• No results found

Building materials in eco-energy houses from Iraq and Iran

N/A
N/A
Protected

Academic year: 2021

Share "Building materials in eco-energy houses from Iraq and Iran"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Case Studies in Construction Materials.

This paper has been peer-reviewed but does not include the final publisher proof-corrections

or journal pagination.

Citation for the original published paper (version of record):

Almusaed, A., Almssad, A. (2015)

Building materials in eco-energy houses from Iraq and Iran

Case Studies in Construction Materials, 1: 42-54

https://doi.org/10.1016/j.cscm.2015.02.001

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

2015 TheAuthors.Published by Elsevier Ltd. This is an open access article under the

CC-BY-license(http://creativecommons.org/licenses/by/4.0/).

Permanent link to this version:

(2)

Case

Study

Building

materials

in

eco-energy

houses

from

Iraq

and

Iran

Amjad

Almusaed

a,

*

,

Asaad

Almssad

b aAlbasrahUniversity,Denmark

b

KarlstadUniversity,Sweden

1. Introduction

Vernacularhabitatsdevelopedtheirindividualitybytappingintonearbyresourcesandexploitingthemtoconfrontthe problemsposedbyalocalenvironment.Ifrainisseasonal,theroofstructuremustalsofunctionefficientlyinthedryseason (Woolley,2006).Whenitiswarm,large,ahighroofspacecontinuumwiththelivingareaispractical.Temperatureextremes callfor thickinsulating walls androofs tomaintaina comfortable internal environment(Almusaed,2004). Themost importantquestionthatneedstobeanswerediswhatistherelationshipbetweentheouterconditionsoftemperature, sunshineandrainandtheinsidethermalcomfort.Fordifferentclimaticsessions,itisnecessarytotakeintoaccountbuilding, area,orientation,colours,etc.Althoughitisquiteacomplicatedmattertotheoreticallysolvetheseproblems,itispossibleto ARTICLE INFO

Articlehistory:

Received17August2014

Receivedinrevisedform24December2014 Accepted5February2015

Availableonline11March2015 Keywords: Environmentalprofiles Ecologicalmaterials Energyefficiency Vernacularhabitat ABSTRACT

BuildersfromtheWesternpartofAsiaaretrainedtomakebuildingsthatcanfulfilcertain required functions while giving full consideration to all sites and environmental conditions.TheresearchcoversthezonebetweenIraqandIran.Thefirstinvestigated regionisthe‘‘MesopotamianMarshes’’orIraqi-IranMarshes,awetlandzonesituatedin southernIraqandpartiallyinsouthwesternIran.Theotherregionisadesertdistrict, whichincludesaprominentpartofthesouthernandwesternpartsofIraqandpartofIran. Thelast isthecentrecityof Basra.Thebuildingmaterialswerethemostimportant buildingelementthataffectedtheconformationofvernacularhabitatsfromthewestern partofAsiaingeneralandtheIraq–Iranareainparticular.Inthisstudy,weneededtofocus ontheeffectsofecologicalandenergy-efficiencyprocessesincreatingvernacularhabitats andtheselectionofoptimalbuildingsystemsandmaterialsinthispartoftheworld,which canbeanessentialpointforsustainableenvironmentalbuildingprocessesinthefuture. Reeds,clay,straw,bricks,andwoodwerethemostpopularbuildingmaterialsusedby buildersfromthisregion.Theimpactofbuildingmaterialontheenvironmentembodies the essential method implicitly significant in this research to effectively determine traditionalbuildingmaterialsintheenvironment,inadditiontocomparativeanalysis. Thispresentsanessentialfactorofouranalysis,inadditiontotheimpactofenvironments onbuildingsystems.Themaintargetofthisstudyistobenefitdesignersandbuilding engineersintheirpursuittofindoptimalandcompetentsolutionssuitableforspecific localmicroclimatesusingtraditionalmethodsinthedesignprocessthataresustainable andecological.

ß2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

*Correspondingauthor.Tel.:+4524252391.

E-mailaddress:a.amjad@archcrea-institute.org(A.Almusaed).

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

j o urn a lhom e pa g e : ww w . e l se v i e r. c om / l oca t e / cs cm

http://dx.doi.org/10.1016/j.cscm.2015.02.001

2214-5095/ß2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/ 4.0/).

(3)

establishanempiricalrelationshipbetweentheexteriorandinnerenvironmentsforanybuilding.Inthisway,thepractical problemcanbesolved(GinvoniMan,1976).Throughouthistory,thehumanbeinghasstriventoerectsheltersthatfulfil basicneedsrelatingtohissurvival,shelterthatprovidesanenvironmentfavourabletohisphysicalrequirements.Duringhis yearsofefforttoachievethatenvironment,manylocalvariationsindwellingshaveevolved(Wenzel,1996).Accordingtoa UNdocument,thepurposeofthehabituationprocessisnottobuildhousesbuttoovulateacompetenthouse.Inotherwords, thehouseshouldprovidethesecurityoftechnicaladviceandbeinvolvedinacquiringsmallloansandcheapmaterials(Stulz, 1981).Climaticconditionscompelthebuildertofindanefficientsolutiontoservethehumanbeingandthecomfortofhis existence.Buildingmaterialshaveanimportantimpactonthehome’sfunctionsandinhabitants.Environmentalbuilding materialsaddvaluetohumanlifeandreducethenegativeimpactontheenvironmentdrastically.InWestAsia,climates, environmentalelementswithheavybuildingsandshadedcourtyardsarecommon.Theseclimatestypicallyhaveahuge diurnaltemperaturerange,andhousestendtoemployanarrangementofthesemeasures,withtheparticularmixbeing modulatedtosuitlocalmicro-climaticcharacteristics.Selectingandspecifyingenvironmentalbuildingmaterialsareoften complicatedprocesses(Jester,1995).

Buildersfromthisregioncreatedtheirhabitatstakingintoconsiderationtheabove-mentionedquestion,inanefficient mannerandtofithumanneedsbyadaptingtolocalenvironmentalparameters.Eachbuildingmaterialdisplaysthedifferent physicalcharacteristics;thestructurerequiresrigidstrengthtosupportthedeadweightoftheroofandwalls.Ifthesituation dictatestherangeoffittingmaterials,togethertheycommandtheform.WestAsia’svastlandmassesarediverseingeology and climate(Almusaed,1997). Thisinvestigationhastofind suitablesolutions for buildingmaterialsand then study differentbuildingmaterialsfromvarioussourcesandbasedonitscharacteristicsofeco-energyhouseefficiency.Themain lessonwecanlearnfromthisstudyisnotonlytofurthertheconservationandrepossessionoftheformofhabitatsalreadyin existence,butalsotorethinkwhatcanformnewhabitatsforthefuture(Fig.1).

2. Climate-specificeffects

ClimateisthemainfactorthatdirectlyaffectstheconstructionprocessandbuildingmaterialsinWestAsia.Thisregionis situatedinthesubtropics’climatezone.Itisaffectedbythesubtropics’high-pressurebelt,whichreachesthefarthestnorth inthesummer.TheskyinWestAsiaisbrightandglaring,evenwhenthinlyclouded.Asonegoesinlandfromtheequator, seasonaldifferencesinclimatebecomemoremarkedwithawetterwetseason,andadrierwinterperiod(Kukreja,1978). TherearemanyfactorsthataffectbuildingmaterialsoftraditionalbuildingsfromWestAsia.Solarradiationdeteriorates organicmaterialsbyinitiatingchemicalreactionswithinthematerialandcausingoxidation.Fig.2showsthemonthly averagetemperatureandsunshinehoursintheWestAsiaRegion.Inthisregion,edificeshavetobeplannedwithgreat attentionandthought,andwithduerespectforclimate.Shadeandprotection fromduststormsmayhavethehighest priorityinsomeareas,whereasinotherareas,ventilationandthetrappingofairstreamsandbreezearetheprimarygoals. Theeffectofclimateoverthebuildingmaterialsislarge;hightemperatures,forexample,canaffectalltypesofmaterialsin general.Thespeedofachemicalreactiondoublesforevery108Cincreaseintemperature(Nielsen,2010).

Inaddition,increasinglevelsofhumiditycanincreasethedeteriorationphysicallyandbycreatinganenvironmentfor harmfulfungus andmicrobial growthaswellasinsectattacks.Changesinhumidityalsocausedeterioration through changesinvolumeandstresswithinthematerial.

3. Investigationmethods

AN environmental profile is achieved on thebasisof theSBI (DK) calculationprogramme, BEAT2000, which is a standardisedtechniqueforclassifyingandmeasuringtheenvironmentaleffectsrelatedtobuildingmaterialsintheirlife

(4)

cycles(11).Itconsistsofsevenparametersthatcoverallessentialphysicalenvironmentalimpactsandeffects.Itispossible toexamineanenvironmentalprofile indicatorusingthesameindicatoronanotherone.Thefirstindicatorisresource consumption,wheretheenvironmentalimpactsofresourcebenefitscanbecomposedofalossofresourcesandspace consumptionandrisksofgasextractionoracultivationprocess.Thestudywillusethreecircumstances.Thefirstisthe abilityofthematerialtoengageinarecyclingprocess,whereitcanprovidefortheimmediateenvironmentbyreducingthe useofnewresources.Knowledgematerialsareapartoftherenewableresourceprocess,suchas,inthebuildingofplant materials,mainlywood,ornon-renewableresources,suchasmineralsubstanceslikebrick,concreteandmetals.Thesecond indicatoristheenvironmentalimpactofenergyconsumption.Inthissituation,thestudywillusethreecircumstances: renewablefeedstock energy, theheat of combustionof renewableresources, whereis woodisthe principal base product; non-renewable feedstock energy, such as plastic; and renewableenergy, such as energy from wind and hydropowerproductionandbiofuels.Lastisnon-renewableenergy, suchascoal,oil,gas.Theseenergysourcesare characterisedbyalimitedquantityatdisposal,andtheirusegivesriseto,amongotherthings,thegreenhouseeffect. Thethirdindicatorisagreenhouseeffect,whichshowstheenvironmentalimpactofgreenhouse-gasemissions.The anthropogenicgreenhouseeffectisduetocordgases(includingcarbondioxide,methaneandother)fortheretention trapsheatradiationthatwouldotherwiseradiatefromtheearthintospace.Inthisway,theycontributetoatmospheric warming. Acidification influence is a fourth indicator that shows the environmental impact of the emissions of acidifyingcompounds(mainlysulphurdioxideandnitrogenoxides),whichattackplantfoliageandacidifythesoil. Nitrogenimpactisafifthindicator,whichshowstheenvironmentalimpactofthedischargeofsubstancescontaining nitrogenorphosphorus.Theycancausethegrowthofalgaeorplantstoincreaseoutofbalanceinrelationto,andtothe detrimentof,theglobalecosystem.Thetoxificationeffectisasixthindicatoroftheenvironmentalprofile,showingthe environmentalimpactoftheemissionsofsubstancesthathaveacuteandchronictoxiceffectsonhumans.Disposability isthelastindicatorofenvironmentalprofilesandshowswhathappenstoabuilding,structureormaterialonceitslifeis over.Inthissituation,thestudywillusethreecircumstances:recycling/high-valuerecycling,thedirectreuseofthe materialinitsoriginalform orreuseofthematerialinnovativelythroughtheproductionofnewmaterials(Marsh, 2000).Alow-worthrecycling/incineration,therecyclingofmaterialfortheproductionofbrandnewmaterialsoflower quality,orburningthematerialwithenergy;andhazardouswaste,wherethematerialcontainssubstancesthatmustbe disposedofaccordingtolaw(Table1).

Comparisonsareaninstrumentofinquiry.Materialsrelatedtoenvironmentalimpactscanbeassessedinrelationtoother factorssuchasenergyconsumptionandthegreenhouseeffect,whichisdividedintothefollowing:

Materials Acclimatisation

Amaterial impacton theenvironment shouldnot beobserved in isolationfrom otherenvironmental factors.The environmental impact of certain materials or structures can be compared to other factors (Dinesen, 1997). The environmentalprofilecancomparetheenvironmentalimpactperm2-floorareasofthehouse’sacclimatisationneedsandits buildingmaterials.ThecalculationofhousingaccumulationrequiresusingtheapproachdevelopedbySBIforthecalculation programmeBV95.Thecalculatedcooling&heatingrequirementsarethenconvertedtogrossenergyconsumptionandCO2

emissions.

(5)

4. Specificbuildingmaterialsnominated

Abuildingisbuilttobeoccupiedbyhumans.Assuch,itmakessensethatarchitects,betheyClassical,Renaissance, Modern,orcontemporary,wouldusethehumanbodyasinspirationoraprincipleofdesign(Korydon,2012).Thebuilding envelopeisaman’sbarrieragainstexternalatmosphericconditionsandtheirfluctuations.Buildersfromthiszonehave chosenthreevariedcategories,inthebuildingmaterial’sselectingprocess.Thesearemineralmaterials,organicmaterials andmixturematerial.

4.1. Organicbuildingmaterials

Thisisthefirstbuildingmaterialutilisedbyhumanbeingsinthebuildingprocess.Itcomesfromrenewableresourcesand canbeextractedbyhumanseasily;therefore,itisanecologicalmaterialwithmanygoodproprietiesandcanbesuccessfully usedintheconstructionprocess.Itisalargepartofhumanlife(Brown,1990).Itisapopularbuildingmaterialbecauseofitis specificenvironmental friendlinessandgreat energyvalues. Themainbenefitsofthesematerialsaretheir cheapness, prevalence,andexcellentproprietiesofthermalandacousticalinsulation.

4.1.1. Reeds

Reedisanorganicbuildingmaterial;ithasgoodresistancetowateractions.Itcontainsahighratioofsiliconsubstance, whichleadstoitbeingdurableandflexibleintechnicalactionandstructures;however,itisahighlyflammablematerial.The highconcentrationofsilicainthereedsmakesthismaterialunattractiveforinsectsandotheranimals.Reedmeetsallthe requirementstobeanefficientinsulator.Theformofthestemallowsittoserveallmannersoffunctions(Elias,1980).Itisan excellent thermal and acoustic insulator material. Therelative durability and flexibilityin construction are themost importantproprietiesofreeds.Theuniquepropertiesofreedshavebeennotedforalongtime,inallregionsoftheworld (Lauren,2000).Theinfluenceofreedsonpathogenicbacteriaisparticularlyintense.Reedsfromthemarshlandregionconsist ofseveraltypesofplantswhosestemsdifferinthickness,flexibilityandchemicalcomposition.Themostpopularreedsused intheconstructionprocessare‘‘Ihdri’’,theregionalnameofthistypeofreed.Thebuildingofwallswithreedsismuchless labourintensivethanthatwithothermaterialssuchasbrick,adobe,orstone,andrequiresconsiderablylessskill.Reed buildingisforgiving,encouragesindividualcreativity,andleadstofinalstructuresthatareclimaticallyadaptedandenergy efficient.Reed does havesomedisadvantages. Itsnatural durability is lowerthan wood,and it mustbe treatedwith preservativestolastinexposedlocations.

4.1.2. Straw

Strawisamaterialwithhighthermalefficiency.IthasanR-valuesubstantiallybetterthanthoseofothertraditional buildings,dependingonthetypeofstraw;itconsistsofbarleythatis36%cellulose,26%pentoses,17%linen,wax,proteinand ash–acompositionverysimilartowood.Thestrawhasexcellentinsulationproperties.Straw’sbiologicalfunctionsinclude itsaxisforwater.Therefore,strawbalesaregoodattransportingmoistureandthusregulateinteriorhumidity,providedthey bearthediffusionthroughopenscreenandcoatings.Straw’sweaknessesareriskoffire,insectsordecayrefractioncausedby long-term,highmoisturecontent(Gillv,1970).Strawcanprovidegreatlyimprovedcomfort,anddramaticenergysavings comparedtomoreexpensivetraditionalbuildingstructuresbecausetheyallowforsmallerheatingorcoolingsystemsin conventionalhomesbecauseoftheincreasedinsulation.Balebuildingisofparticularvalueinsevereenvironmentswhere energyiscostly.

4.1.3. Wood

Woodisanorganicmaterial,anaturalcombinationofcellulosefibres(thatarestrongintension)embeddedinamatrix that resistscompression(Janssen,1988). Theprincipalcomponentsinwoodarecellulose (40–50%)andhemicellulose (15–25%),withlignin(15–30%)aswellasothermaterialsuchassugar,starchandprotein.Thetechnicalpropertiesofwood arehighlydependentonthetypeandmoisturecontent.Italsocontainsvaryingotherelementsdependingonthetype, Table1

Environmentalprofilesindicatorsusingineco-energybuildingsmaterialsefficiencyanalysis. Environmentalprofilesindicators Analysisfactors

Resourceconsumption Abilitytorecycling process(ARP.)

Renewableresources(RR) Nonrenewableresources(NRR) Energyconsumption Renewablefeedstock

energy(RFE)

Non-renewablefeedstock energy(NRFE)

Renewableenergy(RE) Nonrenewable energy(NRE)

Greenhouseeffect GE

Acidificationinfluence AI

Nitrogenimpact NI

Intoxicationeffect IE

(6)

whichdefinesitssmell,colourandresistancetopestdamage.Therearetwoformsofwood,softwoodandhardwood,which aresubdividedintoanumberofdifferenttypes(EdwardandJoseph,2011).

Woodhasahighcaloricvalue(between12.5MJ/kgand20.1MJ/kg).Thermalre-utilisationofuntreatedanduncoatedwood isun-problematic.Re-utilisationispossibleifthewoodisdismantledwithoutdamage.Untreatedoldwoodconventionallycan beusedasrawmaterialforanumberofdifferentapplications(Woolley,2006).Theconversionofwoodintoasustainable, renewableresourcetobeusedasamainbuildingmaterialcouldbebeneficialinvariousareasoftheworld.

4.2. Mineralbuildingmaterial

Mineralmaterialsaremadefromnon-renewableresourcesdugon landoratsea. Theyarehomogeneous,naturally occurringsolid inorganicmaterialswitha clearcrystalstructure anda definite chemicalcomposition(Damon, 1983). Buildersfromthiszonehavefoundgoodbuildingmaterialsfromthelocalneighbourhood.Twoessentialbuildingmaterials wereselectedinthebuildingprocess:clayandbrick,whichareneartherequiredscaleofhumans.

4.2.1. Clay

Today,clayofferstheonlypracticalprospectforbuildingthefivehundredmillionhousesthatwillberequiredinthe comingyears(Anil,1981).Amassofclayhasextraordinaryformabilityandrobustness.Excellentadhesionandbonding forcescountasthemainpropertiesofclay.

4.2.2. Brick

Brickisusedas aprincipalbuildingmaterialfromzone‘‘I’’. ThetypicalhousefromSumerianagewasa one-story constructionmadefrombakedorsun-driedmud-brick.Thefamilyhouseincludedthefollowingstructurefunctions:aliving room,kitchen,opencourtyard,servant’sresidences,etc.Abrick-buildingelementhasexcellentthermalresistance(Barry, 1988).

Thematerialisveryefficientinenergyconsumptionandcanbeacceptedasabio-ecologicalmaterial,especiallyinWest Asia.Claybricksareamorethermallyinertmaterial,andchemicalreactionsarerelativelylow.Thus,theeffectsofgreen housesarelimited(Manandhar,1983).Therecyclingofclaybrickscanbeadifficultprocessduetotheunavoidablemortar, renderandplasterresiduethattendstoadheretothebricks,particularlywhensuchproductshavehighcementcontent. However,olderbrickiseasiertorecyclebecausemuchofitwasconstructedusinglimemortar(Manfredetal.,2006). 4.3. Mixtureofbuildingmaterials

4.3.1. Clay+straw

Thisisoneoftheancientbuildingpracticesknown.Clayisodourless,non-toxicandpleasanttoworkwithincombination withstraw,creatingasofttopulpypreparedmixofclayandvegetablefibres(straw)thatcanbeusedforfillingthepanelsin timber-framedbuildingsorpressedinmouldsformakingclaybricksandboards.Ready-mademixesarenowavailableon themarket.Thedensityofthemixturebuildingmaterialofclayandstrawis1200–1700kg/m3.Amixofclayandstrawisa

heterogeneousmaterial,withgoodthermalproperties(Easton,1996).Fig.3showstheenvironmentalprofilecomparative analyticalinterpretationofenvironmentalprofilesof1m2ofdifferentbuildingmaterials.

Thestraw–claymixcreatesaunique,breathablecombinationofhighinsulationwiththermalmass.

Fig.3.Comparativeanalyticalinterpretationofenvironmentalprofilesof1m2

(7)

5. Buildingsystemsofheritagepractices(casestudyfromBasrahabitats)

ThecityislocatedinaregionofthehistoricareaofSumer,thehometownofthefictionalcharacterSinbadtheSailor,anda suggestedplaceoftheGardenofEden.Itheldasignificantpositionintheearlyregionalhistoryandwasfoundedin636AD.It includesthreedifferenthabitatarrangements.Thefirstappearedinthenorthpartofthecityinthezoneofmarshes,ZoneIII. Anothertypeappearedinthesouthpartofthecityinthedesertarea,ZoneII.Thelastappearedthemiddlepartofthecity besidethebig-cityriverShatAl-Arab,ZoneI,asshowninFig.4.

Fromthepractical experiencesofthebuildingprocess,specifichabitatunitsfromhistoricalexperiencesweremore relatedtotheobjectivecontext(SolarHandbook,1986).Oneofthemosteffectiveinterventionsofanoldbuildingfromthis regionwasrespectingbalancesbetweenmanyenvironmentalfactorstocreateaparticularbuildingstyle,whichmakesthe balances between humanlife and themilieu condition optimal. The notion of ecological buildingis not an absolute (Almusaed,1996;Marsh,2000).Itis,therefore,morecorrecttousethewordsmoreorlessenvironmentallyfriendly,healthy orwillingecology(DoranandCather,2013).However,thatisnotsufficientinpracticalexperience.Accordingly,oldbuilders of thecity andregion tookintoaccountmany otherfactors.Oneimportantfactor wastheimplication ofbio-climatic conceptsinthebuildingprocess

-Whyabio-climaticbuildingconcept?

Theclimatehasaprimaryinfluenceonarchitecturalform,notonlyinthechallengesitposestothebuilderbutalsoin the materials it supports. In bio-climatic building conception, the edifice is converted to a subsystem of a vast environmentalsystemthatshouldbeexaminedcarefully.Theholisticintegrationofsubsystemsinthesystemiscritical. Thereareclearinterpretationsinnativearchitecture(HoubenandGuillaud,1984).Thetemperatureofthegroundorwalls canbesubstantiallydifferentfromthatoftheneighbouringatmosphere.Inbio-climaticbuildingsfromBasra,theearthis valuableasashelter,particularlyinconjunctionwithlandscaping.

-SpecifichousesFromBasra

Basra’straditionalhabitathasevolvedwithintheseconstraints;itcanbedefinedasarchitecturewithoutarchitects:not thatitiscreatedwithoutoverallsupervision,justthatitisnotinthehandsofasophisticatedurbanprofessional.Instead,it isvernacularinthatitistheproductofwell-triedlocalcraftsmenraisedintheuseoflocalmaterialstoconfrontlocalsocial andenvironmentalconditions.GlazedwindowsarenotpartoftheBasratradition.Inthewarmerregions,glassinhibitsthe flowofairinsummer.Openingsaresealedagainstthewintercoldbyopaqueshuttersorclothscreens.Ruralhousingoften lackswindowopenings,makingforadarkinterior(Namdin,1996).Buildingmaterialsareconvenient,readilyavailableand canbemadeandusedbythecitybuilderstobuildtheirhabitats.Inallhousing’models,theallocationofhabitatfunctions inthehouseresemblestheshapeofatree,wherethemainbuildingelementisacourtyard,whichispoint‘‘zero’’inthe housestructure.Themostcommoncharacteristicofthehousesofthehotandhumidregionsistheiropenness.Theyare constructedtocatcheverybreezethatoccurs,fornaturalaircurrentsarethebestreliefinhumidclimates[8-2].Allhabitat functionsareallocatedaroundthecourtyardwithahierarchyapproach.Themostimportantisforfunctionsofliving,such asalivingroom.Nextcomeserviceareas,suchaskitchens.Inthisstudy,weinvestigatedthreedifferentcaseswhereold buildersconstructedsomethingappropriatefortheenvironmental,climaticandhumanrequirements.

5.1. ‘‘OldBasraHabitat’’fromzoneI

Ahightemperature,‘‘T’’,duetotheheatislandphenomenonisamajorriskfactorthataffectshousingconfigurationsand compositionsinthiszone.Therecommendationistocreateahabitatunitthatadaptstoextremeclimatewithaseriesof

(8)

interferences such as significant thermal insulation, profound shadows on facades, and natural stream ventilations throughoutthebuildingfunctionsandstructures(Fig.5).

5.1.1. Thehousemechanism

InOldBasra,ahouseisconsideredbeautifulifitiscapaciousandifthesituationisairyandexposedonallsidestothe wind,especiallytothenorthernbreeze.Ahealthyhousehasitscourtyards,basinsofwater,andwoodenpiecesonthe frontofthefac¸ade‘‘Shanashil.’’Ahandsomehouseisseenwithoutterraces,with‘‘Shanashil’’onwhichthefamilymay sleepduringthenight(Fathy,1986).MostoftheoldBasradistincthabitatsaredecorated,usuallytoshowinvisiblespirits anddemonsandtosatisfylocaltraditions.Buildingmaterialshavetobestrictlyrespected(seeFig.10).Thehabitatareais dividedintotwofunctionalzones:asocialareathatincludesthelivingroom,kitchen,storageroom,andbathroomanda privateareathatincludesbedrooms.Communication betweenalloperationalareasoccursthroughoutthecourtyard (Table2).

5.1.2. Technicalhousedescription

Thehabitatareaofthisedificeisca.125m2:thesocialareais30%,theprivateareais45%,andthecourtyardis25%.The

buildingmaterialsusedinthecreationofthehouseareasfollows:

Theroofismadeof10cmofclayandstraw,whichimprovestheroof’sresistancestowaterproofingandhightemperature; 3cmofpressedstraw;10cmofreeds;5cmofpressedstrawand10cmofwoodasastructuralelement.

Thefloorismadeofa40cmlayerofclayandeventuallysandasahealthyground,anda12cmlayerofbrick. Theexteriorwalliscombinedwithaninnerwallwith24cmofbrick.

Theupperfac¸adeismadeofwoodenelements(Shanashilunit),withathermalroll. Theinteriorwallismadeof12cmofbrick.

Theestimatedlifecycleis100years.

Fig.5.TraditionalhousefromzoneI(OldBasraHabitat).

Table2

Differentmaterialusesincreatingandthepercentageofmaterialinlayers. Externalwalls (46%)of totalareas Glasspanels (1%)oftotal areas Roof(10%) oftotalarea Groundslab (15%)oftotal areas Innerwalls (13%)oftotal areas llevelslabs (9%)oftotal areas Foundation (6%)oftotal areas Materials Areas Mat. A Mat. A Mat. A Mat. A Mat. A Mat. A Brick 69% Wood 15% Clayandstraw 28% Clay 100% Brick 100% Brick 100% Brick 100% Wood 31% Glass 85% Pressedreeds 6%

Reeds 39% Pressedreeds 6% Wood 21%

(9)

5.1.3. Houseenvironmentalimpacts

This is a category of heavy construction. Brickis the main material usedin this construction. Theimpact on the environmentbyacclimatisationorbuildingmaterialsislimited.Thehousesarelocatedinrowbuildingsinfrontofanarrow street,placeddirectlybytheoldcityriver.Thehouseswerebuiltinthebeginningofthelastcentury.

TheresultsshowthatthereleaseofCO2isrelativelow;however,itishigherthanothercategoriesofhouses.Fig.6shows

theinfluenceofthegreenhouseeffectdistributedonhabitatdevelopmentandtheenvironmentalprofilefor1m2.

Theenvironmentalimpactofthematerialsisarepresentationoftheresultsshownintheenvironmentalprofileofthe samehouse’smaterials.

5.2. ‘‘MarshesHouse,Unit’’fromzoneII

Ahighhumidity‘‘H’’,duetomarshwater,isamajorriskfactorthataffectshousingconfigurationsandcompositionsfrom thiszone.Arecommendationistocreateahabitatunitwithabuildingmaterialresistanttowaterandhumidity. 5.2.1. Thehousemechanism

Thelocationisahistoricsite,fromtheSumeriantime.Thehousingconfigurationwasfoundedforthepreliminarytimein the‘‘Ur’’city,wheretheinitialsettlementwasfounded(IlayandBarry,1998).UNESCOrecognisesthelacustrineregioninthe northofBasraasamonumentofnature,representingoneofthelargestsitesofuniqueecosystemtypesintheworld.Thereis alowdensityofpeoplelivinginsymbiosiswithimpressivefloraandfaunafullofrarespecies.InthenorthofBasra,onan ‘‘ArtificialIsland’’,thehousewasbuiltinwaterwithaweakcurrent,andthehabitatunitismadeofreedsandamixedofclay andstraw(Tobiasetal.,2009).Therearetwowaystomaketheislandsuitablefortheconstructionprocess:oneischoosing goodgroundandtheotherismakingitsuitableforaparticularcase.Fig.7showsthedifferentproceduresforbuildingan artificialisland.

5.2.2. Technicalhousedescription Thehabitatunitareais147m2(7

21)m:

Thehabitatentranceisorientedtowardsthenorthwest,wherethedominantwindoriginates.

Fig.7.Differentpositionofartificialislandmadeforhabitatunit(Abbas,2012). Fig.6.Thegreenhouseeffectspreadonhabitatconstructionandenvironmentalprofilefor1m2

(10)

Thefrontalfac¸adesontheaxis(northwest-southeast)areperforatedtoallowforpermanentnaturalcross-ventilation (seeFig.8).

Theminimumdistancetothewatermustbeapproximately10m. Theroofisalwaysmadeofavaultform.

Thenumberofcolumnsonthelongsideisasfollows:sevenpillarswiththelocalnameofShabe,with3mbetween 2pillars.

Thefacadehasfourpillars:theroofpillarsframingtheentranceandtheotherslocatedonthecorners. Theestimatedlifecycleis25years.

Thehabitatsiteiscreatedfrommanypoststhatincludecloselyrelatedstrainsofreedsbetweenthem.Theheightofthe pillar(Shabe)canreach10m.Thediameterofthepillar(Shabe)isapproximately70cmatthebaseand20cmatthetop(Fig.9). 5.2.3. Thehouse’senvironmentalimpacts

Thehouseismadeoflightweightconstructions.Theprincipalbuildingmaterialappliedisreed.Table3showsdifferent materialusedinthecompositionandthepercentageofbuildingmaterialsinlayers.

A demonstrationshows that housesmade of reeds are friendlier environmentally, with a positive impact on the environmentandlessenergyconsumption.Ashortlifecyclematerialpresentsnegativeaspectstoabuildingsystem.Fig.10

showsthegreenhouseeffectforahabitatconstructionandtheenvironmentalprofilefor1m2.

5.3. The‘‘Al-ZubeirHouse,Unit’’fromzoneIII

Thesandywind‘‘W’’,whichisduetotheSaharaDesertenvironmentintheArabianPeninsula,isamajorriskfactorthat affectshouseconfigurationsandcompositionsfromthiszone.Here,ablindwallisrecommended.

5.3.1. Thehousemechanism

Inmanyways,theearthisthemostprominentmaterialusedinnaturalbuildings.Earthcanbefoundeverywhere,and,as aresult,itusedtobesaidthatthemajorityoftheworld’spopulationstilllivedinearthbuildings(Keefe,2005).Ofcourse, concreteandbricksaremadeofmaterialfromtheearth,butwhatwillbediscussedherearestructuresthataremadeofearth initsmostnaturalstate,withaminimumamountoftreatmentorprocessing(Wenzel,1996).Strongprevailingsandywinds provokeabuilder’sresponse,resultinginlower,blindfac¸ades,flatterbuildingsofferinglessresistanceandthuslessproneto buildingdamageandhumandiscomfort.Experiencesfromtheoldbuildingprocessshowthatmalleablebuildingmaterials canbeemployedwhentheclimateishumidandarerigidwhentheclimateisdry.Usuallywetclayisuseddirectly,mixed withStraw,andperhapsgivenmorebodybyaddinggravelorstone.Thisisprominentinareasoftheworldwhereearth

(11)

Fig.9.CompositionsReed’shousesuchprincipalbuildingmaterialsfromnorthernandEasternpartofBasra.

Table3

The‘‘MarshesHouse,Unit’’compositions,areasandpercentage. Externalwalls (58%)oftotalareas Openingorifice (2%)oftotal areas Roof(16%) oftotalareas Groundslab (9%)oftotalareas Innerwalls (12%)oftotal areas Foundation(3%) oftotalareas

Materials Areas Mat. A Mat. A Mat. A Mat. A Mat. A Reeds 90% Reeds 15% Pressedreeds 5% Clayandstraw 80% Reeds 100% Reeds 100% Pressedreeds 10% Orifice 85% Reeds 90% Pressedreeds 20%

Pressedreeds 5%

Fig.10.Thegreenhouseeffectdistributedonhabitatconstruction,andenvironmentalprofilefor1m2

(12)

buildingsmayhavearelativelyshortlifeaspartofanomadicexistence.Whenabandoned,theywillnotleaveanything unpleasantbehind(Wenzel,1996).Theextractionofclay,especiallyonasitewhereahouseisduetobecreated,isa zero-carbonsolutionforconstruction,andclayandstrawwallsandfloorscanbeusedasadirectsubstituteformassconcrete (MarchellandLeary,1974).

The‘‘Al-ZubeirHouse,Unit’’building,initsarchitecturewithoutarchitects,notesthatinexperiencedbuildersfittedtheir worktothelocalenvironmentand topography.Basra’svast varietyofenvironmentsandlocalmicroclimateassures a correspondinglywiderangeofareply.Thebeautyofthe‘‘Al-ZubeirHouseUnits’’designderiveslessfromself-conscious decorativeattemptsthanfromunadulterated,practicaloutlinesproducedbyadaptingregionalmaterialtobeaseconomical aspossible,resistingaggressiveenvironmentalelementsandemployingbeneficialones.HabitatsfromanAl-Zubeirdistrict aretrulyvernacular,utilisingonlyslightlyalteredmaterialfromitsimmediatesurroundings.Rural,desertarchitectureis remarkableforitssculpturalshapesachievedinclay.

5.3.2. Technicalhousedescription

Inthiszone,edificeshavetobeplannedwithgreatattentionandthoughtandwithduerespectforclimate.Shadeand protectionfromduststormsmayhavethehighestpriorityinsomeareas,whereasinotherregions,ventilationandthe trappingofaircurrentsandbreezearetheprimaryconsiderations(Kukreja,1978)(seeFig.11).Thecourtyardspaceisan essentialelementinthehabitatfromzoneIII,whereallhabitatfunctionsareallocatedtogetherandareorientedtowardsthe courtyard.Intimacyisnecessaryinculturallife.Allprimaryfunctionsareorientedtowardsthehousecourtyarddirectly.The unitinvolvesjustonelevel(Fig.12).

Fig.11.AcompositionsclayandstrawaremainbuildingmaterialsfromnorthernandEasternpartofBasra.

Fig.12.Thegreenhouseeffectdistributedonhabitatconstruction,andenvironmentalprofilefor1m2

(13)

Thehabitatareaofthisedificeisofca.450m2,wherethesocialareais10%,theprivateareais35%,andthecourtyardis

55%.Thebuildingmaterialsusedintheconceptionofthehouseareasfollows:

Theroofismadeofthemixtureof10cmofclayandstraw,3cmofpressedstraw,10cmofreeds,5cmofpressedstrawand 10cmofwoodasastructuralelement

Thefloorismadeofa30cmlayerofclayandeventuallysand,asasolidbase,anda10cmlayerofclayandstraw. Theexteriorwalliscombinedwithaninnerfacelayerof3cmspecialclayandstraw,or25cmofclayandstrawandthe

sameinnerfaceof3cmclayandstraw.

Theinteriorwallismadeof15cmclayandstraw. Theestimatedlifecycleis50years.

Habitatshapesvaryfromarectangularplanandextensiontothenorthtoasquareone.Theconglomerationofbuildings createsaprogressionofprivatespace,whichisenclosedbyaclaywall;therefore,acourtyardiscreatedbythisprocess (Jensen,1997).Thesystemwasdevelopedforindividualutility,freeoffixedrules.Eachbuildingisorientedinrelationtoits neighbours.

5.3.3. Houseenvironmentalimpacts

Theprincipalbuildingmaterialappliedisclayandstraw.Table4showsthedifferentmaterialusedinhousecompositions andthepercentageofmaterialsinlayers.

Thehousematerialcomponentsareenvironmentallyfriendlyandbetteremployedinenergy-efficiencyfeatures.

6. Conclusion

Definingthequalitiesofanenvironmentis neithereasy norabsolute.Theyvarywithtimeand changeaspeople’s expectationsandeducationchanges.Moreover,adaptingtoanew-architecturalideawithavernacularconceptionisdifficult formanyarchitectswhohavebeeneducatedinaculturethatdespisestheaestheticsofwhattheyseeas‘twee’vernacular cottages. Incidentally,the aesthetic and functional housing opportunitiesremain innumerable and fun opportunities. Respectisgivenahighpriority.Strategiestoreduceenvironmentalimpactscanandshouldvarydependingonthesite.The selectionofbuildingmaterialsis,overall,crucialbecausethereislittledifferenceinthematerial’senvironmentalimpacts andbecausetheyplay avitalrolebotharchitecturallyandintermsoftheimpactontheexternalenvironmentneara residential use.For instance,the term‘‘environmentallycompatible’’suggeststhat acceptableeffects for humansand ecosystemscanstillbeachievedwithmaximumamountsofemissionsandlimitedcontamination.Thisstudydiscussesthe requirementsofbuildingmaterialssuitableforbio-climaticbuildinginWestAsia,wherethemeaningofthecontemporary buildingcategory isanapplication ofthebio-climaticconcept,which isvery complex.Everywhere,sustainablehome thinkingabouttheenvironmentalimpactsintheoverallprocessesisimplicitinhouses.

Basrahadthreedifferentmicroclimates(amarshlanddistrict,desertregionandregularhotclimateinthecitycentre). ThisstudytriestoinvestigateanexistinghabitatintheIraq–Iranareathathasdifferentmicroclimates.Vernacularbuilding materialssuchasclay,brick,strawandwood,arethemostpopularbuildingmaterialsusedinthisregion.TheEcologyof BuildingMaterialsisachallengeregardingthepossibilitiesforexistingmaterialsandtheevaluation ofnewmaterials. Nevertheless,acompleteecologicalstructuredoesnotexist.However,abuildingcanalwaysbemademoreecologicaland lessenvironmentallyimpactful.Theprincipalconclusionofthestudyshowsthat:

i. Thelocalmicroclimatedirectlyinfluencestheconformationofhabitat.Therefore,thechoiceofbuildingmaterialstakesa highpriorityinthebuildingprocess.Clayandstraw,breeds,andbrickaremostfrequentlyappliedbuildingmaterials. ii.Naturalmaterialswereusedefficientlyinvernacularhouses.Itisclearthatwheninsulatinghabitats;theinterrelated

environmentalimpactoftheselectionofinsulationmaterialsisnotrelevantcomparedtothesavingsinenergy. Table4

The‘‘Al-ZubeirHouse,Unit’’compositions,areasandpercentage. Externalwalls (52%)of totalareas Glasspanels (1%)oftotal areas Roof(14%) oftotalareas Groundslab (16%)oftotalareas Innerwalls (12%)oftotalareas Foundation (5%)oftotal areas Materials Areas Mat. A Mat. A Mat. A Mat. A Mat. A Clayand

straw

100% Wood 15% Clayandstraw 28% Clayandstraw 100% Clayandstraw 100% Brick 100% Glass 85% Pressedreeds 5%

Reeds 39% Pressedreeds 7% Wood 21%

(14)

iii.Acclimatisationhasagreaterimpactontheenvironmentthanbuildingmaterials.

iv.Heavymaterials(Bricks)usedintheexteriororinteriorreduceenergyrequirements.Incontrast,clay-andreed-based materialshavealowermaterial-relatedenvironmentalimpact.

v.Tosupportthemeaningofthebuildingintheresidualvalueoftheprimaryfabric,maintenanceandrepairsmustbe carriedoutonallcomponentscorrespondingtotheirspecificrenewalcycles.

vi.Forfutureresearch,thelifecycleofbuildingmaterialsbyfocusingontheexperiencesofvernacularhousesfromthiszone shouldbeincreasedthecreateacreativeinterventionwhereinnovativematerialcanbeusedinnewbuildingswithan increasinglifecycleofcurrentmaterials.

vii.Brick,clay and woodenconstructionsshouldbe improvedtooccupy amore considerableplace inourresidential buildingsthantheydotoday.

Theobjective ofthestudy is toassistarchitects anddesigners in selecting suitablesolutions in terms ofbuilding materials.Inadditiontostudyingdifferentbuildingmaterialsfromvarioussourcesandtheircharacteristic,itisnecessaryto adapttotraditionalmaterialsinmodern,innovativeapplicationsandcreateagoodsolutionintermsofbuildingmaterialsfor WestAsiaspecifically.

References

AbbasA.Architecturelacustrine..(Ph.D.thesis) IonMincuUniversity;2012:93.

AlmusaedA. Towntexturespecificforthewarmzone,vol.12.Bucharest:A.D.Review;1996.

p.

54–6.

AlmusaedA. Thefunctionalrolesofthepatiointhewarmdryzone(egIraq),vol.2.Bucharest:A.D.Review;1997.

p.

53–5.

AlmusaedA.Intelligentsustainablestrategiesuponpassivebioclimatichouses,aschoolofarchitectureinAarhus,Denmark..(Postdoctoralresearch)2004;168.

AnilA.Mud,mud.London:AnEarthscanPublication,InternationalInstituteforEnvironmentandDevelopment;1981:12.

BarryR.Theconstructionofbuildings.GranadaLtd.;1988:21–2.

BrownLR.Stateoftheworld.Washington:WorldWatchInstitute;1990:56.

DamonA.Mineralstructuralmaterials.AGIDguidetomineralresources.1983;16.

DoranD,CatherB.Constructionmaterialsreferencebook. twoeditionsRoutledge;2013:8.

DinesenJ.Livscyklusbaseretbygningsprojektering:Opgørelseabringer’senergiforbrugonenergirelateredemiljøpa˚virkninger.Hørsholm:SBI-rapport279 Sta-tensByggeforskningsinstitut;1997:7–9.

EastonD.Therammedearthhouse.USA:WhiteRiverJunction;1996:23–9.

EdwardA,JosephI.Fundamentalsofbuildingconstruction:materialsandmethods.WileyPublisher;2011:10.

EliasP.LeBilanenergetiquedequelquesparoisdebatiment.In:CahierduCentreScientifiqueetTechniqueduBatiment.1980;213.

FathyH.Naturalenergyandvernaculararchitecture.Chicago/London,USA/GreatBritain;1986:254.

GillyD.BeschreibungseinervorteilhaftenBartitgetrocknetenLehmziegeln.Berlin;1970:176–80.

GinvoniManB.Climateandarchitecture.London:AppliedSciencePublicationLtd.;1976:371.

HoubenH,GuillaudH.Earthconstructionprimer.Belgium:Brussels;1984:285.

IlayC,BarryD.TraditionalbuildingofIndia.London:ThamesandHudsonLtd.;1998:214.

JanssenJJA.Buildingwithbamboo.Basicguidelinesforbuildingwithbamboo.London,England:IntermediateTechnologyPublications;1988:69.

JensenA.Lifecycleassessment.Aguidetoapproaches,experiencesandinformationsources.1997;13.

JesterTC.Twentieth-centurybuildingmaterials:historyandconservation.McGraw-HillPublisher;1995:117.

KeefeL.Earthbuilding:methodsandmaterials,repairandconservation.London,GreatBritain;2005:243.

KorydonS.Introducingarchitecturaltheory,debatingadiscipline.Routledge,Taylor&Francis;2012:13.

KukrejaCP.Tropicalarchitecture.TataMcGraw-HillPublishingCompanyLimited;1978:5.

LaurenF.GreenbuildingmaterialsCityofSantaMonico.2000;34.

ManandharR.Mudbrickdomeandvaultconstruction.In:Proceedingsofthefirstinternationalearthshelteredbuildingsconference.August1–6,Sydney; 1983;367–70.

ManfredH,VolkerA-S,MatthiasF,ThorstenR.Constructionmaterialsmanual.Munich:InstituteforInternationalArchitecture;2006.

MarchellHG,LearyJ.integratedenvironmentinbuildingdesign.AppliedSciencePublishersLtd.;1974:250.

MarshR.ArkitekturogMiljø,fromConstructionMaterials–ogmiljøpa˚virkning,arkitektskolensforlag.2000;15.

NamdinE.Africanarchitectureevolutionandtransformation.McGraw-Hill;1996:14.

NielsenS.BjergVindIuderum,Klimalaboratoriet.Aarhus:Indvendigtanvendelse;2010:21. Solarhandbook.Luxembourg:Communities;1986:20.

StulzR.Appropriatebuildingmaterials.London,England:IntermediateTechnologyPublications;1981:23.

TobiasW,WalterP,ThomasZ,KarlT,HildegundM,BarbaraB.Passivhaus-Bauteilkatalog.NewYork:SpringerWien;2009:273.

WenzelH.Miljøvurderingaproduct.UMIPUdviklingamiljøvenligeindustriprodukter.København:Miljø-ogEnergiministeriet;1996:18.

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Uppgifter för detta centrum bör vara att (i) sprida kunskap om hur utvinning av metaller och mineral påverkar hållbarhetsmål, (ii) att engagera sig i internationella initiativ som

This project focuses on the possible impact of (collaborative and non-collaborative) R&D grants on technological and industrial diversification in regions, while controlling

Analysen visar också att FoU-bidrag med krav på samverkan i högre grad än när det inte är ett krav, ökar regioners benägenhet att diversifiera till nya branscher och

These models were defined to represent typical single family houses, multi-family houses and office buildings, and used to derive average heating and cooling energy consumption

- High saving level: for a non insulated building; when the existing furnace has low energy efficiency; when the regulation is not adapted to the regulation. Fan coil unit

The EU exports of waste abroad have negative environmental and public health consequences in the countries of destination, while resources for the circular economy.. domestically

In Stockholm case, triple glass window is the only scenario able to reduce the emission of carbon dioxide, because the carbon dioxide intensity of electricity is too low, and