• No results found

Effects of surfactant adjuvants on plant leaf cuticle barrier properties

N/A
N/A
Protected

Academic year: 2021

Share "Effects of surfactant adjuvants on plant leaf cuticle barrier properties"

Copied!
87
0
0

Loading.... (view fulltext now)

Full text

(1)

MALMÖ UNIVERSIT Y HEAL TH AND SOCIET Y DISSERT A TION 20 1 4:3 ANT ON F A GERS TR ÖM MALMÖ UNIVERSIT Y 20 1 4 MALMÖ HÖGSKOLA 205 06 MALMÖ, SWEDEN WWW.MAH.SE isbn 978-91-7104-576-8 (print) isbn 978-91-7104-575-1 (pdf) issn 1653-5383 EFFECT S OF SURF A CT ANT ADJUV ANT S ON PL ANT LEAF CUTICLE B ARRIER PR OPERTIES

ANTON FAGERSTRÖM

EFFECTS OF SURFACTANT

ADJUVANTS ON PLANT LEAF

CUTICLE BARRIER PROPERTIES

(2)
(3)
(4)

Malmö University

Health and Society, Doctoral Dissertation 2014:3

© Copyright Anton Fagerström 2014

Front illustration: Mattias Olsson, Clivia leaf and index finger against a Brazilian cornfield backdrop.

ISBN 978-91-7104-576-8 (print) ISBN 978-91-7104-575-1 (pdf) ISSN 1653-5383

(5)

ANTON FAGERSTRÖM

EFFECTS OF SURFACTANT

ADJUVANTS ON PLANT LEAF

CUTICLE BARRIER PROPERTIES

Malmö University, 2014

Faculty of Health and Society

Department of Biomedical Sciences

(6)
(7)
(8)
(9)

7

CONTENTS

ABSTRACT ... 9

POPULÄRVETENSKAPLIG SAMMANFATTNING ... 11

LIST OF PUBLICATIONS ... 13

ABBREVIATIONS AND SYMBOLS ... 15

INTRODUCTION ... 17

Background ... 17

The plant leaf cuticle ... 18

Cuticle wax ... 19

Role of surfactants in agricultural applications ... 19

Diffusion in the cuticle ... 20

Softening/Structural effects ... 20

The scientific questions in this thesis and their relevance ... 20

EXPERIMENTAL TECHNIQUES AND CONSIDERATIONS ... 23

Diffusion cells ... 23

Quartz Crystal Microbalance with Dissipation ... 27

Small and Wide Angle X-ray Diffraction ... 29

Differential Scanning Calorimetry (DSC) ... 31

Isothermal Sorption Calorimetry ... 32

Polarized light optical microscopy (PLOM) ... 32

Scanning Electron Microscopy (SEM) ... 33

High Performance Liquid chromatography (HPLC-UV) ... 33

Gas chromatography with Mass spectrometry (GC-MS) ... 33

RESULTS AND DISCUSSION ... 35

Cuticle characterization ... 35

Stomata and cuticle thickness ... 35

Cuticle thermotropic phase behaviour ... 36

Surfactant structural effects on isolated cuticle ... 38

(10)

8

Model wax composition ... 40

C22H45OH/C32H66 ... 42

Model wax - water phase behaviour ... 44

C22H45OH/H2O ... 45

C32H66/H2O... 47

C22H45OH/C32H66/H20 ... 47

Model wax validation ... 49

Surfactant solutions ... 50

Surfactant water sorption ... 50

Surfactant solutions ... 52

Formulations design and dynamics ... 53

Effects of surfactants on the cuticle ... 56

Surfactant structural effects on isolated cuticle ... 56

Surfactant induced changes in cuticle model wax I: Phase behaviour ... 57

Thermotropic phase transitions ... 57

Surfactant induced changes in cuticle model wax II: Fluidity ... 59

Continuous QCM-D experiments ... 59

Pulsed QCM-D experiments ... 60

Wax film rheology ... 63

Diffusion in the cuticle ... 66

Cuticle membrane ... 66

Membrane partition ... 66

Membrane permeability ... 67

Solute distribution and diffusion ... 67

CONCLUDING REMARKS AND FUTURE OUTLOOK ... 73

ACKNOWLEDGEMENTS ... 76

REFERENCES ... 77

(11)

9

(12)

10

(13)

11

(14)

12

(15)

13

LIST OF PUBLICATIONS

This thesis is based on the following papers, which are cited in the text by their Roman numerals. The papers are appended in the end of the thesis.

I. Fagerström A, Runnsjö A, Kocherbitov V, Engblom J.

Plant leaf

cuticle structure – effects of temperature, relative humidity, and

surfactant absorption.

Manuscript.

II. Fagerström A, Kocherbitov V, Westbye P, Bergström K,

Mamon-tova V, Engblom J.

Characterization of a plant leaf cuticle model

wax, phase behaviour of model wax - water systems.

Thermochim. Acta, 571 (2013) 42– 52.

III. Fagerström A, Kocherbitov V, Westbye P, Bergström K, Arnebrant

T, Engblom J.

Surfactant softening of plant leaf cuticle model wax

– a Differential Scanning Calorimetry (DSC) and Quartz Crystal

Microbalance with Dissipation (QCM-D) study.

J. Colloid Interface Sci., 426 (2014) 22-30.

IV. A. Fagerström A, Kocherbitov V, Ruzgas T, Westbye P, Bergström

K, Engblom J.

Effects of surfactants and thermodynamic activity

of model active ingredient on transport over plant leaf cuticle.

(16)

14

(17)

15 μ

(18)

16 Δ η Δ Δ ρ ω δ λ θ  16

(19)

17

(20)

18

(21)

19

(22)

20

(23)

21

(24)

22

(25)

23

(26)

24

Δ

Δ Δ

μ

(27)

25

(28)

26

26

(29)

27

Δ Δ

(30)

28

η

(

(

)

)

(

(

)

)

28

(31)

29 Δ Δ ρ ρ ω ω π η μ η δ

λ θ 29

(32)

30

(33)

31

Δ

(34)

32 μ

μ 32

(35)

33

(36)

34

(37)

35

μ

(38)

36

μ

(39)

37 °     37

(40)

38

  

(41)

39

(42)

40

(43)

41 Δ Δ Δ          41

(44)

42

   42

(45)

43

(

)

(46)

44 ° °    ° °   °  °   44

(47)

45  ° ° ° ° ° 45 45  ° ° ° ° ° 45

(48)

46

°

(49)

47

(50)

48

(51)

49     49

(52)

50

 

(53)

51

(54)

52

(55)

53

(56)

54

(57)

55

(58)

56

(59)

57

≤ ≤

(60)

58

(61)

59

(62)

60

(63)

61

(64)

62

(65)

63 μ

(66)

64

Δ Δ

(67)

65

(68)

66

(69)

67

(70)

68

(71)

69

 

69

(72)

70

(

)

Δ 70

(73)

71

(

)

(

)

(

)

Δ Δ

71

(74)

72

μ

(75)

73

(76)

74

(77)

75

(78)

76

(79)

77

(80)

78

(81)

79

(82)

80

μ

(83)

81

(84)

82

(85)

83

(86)

84

(87)

MALMÖ UNIVERSIT Y HEAL TH AND SOCIET Y DISSERT A TION 20 1 4:3 ANT ON F A GERS TR ÖM MALMÖ UNIVERSIT Y 20 1 4 MALMÖ HÖGSKOLA 205 06 MALMÖ, SWEDEN WWW.MAH.SE isbn 978-91-7104-576-8 (print) isbn 978-91-7104-575-1 (pdf) issn 1653-5383 EFFECT S OF SURF A CT ANT ADJUV ANT S ON PL ANT LEAF CUTICLE B ARRIER PR OPERTIES

ANTON FAGERSTRÖM

EFFECTS OF SURFACTANT

ADJUVANTS ON PLANT LEAF

CUTICLE BARRIER PROPERTIES

References

Related documents

Avhandling för filosofie doktorsexamen i Medicinsk vetenskap med inriktning mot hälso- och vårdvetenskap,. som enligt beslut av rektor kommer att försvaras offentligt Onsdagen den

Dissipation data as a function of water activity for (a) spin- and (b) drop-coated lysozyme films. The vertical dashed lines mark the water activities where changes related to the

The corresponding frequency time graphs are shown in Figure 4.2.6 where (a) is the frequency derived in the absence of BSA and (b) is the frequency in the presence of BSA.

Comparing the maximum frequency shift obtained for the two polymer layers (Figure 57), it seems clear that the value 1 µg/mL is the optimal concentration of fibronectin to

As a benchmark reference, we were using the production levels of the well studied plant- AQP SoPIP2;1, knowing that the yield of functional protein has proven adequate for

Also, the use of N-hydroxysulfo-succinimide (sulfo-NHS) instead of NHS as an intermediate on the surface was investigated. As seen in Figure 2.1B sulfo-NHS has a negative charge

Self Assembled Monolayers for Quartz Crystal Microbalance based Biosensing. Linköping Studies in Science and Technology Licentiate

k qualia femper producere pofle: Hinc reßiffime Cae- falpinuslib. u dicitnaturam alio modo metalla parare, quam imitari in orynibus ars nequic, Itemj ars, inquit, feparat