Availableonline11July2017

Keywords: Artof Electronspectroscopy Wideangle Timeofflight Energyresolution Synchrotron

a

b

s

t

r

a

c

t

Thesimultaneousdetectionofenergy,momentumandtemporalinformationinelectronspectroscopyis

thekeyaspecttoenhancethedetectionefficiencyinordertobroadentherangeofscientificapplications.

Employinganovel60◦wideangleacceptancelenssystem,basedonanadditionalacceleratingelectron

opticalelement,leadstoasignificantenhancementintransmissionoverthepreviouslyemployed30◦

electronlenses.Duetotheperformancegain,optimizedcapabilitiesfortimeresolvedelectron

spec-troscopyandotherhightransmissionapplicationswithpulsedionizingradiationhavebeenobtained.

TheenergyresolutionandtransmissionhavebeendeterminedexperimentallyutilizingBESSYIIasa

photonsource.Fourdifferentandcomplementarylensmodeshavebeencharacterized.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Electronspectroscopyhasbeenapowerfulexperimental tech-niqueforinvestigatingmatterinallphasessinceitsdevelopment inthe1960sbyKaiSiegbahn.Advancingsimultaneousdetection ofbothelectronkineticenergiesandtheirangularormomentum distribution hasbeen the pathway toenhance the experimen-talperformance.Inthisrespect,thecombinationofanadvanced electron opticallens with anhemispherical deflectionanalyzer (HDA)[1]establisheda workhorse that linkshighenergy reso-lution,highangularresolutionand flexibilityinoperationmodi spanningfromhighesttransmissionandenergyresolutionto com-binedhighangularandenergyresolvingoperation.Inordertoavoid thegeometricconstraintsoftheHDAentranceslit,theenergy dis-persivehemispherecanbereplacedbyahightransmissionTime ofFlightenergydispersingunit.Thishasledtothedevelopmentof theAngleResolvedTimeofFlightAnalyzer(ARTOF)[2].Operating

∗ Correspondingauthor.

E-mailaddress:danilo.kuehn@helmholtz-berlin.de(D.Kühn).

1 Previous address: Helmholtz-Zentrum Berlin für Materialien und Energie

GmbH,Albert-Einstein-Straße15,12489Berlin,Germany.

2 Presentaddress:MalmöUniversity,20506Malmö,Sweden.

atanacceptanceangleof30◦theapproachwasestablishedinproof ofprincipleexperiments,utilizingthesinglebunchtimestructure ofsynchrotronradiationandlaboratorysources[3–6].Sincethe electronflighttimewithintheARTOFsetsanupperlimitforthe suitablerepetitionrateforthephotonsourceintherangeoffew MHz,areductionoftheGHzrepetitionratesofmultibunch syn-chrotronradiation,i.e.500MHzatBESSYII,iscrucialforawider applicationof this advancedelectron spectrometer.Thus BESSY IIhasdevelopedPulsePickingbyResonantExcitation(PPRE)[7] andmechanicalpulseselectionbyaMHzChopper[8]aswellas electronicdetectorgating[9].

Combining theseadvances, we have now taken the step to enhancetheacceptanceangleoftheARTOFlenssystemthrough anadditionalacceleratingelectronopticalelementwhichallowsto widentheangularacceptanceto60◦keepingbothenergyand angu-larresolution.UtilizingtheBESSYIIFEMTOSPEXinstallations[10] inthisworkwepresenttheworkingprincipleandtheexperimental parameterspaceofthe60◦ARTOFsystem.

2. Electronanalyzerandsetup

The60◦ wideangleacceptanceARTOFisthecoreofthenew endstationforsurfaceandsolidstatedynamicsattheBESSYIIsoft X-Rayfemtoslicingbeamline.

https://doi.org/10.1016/j.elspec.2017.06.008

0368-2048/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

(2)

Fig.1.a)Schematicdrawingofthe60◦wideangleacceptanceARTOF.Electronsemittedfromthesampleunderhighangleswithrespecttothesurfacenormal(redand

bluelines),aredeflectedstronglytowardstheopticalaxis(greenline)whenenteringthespectrometerentranceduetotheretardationmesh.Depictedelectronsclosetothe

detectormarkequalflighttimes.b)InsightoftheARTOFentrancec)Photoemissiongeometry.

Fig.2.Left:ContourplotofthesimulatedconversionmatricesfortheAng564-lensmodeforEcen=10eV.TheverticallinesmarkequivalentenergiesineVandthehorizontal

linesmarkequivalentangle␽indeg.Right:Schematicenergyvs.time-of-flightdependencyforϑ=0(top)anditsderivative∂E

∂t (bottom).

TheARTOFisaTimeofFlightelectronspectrometerwhich con-sistsofa1.3mlongdrifttubewithanadvancedelectrostaticlens systemofmultiplelenselementsandatwo-dimensionaldelayline detectorbyRoentdekGmbHincludingaMCPelectronmultiplier whichenableseventdetectionofarrivaltimeandpositionofevery analyzedelectron.Thewideanglelensis amodularupgradeof theARTOFlenssystemwithanelectronretardationmeshatthe ARTOFentrancewith80%transmissionprovidingadeflectionofall electrontrajectorieswithinthehighacceptanceangleintothedrift tube.Fig.1showsaschematicdrawingoftheARTOFwith trajec-toriesofelectronsemittedunderdifferentangles␽,␸afteroptical excitationofthesample.Electronsemittedunderhigherangles␽ withrespecttotheopticalaxisofthespectrometerhavelonger flightpathsand thus longerflighttimes comparedtoelectrons emittedonaxis (ϑ=0).Theelectronarrivaltimetandhitting posi-tionx,yatthedetectordependonthekineticelectronenergyEand thetake-offangle␽inanon-linearwayandcanbetransformedto energyEandemissionangles␽,␸bytwotransformationmatrices incylindricalcoordinatesE (t,r) andϑ (t,r) whichareobtainedby simulations[2](seeFig.2).The␸-matrixistrivialduetocylindrical symmetry.

TheARTOFisoperatedintheconstantretardationratio(CRR) modewhichmeansthatallvoltagesofthelenssystemareraised proportionallytothecenterenergyEcenoftheanalyzedenergy

win-dow.Conclusivelytheelectrontrajectoriesareindependentfrom Ecenandonlyonesetofconversionmatricesisnecessarytocover

thetransformationforthefullenergyrange.Theenergywindow isaconstantfractionofEcenandtheenergyresolutionisscaling

withE3/2accordingtoEq.(1)forhighenergies.Inthisoperation

modeonecandefinealensmodebyspecifyingalllenselement voltagesforasingleenergye.g.Ecen=10eV.Thesizeoftheenergy

windowinwhichallelectronscanbeanalyzedsimultaneouslyand theangleacceptancecanbederivedfromsimulations.Thestandard nomenclatureofalensmodeis‘Angew’whereisthefullangle acceptanceand‘ew’isthesizeoftheenergywindowinpercentage e.g.‘Ang564’.

AllmeasurementsinthisworkhavebeenperformedattheUE 56/1PGMsoftX-RaybeamlineattheBESSYIIinstandard multi-bunchmode.WhilecommonlyoperatingwithPPRE[7]wehere usedtheunexcitedCamshaftbunchinthemiddleoftheionclearing gaptoavoidanypossibledecreaseinbeamlineenergyresolution which might arise frombunch excitation. We have chosenthe

(3)

D.Kühnetal./JournalofElectronSpectroscopyandRelatedPhenomena224(2018)45–50 47

1200l/mmmonochromatorgratingandthe50␮mexitslitfor opti-malbeamlineenergyresolutionandsmallelectronspotsizeatthe samplerespectively.Thephotonbeamisverticallypolarizedand thephotonenergyrangesbetween260and970eVwithaphoton pulselength<70psFWHM.TheARTOFopticalaxisisparalleltothe samplesurfacenormalandliesinthebeamplane.Thephotonbeam ishittingthesampleunder50◦withrespecttothesurfacenormal. Thebasepressureoftheexperimentalchamberis2·10−10mbarand

allmeasurementswereperformedatroomtemperature.

3. Results

Oneofthemostimportantcharacteristicsofanelectron spec-trometer is its energy resolution Eand the related resolving powerE/E.We haveanalyzed thisproperty inthesoft X-Ray regimefor kineticelectron energies between90eVand 810eV. IntheCRRmodetheenergyresolutionisgivenbythefollowing equation:

E=



˛·E3/2·t



2+



ˇ·E·d



2 (1)

Thefirstpartofthisequationcontainsthecontributionfromthe temporalresolutiont,thesecondpartdescribestheeffectofthe spatialdetectorresolutiond.Theparameters␣and␤describethe temporalenergydispersionandspatialenergydispersion, respec-tively,anddependonthespecificlensmode.Theyaregenerallya functionofdetectorhitpositionandflighttime(examplesaregiven below).Furthercontributionsmaycomefromtheelectronsource diameterandarotatedsamplesurfacethatisnotperpendicularto theopticalaxisofthespectrometer.Howeverforhighkinetic ener-giesEkin>50eVandsmallspotsizes≈100␮mastypicallyexistat

asynchrotronradiationbeamline,thetemporalresolutionisthe dominatingcontributiontotheintrinsicenergyresolution[2]and Eq.(1)simplifiestoEq.(2):

E=˛·E3/2·t (2)

Thetotaltemporalresolutiontisgivenbytheconvolution oftheexcitingphotonpulselengthtph=70ps FWHMandthe

temporalresolutionofthedetectortdet

t=



t2

ph+t2det (3)

andcanbedeterminedbymeasuringonlyphotonsatthe detec-tor,whichisachievedbyapplyingalargenegativebias.Herewe determinet=216±2psFWHMfortheglobaltemporalresolution byapplyingaGaussianfittothephotonsignalintegratedoverthe wholedetectorareaandt=166±13psFWHMforthedetector positionadaptedtemporalresolution,asprovidedbythephoton peakfittoolavailablewithintheARTOFLOADERanalysispackage.3

Fortheanalysisoftheenergyresolutionwedistinguishbetween localenergyresolutionElocwheretheelectronspectraare

deter-minedonlyfromasmalldetectorareaaroundtheoriginandthe globalenergyresolutionEglobwherethewholeangleacceptance

is usedto derivethe spectra.Besides thefundamental limit of theenergyresolutiongivenbythetemporalresolution,theglobal energyresolutioncanbefurtheraffectedbyresidualmisalignments andsignalpropagationtimedifferencesofthedetectorwhereas thelocalenergyresolutionisonlylittleaffectedbythose. There-foredeviationsbetweenElocandEglobforagivensettingcan

givehintsof‘howfarthespectrometerisawayfromoptimal per-formance’.

InthisworkweusetheS2pphotoemissionlinesof semicon-ducting2H-MoS2forthecharacterizationoftheenergyresolution.

3ARTOFLOADERv.2.5.−156,seeref.[4]forfurtherinformations.

The sample is preparedby cleaving, which gives reliably clean surfacesleadingtoawelldefinedelectronsourcegeometry.The S2p3/2 andS2p1/2 peakswithEbind=162.7eVandEbind=163.9eV

[11]respectivelyhaveanarrowsymmetriclineshapewitha nat-urallinewidthof0.054eV4andgiveagoodsignaltobackground

ratio.WeobserveanadditionalconstantGaussianlinebroadening

ofEsample=0.19eVFWHMwhichisdominating thelinewidth

atkineticenergiesbelow100eV.Thiswasalsoobservedby Mat-tilaetal.andisattributedtoterraces,stepsandpointdefectsatthe samplesurface[11].InFig.3differentrepresentationsofthespectra fortwodifferentkineticenergiesareshownfortheAng564-lens mode. Theenergy-angle-cuts(topand middlepanels)showthe intensityoftheS2plinesoverthewholeangleacceptance reveal-ingonlyminordistortions.Theenergyspectrawhichareintegrated overasmalldetectorareaandthewholedetectorarearespectively, haveverysimilarlineshapesandshowonlya minoradditional broadeninginthelattercase.Thecountratesofthedifferentlens modesgivequalitativeproofoftheincreasedtransmissionforthe 60◦ instrument.TheintensityratiooftheS2plinesofAng60and Ang50lensmodesisabout1.4,inaccordancewiththeratioofthe solidangles.However,thequantitativedifferencesbetweenAng56, Ang58andAng60aredifficulttodeterminepreciselyduetothe inhomogeneousangulardistributionoftheemittedelectrons.

ForquantifyingtheenergyresolutionwehavemeasuredS2p photoelectron spectrafor five differentkinetic energies in four differentlensmodesandappliedafitconsistingoftwoVoigt pro-filepeakswithafixedspinorbitsplittingof1.19eV,aLorentzian widthof0.054eVconvolvedwithaGaussianbroadeninganda lin-earbackground(seee.g.Fig.4a).Thecenterenergyissettothe kineticenergyoftheS2plinesforeachmeasurement.The spec-trometerenergyresolutioncannowbecalculatedbydeconvolving theGaussianlinewidthfromthesamplebroadeningandthe beam-lineresolutionEph.Inanextstepwehavedeterminedthescaling

parameter␣·tinEq.(2)byapplyingafit(Eq.(4))totheglobal Gaussianlinewidth(seeFig.4b)andthelocalGaussianlinewidth, respectively(seeTable1).

E=



˛·t·Ekin3/2



2 −



Eph



2 −



Esample



2 (4) Using␣loc·tand␣glob·tonecancalculatethelocalandglobal

energyresolution(seeFig.5a)andtheresolvingpower(seeFig.5b). Theparameters␣and␤fromEq.(1)canalsobedetermined fromthesimulatedenergyconversionmatricesE (t,r) bynumerical differentiationwithrespecttothetimeofflight(t)orpositionon thedetector(radiusr).

˛matr(t,r) =−

∂E (t,

r)

∂t

·E −3/2 cen (5) ˇmatr(t,r) =

∂E (t,

r)

∂r

·E −1 cen

Theparametersdependonrandtitisthereforenotpossibleto giveasingleenergyresolutionforagivenlensmode.Foralllens modesonecanobservearathernarrowdistributionofalpha val-uesaround˛matr(r=0,E=Ecen)(seeTable1).Therelativewidth

ofthedistribution␣matr/␣matrisapproximately±15%.Thevalue

forˇmatrisrather homogeneouslydistributedbetweenˇmatr=0

forr=0andˇmatr=1.5m−1forhigherradii.Thecontributionsof

spatialandtemporalresolutionontheenergyresolutionareabout equalbetweenEcen=10eVand30eVandthetemporalresolution

becomesincreasinglydominantforEcen≥50eV.

(4)

Fig.3.Angle/energy2Dmapsfortwodifferentkineticenergies(left:Eph=260eV,right:Eph=790eV)recordedintheAng564-lensmoderepresentedinbipolarcoordinates.

Onthetoppanels,intensityisdisplayedvs.energyandtheverticalanglealphaandintegratedoverthehorizontalanglebeta.Inthemiddlepanels,intensityisdisplayedvs.

energyandbetaandintegratedoveralpha.Atthebottompanel,angleintegratedenergyspectraareplottedfortwodifferentintegrationareas:Theredspectraaretaken

fromanareaaroundthedetectororigin(markedbyredboxesin2Dplots)andthebluespectraaretakenfromfullangleacceptance.Thesmallareaspectrashowrealelectron

yield(counts)whilethefullangleacceptancespectraarenormalizedtosolidangle(scalingfactoramountsto30.8).Notethatonlyafractionoftherecordedenergywindow

isdisplayedforbothkineticenergies.

Table1

ListofexperimentalandsimulatedlensmodeparametersdeterminingtheenergyresolutionaccordingtoEq.(2)andtheangularresolution.

Energywindow[%] ˛



loc·t(local)

10−5eV−0.5

˛glob·t(global)



10−5eV−0.5

˛loc ˛glob ˛matr



105eV−0.5s−1

Angularresolution[deg]

ang50 7 5.34±0.04 6.95±0.02 0.77 3.43 0.13±0.02

ang56 4 3.06±0.03 3.67±0.01 0.83 1.76 0.18±0.04

ang58 4 3.41±0.02 4.18±0.01 0.82 1.93 0.20±0.04

ang60 2 4.17±0.03 4.88±0.01 0.85 2.54 0.15±0.02

Theangularresolutioncanbeestimatedfromtheangular

dis-persion of the lens system in the image planeat the detector

bycalculatingthederivativeofthethetaconversionmatrix.For

sourcesizesdsource≤100␮m,witha spatialdetector resolution

ofddet=100␮mandneglectingtheminorinfluenceoftemporal

resolution,theangularresolutionisgivenby:

ϑ (r) ≈

ϑ

r (r) ·ddet (6)

Table1showstheangularresolutionaveragedoverthe accep-tance angle for all lens modes. The uncertainties are given as standarddeviations.

4. Discussion

ThelocalenergyresolutiondeterminedfromtheS2ppeakfits can bedirectly compared withthe expected energy resolution fromtheenergyconversionmatriceswiththetemporalresolution

(5)

D.Kühnetal./JournalofElectronSpectroscopyandRelatedPhenomena224(2018)45–50 49

Fig.4.Left:Angleintegrated(±28◦)energyspectrumofS2pphotoelectrons(bluedots)withEph=260eVrecordedintheAng564-lensmode.Afitcontaining2Voigtprofiles

andalinearbackground(redline)isappliedtothedata.Right:GaussianlinewidthcontributioninS2pspectraexperimentallydeterminedforfivedifferentkineticenergies

(dots)fordifferentlensmodes.Thefitstothedataaccountforsamplebroadening(lightbluecurve)andbeamlineresolution(greycurve).

Fig.5.Left:Globalenergyresolution(solidlines)calculatedwith␣globandlocalenergyresolution(dashedlines)calculatedwith␣locRight:Resolvingpowerofthe

spectrometercalculatedwith␣globfromtheenergyresolutionfit.Samecolourcodeasinleft.

obtainedfromthephotonpeakfittool,forexampleforAng56 4-lensmode:

˛matr·tloc=1.76·105eV−0.5·s−1·166ps=

2.92·10−5eV−0.5≈3.06·10−5eV−0.5=˛loc·t

Wefindthatthekineticenergydependenceoftheresolutionfor allfourlensmodesareinverygoodagreementwiththeexpected energyresolutioninthelocalcase,seeFig.4.Thisalreadyshows clearly that thetiming system of the spectrometer is working locallyasexpected.However,itshouldbeemphasizedthatthefits aremadeoverawideenergyrange.Althoughthefitisinverygood agreementwiththeoreticalexpectationsandpointtoaresolving powerasshowninFig.5,theintrinsicsampleenergybroadening istoohightoprovetheresolvingpoweratlowenergies.Further experimentsareneededtodeterminetheenergyresolutioninthe UPSregime.

Onecanfurthercomparethelocalandtheglobalenergy resolu-tion.Wefindthattheglobalenergyresolutionisdecreasedwith respecttothelocalenergy resolution byabout20%for alllens modes.Possiblereasonsareresidualmisalignments,different sig-nalpropagationtimesofdifferentdetectorareasand increasing ␣(fitparameter)athigheremissionangle.Weareconfidentthat carefulalignmentandadetectorpositionadaptedtimecorrection, whichwillbeavailableinfuture,canfurtherimprovetheglobal energyresolution.

Apparentlythedegradationoftheglobalenergyresolutionis sensitivetothesizeoftheenergywindowwhichcouldbeexplained bythefactthattheelectronflight timesneedtobemore com-pressedforlargerenergywindowsandarethereforemorestrongly influencedbysignalpropagationdelaysbetweendifferentdetector positions.

Comparingthefourlens modesonecanclearlyseethe gen-eraltrendthatlargersizeoftheenergywindowandlargerangle acceptancearetothedisadvantageoftheenergyresolution.

(6)

There-foretheoptimumchoiceofthelensmodedependsonthespecific experimentaldemands.

5. Conclusion

Inthisworkwehaveoperatedthe60◦wideangleacceptance ARTOFatthefemtoslicingbeamlineatBESSYII.Fourdifferentlens modeshavebeeninvestigatedinthesoftX-Rayregimeforkinetic energiesoftheelectronsrangingfrom90eVto810eV.Alllens modesperformasexpectedinthefullenergyrange,particularlythe resolvingpowerandangleacceptanceareinverygoodagreement withsimulations.Ahighresolvingpowerof1000isdemonstrated evenforhighenergiesandsuggestsaresolvingpowerof3000for 90eVkineticenergy.Electronspectroscopictechniques,drivenby pulsedlightsources,thatrelyonhightransmission,highenergy resolution,wideangleacceptanceorhighangularresolutione.g. ARPES,XPD,pump-probespectroscopymightstronglybenefitfrom thenewwideanglelens.

Acknowledgment

TechnicalsupportbyMikeSperlingisgratefullyacknowledged. PålPalmgrenandPatrikKarlssonfromScientaOmicronGmbHare acknowledgedforfruitfuldiscussionsabouttheARTOF.

D.K.,F.S,R.JandA.F.acknowledgefundingfromthe ERC-ADG-2014 − Advanced Investigator Grant No. 669531 EDAX under the Horizon 2020EU Framework Programme for Research and Innovation.NMandSSacknowledgefundingfromtheEuropean ResearchCouncilundertheEuropeanUnion’sSeventhFramework Programme(FP7/2007-2013)/ERC grant agreementn◦ [321319], and support from the Carl Tryggers foundation for scientific

reseach/CTH),andtheSwedishResearchCouncil(VR) TheauthorsthankHZBfortheallocationofbeamtime.

References

[1]N.Mårtensson,P.Baltzer,P.Brühwiler,J.-O.Forsell,A.Nilsson,A.Stenborg,B. Wannberg,J.ElectronSpectrosc.Relat.Phenom.70(no.2)(1994)117–128.

[2]B.Wannberg,Nucl.Instrum.MethodsPhys.Res.,Sect.A601(no.1–2)(2009) 182–194(SpecialissueinhonourofProf.KaiSiegbahn.).

[3]G. ¨Ohrwall,P.Karlsson,M.Wirde,M.Lundqvist,P.Andersson,D.Ceolin,B. Wannberg,T.Kachel,H.D ¨urr,W.Eberhardt,S.Svensson,J.ElectronSpectrosc. Relat.Phenom.183(no.1–3)(2011)125–131(ElectronSpectroscopyKai SiegbahnMemorialVolume.).

[4]R.Ovsyannikov,P.Karlsson,M.Lundqvist,C.Lupulescu,W.Eberhardt,A. F ¨ohlisch,S.Svensson,N.Mårtensson,JournalofElectronSpectroscopyand RelatedPhenomena191(2013)92–103.

[5]A.Vollmer,R.Ovsyannikov,M.Gorgoi,S.Krause,M.Oehzelt,A.Lindblad,N. Mårtensson,S.Svensson,P.Karlsson,M.Lundvuist,T.Schmeiler,J.Pflaum,N. Koch,J.ElectronSpectrosc.Relat.Phenom.185(no.3–4)(2012)55–60.

[6]U.B.Cappel,S.Plogmaker,J.A.Terschlusen,T.Leitner,E.M.J.Johansson,T. Edvinsson,A.Sandell,O.Karis,H.Siegbahn,S.Svensson,N.Mårtensson,H. Rensmo,J.Soderstrom,Phys.Chem.Chem.Phys.18(2016)21921–21929.

[7]K.Holldack,R.Ovsyannikov,P.Kuske,R.M ¨uller,A.Sch ¨alicke,M.Scheer,M. Gorgoi,D.K ¨uhn,T.Leitner,S.Svensson,N.Mårtensson,A.F ¨ohlisch,Nat. Commun.5(2014)05.

[8]D.F.F ¨orster,B.Lindenau,M.Leyendecker,F.Janssen,C.Winkler,F.O. Schumann,J.Kirschner,K.Holldack,A.F ¨ohlisch,Opt.Lett.40(2015) 2265–2268.

[9]C.Strahlman,Time-of-FlightIonandElectronSpectroscopy:Applicationsand ChallengesatStorageRingLightSourcesDoctoralThesis,MAXIVLaboratory, LundUniversity,Sweden,2016.

[10]K.Holldack,J.Bahrdt,A.Balzer,U.Bovensiepen,M.Brzhezinskaya,A.Erko,A. Eschenlohr,R.Follath,A.Firsov,W.Frentrup,L.LeGuyader,T.Kachel,P. Kuske,R.Mitzner,R.M ¨uller,N.Pontius,T.Quast,I.Radu,J.-S.Schmidt,C. Sch ¨ußler-Langeheine,M.Sperling,C.Stamm,C.Trabant,A.F ¨ohlisch,J. SynchrotronRadiat.21(2014)1090–1104.

[11]S.Mattila,J.Leiro,M.Heinonen,T.Laiho,Surf.Sci.600(no.24)(2006) 5168–5175.

Figure

Fig. 1. a) Schematic drawing of the 60 ◦ wide angle acceptance ARTOF. Electrons emitted from the sample under high angles with respect to the surface normal (red and blue lines), are deflected strongly towards the optical axis (green line) when entering the
Fig. 3. Angle/energy 2D maps for two different kinetic energies (left: E ph = 260 eV, right: E ph = 790 eV) recorded in the Ang56 4-lens mode represented in bipolar coordinates.
Fig. 4. Left: Angle integrated (±28 ◦ ) energy spectrum of S2p photoelectrons (blue dots) with E ph =260 eV recorded in the Ang56 4-lens mode

References

Related documents

All interviewees explained that the first step of generating a geographic profile is to review the case information and establish that the crimes in the series are linked,

The sequence of surface energy for a particular size fraction followed the increasing order of work function of charging medium and decreasing order of magnitude of charge

Three different answers to the research question are proposed, which crystallizes three different positions: Hell-optimism, which denotes the view that the existence of

12 To facilitate a comparison between the results from Odeon at different frequencies with the scale measurement, the sources in the simulated model should excite pink noise, thus

”Given the PID control strategy, what are the implications of the signal processing algorithms, Kalman Filter or Particle Filter, in regard to pro- viding accuracy and

In the second section, the Pressure and Release (PAR) model (Wisner et al., 2004), linked to the social injustice perspective on risk, will be explained as a general theoretical

Cover: Schematic of the conformational dynamics displayed by bacteriorhodopsin (purple), proteorhodopsin (pink) and visual rhodopsin (red) in solution as determined by

Mapping the conformational changes required for these proteins to function is important for understanding how light energy is used for energy transduction and sensory perception