• No results found

Myxine insulin: amino-acid sequence, three dimensional structure, biosynthesis, release, physiological role, receptor binding affinity, and biological activity

N/A
N/A
Protected

Academic year: 2022

Share "Myxine insulin: amino-acid sequence, three dimensional structure, biosynthesis, release, physiological role, receptor binding affinity, and biological activity"

Copied!
34
0
0

Loading.... (view fulltext now)

Full text

(1)

Amino-Acid Sequence, Three Dimensional S t r u c t u r e , Bi o s y n t h e s i s , Rel ease, Physi ologi cal Role,

Receptor Binding A f f i n i t y , and Bi o l o g i ­ cal A c t i v i t y

A K A D E M I S K A V H A N D L I N G

som med v e d e r b ö r l i g t t i l l s t å n d av r ekt or s ä mbe t e t vid Umeå u n i v e r s i t e t f ö r avläggande av medicine doktorsexamen

kommer a t t o f f e n t l i g e n f ö r s v a r a s i Farmakologiska i n s t i t u t i o n e n s f ö r e l ä s n i n g s s a l , onsdagen den 27 maj 1981, kl . 9. 00.

av

S T E F A N 0. E MD I N l eg l äk

Umeå 1981

(2)

The A t l a n t i c h a gf i s h, Myxlne. g lu tin o s a , i s t he most p r i mi t i v e v e r t e b r a t e e x t a n t , and i t di ver ged from t he main v e r t e b r a t e e v o l u t i o n a r y chain some 500 mi 11 ion year s ago.

The primary sequence of hagfi sh i n s u l i n shows t h a t i t cont ai ns t he r e s i d u e s implemented f o r e xpr es s i on of a c t i v i t y and t he r e s i d u e s s t a b i ­ l i z i n g t he i n s u l i n monomer and dimer, but not t he hexamer. The primary sequence of hagfi sh p r e p r o i n s u l i n , deduced from the mRNA-cDNA sequence shows l i t t l e homology in sequence of the p r e c u r s o r p a r t s of t he molecule.

However, the sequence cont ai ns t he s t r u c t u r a l requi rements f o r t he t e n t a ­ t i v e f u n c t i o n s , jL .z. v e c t o r i a l di s char ge of the prohormone and a minimum o v e r - a l l s i z e of the p r e c u r s o r . The p r o i n s u l i n convert i ng enzyme(s) seems t o have a s p e c i f i c i t y s i m i l a r t o t h a t of a l l ot he r v e r t e b r a t e s s t u d i e d . The t e r t i a r y s t r u c t u r e of hagf i sh i n s u l i n in t he c r y s t a l i s almost s u p e r ­ imposable on pig i n s u l i n ' s s t r u c t u r e .

The b i o l o g i c a l a c t i v i t y of hagf i sh i n s u l i n is 5% of t h a t of pig i n s u l i n and i t s r e c e p t o r binding a f f i n i t y i s 23% in i s o l a t e d r a t f a t c e l l s . Hagfish i n s u l i n was t he f i r s t p a r t i a l i n s u l i n a n t a g o n i s t on the r a t f a t c e l l i n s u l i n r e c e p t o r . The change(s) in s t r u c t u r e r e s p o n s i b l e f o r the r e duc t i on of a c t i ­ v i t y and binding are not known.

Bi osynt hesi s of hagfi sh i n s u l i n , I n vXJyto, fol lows the p a t t e r n observed in hi gher v e r t e b r a t e s , although a t a much slower r a t e . Unlike the s i t u a t i o n in mammals, hagfi sh i n s u l i n b i o s y n t h e s i s i s not s t i mu l a t e d by gl ucose.

A radioimmunoassay f o r hagf i sh i n s u l i n was developed and the ant i serum c r o s s - r e a c t e d with bovine i n s u l i n t o only 0.01%. The assay was used t o study i n s u l i n r e l e a s e I n vÂJyio. Glucose s t i m u l a t e s i n s u l i n r e l e a s e b u t , u n l i k e the s i t u a t i o n in hi gher v e r t e b r a t e s , amino aci ds do not.

In v iv o , hagfi sh i n s u l i n s t i mu l a t e d the i n c o r p o r a t i o n of ^ C - g l u c o s e and 14C-leuci ne i n t o hagfi sh s k e l e t a l muscle glycogen and p r o t e i n .

The observed s i m i l a r i t i e s , be t we e n hagf i sh and hi gher v e r t e b r a t e s , w i t h regar ds t o i n s u l i n ' s s t r u c t u r e , b i o s y n t h e s i s , r e l e a s e , r e c e p t o r bi ndi ng, and b i o l o g i c a l a c t i v i t y suppor t the concl usi on t h a t , i n s u l i n and i t s proces si ng and e f f e c t o r machi neri es were s t r u c t u r a l l y and b i o l o g i c a l l y well defi ned some 500 mi l l i o n year s ago.

(3)

N ew Series N o 66 — ISSN 0346-6612 From the Department of Pathology, University o f Umeå;

the Department of Pathology, University of Lund, Malmö General Hospital, Sweden

Myxine Insulin

Amino-Acid Sequence, Three Dimensional Structure, Biosynthesis, Release, Physiological Role,

Receptor Binding Affinity, and Biological Activity

By

STEFAN O. EMDIN

Umeå 1981

(4)
(5)

TABLE OF CONTENTS

LIST OF REPORTS, CONSTITUTING THE THESIS 4

INTRODUCTION 5

TAXONOMY 5

EVOLUTION OF THE ENDOCRINE PANCREAS AND INSULIN 6

AIMS OF THE INVESTIGATION 11

MATERIALS AND METHODS

Animals 12

I s o l a t i o n of hagf i sh i n s u l i n 12

Amino-acid sequence a n a l y s i s 12

mRNA i s o l a t i o n and cDNA sequencing 12

C r y s t a l l i z a t i o n and X-ray c r y s t a l l o g r a p h y 13

Pr e pa r a t i on of 125I - i n s u l i n 13

Pr e pa r a t i on of hagf i sh i n s u l i n analogues 13

Bi os ynt he t i c experi ment s 13

S u b c e l l u l a r f r a c t i o n a t i o n 14

Morphology 14

Hagfish i n s u l i n radioimmunoassay 14

I n s u l i n r e l e a s e i n vi&io 14

14 14

Metabolism of C-glucose and C- l euci ne I n vivo 14

RESULTS AND DISCUSSION

I s o l a t i o n o f hagf i sh i n s u l i n 15

Primary s t r u c t u r e of hagf i sh i n s u l i n 15

S t r u c t u r e of p r e p r o i n s u l i n (mRNA) 15

Three-dimensional s t r u c t u r e of hagf i sh i n s u l i n 17

Molecular e v o l u t i o n o f i n s u l i n 17

Degradati on, r e c e p t o r binding a f f i n i t y , and potency of hagf i sh i n s u l i n

in i s o l a t e d r a t f a t c e l l s 19

S t r u c t u r e uc/lòoó a c t i v i t y ; a problem 21

I n s u l i n b i o s y n t h e s i s 22

Conversion and s t o r a g e 23

Radioimmunoassay of hagf i sh i n s u l i n 24

Hagfish i n s u l i n r e l e a s e i n v itn o 24

Ef f e c t s of s t a r v a t i o n 25

Ef f e c t s of hagf i sh i n s u l i n on t he metabolism o f 14C-glucose and

14C- l euci ne in the hagf i sh 25

ACKNOWLEDGEMENTS 26

ABSTRACT 27

REFERENCES 28

(6)

REPORTS, CONSTITUTING THE THESIS

This t h e s i s i s based on the fol lowing r e p o r t s , which wi l l be r e f e r r e d t o in t he t e x t by t h e i r Roman numerals:

I. Pe t e r s on, J . D . , S t e i n e r , D. F. , Emdin, S.O. & Falkmer, S.:

The amino acid sequence of the i n s u l i n from a p r i mi t i v e v e r t e b ­ r a t e , the A t l a n t i c hagf i sh (lAyxlnz g lu tin o s a ) . J . Bi ol .Chem.

250:5183-5191, 1975.

I I . Chan, S . J . , Emdin, S. O. , Kwok, S.C.M., Kramer, d.M., Falkmer, S.

& S t e i n e r , D.F . : Messenger RNA sequence and primary s t r u c t u r e of p r e p r o i n s u l i n in a p r i mi t i v e v e r t e b r a t e , t he A t l a n t i c ha gf i s h.

J. Bi ol . Chem. ( i n press ), 1981.

I I I . C u t f i e l d , J . F . , C u t f i e l d , S . M., Dodson, E . J . , Dodson, G.G., ^ ---

Emdin, S.O. y& Reynolds, C.D.: S t r u c t u r e and bi o l o g i c a l a c t i v i t y of hagf i s h i n s u l i n . J . M o l . B i o l . 732:85-100, 1979.

IV. Emdin, S.O., Gammel t o f t , S. & Gliemann, J . : Degradat i on, r e c e p t o r bi ndi ng a f f i n i t y , and potency of i n s u l i n from the A t l a n t i c hag­

f i s h (My x lm g lu tin o s a ) , determined in i s o l a t e d r a t f a t c e l l s . J . Biol . Chem. 252:602-608, 1977.

V. Emdin, S.O. & Falkmer, S . : Phylogeny of i n s u l i n . Some e v o l u t i o n a ­ ry a s p e c t s of i n s u l i n pr oduct ion with p a r t i c u l a r regard t o t he b i o s y n t h e s i s of i n s u l i n in Myxlne. g lu tin o s a . Acta P a e d i a t r . Scand. , Suppl. 270:15-23, 1977.

VI. Emdin, S.O. & S t e i n e r , D.F. : A s p e c i f i c anti serum a g a i n s t i n s u l i n from t he A t l a n t i c hagf i sh Mi/xxne g lu tin o s a : C h a r a c t e r i z a t i o n of t he ant i ser um, i t s use in a homologous radioimmunoassay, and immunofluorescent microscopy. Gen.Comp.Endocr. 42:251-258, 1980.

VII. Emdin, S.O.: I n s u l i n r e l e a s e in t he A t l a n t i c h a g f i s h , M yxlm g lu tin o s a , I n vXXtio. Gen.Comp.Endocr. ( s u b mi t t e d ) , 1981

VII I . Emdin, S.O.: E f f e c t s of hagf i sh i n s u l i n in t he A t l a n t i c h a g f i s h , My x l m g lu tin o s a . In vivo metabolism of ^ C - g l u c o s e and ^ C - l e u - c i n e , and s t u d i e s on s t a r v a t i o n and glucose loadi ng. Gen.Comp.

Endocr. ( s u b mi t t e d ) , 1981.

x) Due t o a mi s p r i n t in the publi shed v e r s i on, t he middle i n i t i a l has become an "F" i n s t e a d of an "0".

(7)

INTRODUCTION

As des cr i bed in d e t a i l in two t hes es ( 1, 2) and a review (3) about 5 ye a r s ago, the i s l e t organ of the A t l a n t i c h a g f i s h , MyxT m glutTnoóa, has a t t r a c ­ ted i n t e r e s t from comparative anat omis ts ever s i n c e the 19th cent ur y. This i n t e r e s t i ncr eas ed when t he hagf i sh p a n c r e a t i c i s l e t c e l l s were analyzed with immunohistochemical and u l t r a s t r u c t u r a l t echni ques and when the obs e r ­ vat i ons made were eval ua t ed a g a i n s t t he background of the evol u t i o n of the g a s t r o - e n t e r o - p a n c r e a t i c endocri ne system ( 1 - 6 ) . The hagf i sh i s l e t organ was found t o occupy a key p o s i t i o n in the phylogeny of the endocri ne pa nc r e ­ as s i nce i t was t he f i r s t s e p a r a t e i s l e t parenchyma in e v o l u t i o n , budding out from t he b i l e duct mucosa and appearing befor e the development of any compact exocri ne pancreas (1- 6) .

When t h i s st udy was i n i t i a t e d , i t was soon r e a l i z e d t h a t al s o the i n s u l i n produced by the hagf i sh i s l e t parenchyma di s pl ayed sever al unusual f e a t u r e s (7). Today, Myxine i n s u l i n i s one of the b e s t known i n s u l i n s , with regard t o t he combined dat a a v a i l a b l e on i t s amino-acid sequence and thr ee- di men­

si onal s t r u c t u r e , i t s b i o s y n t h e s i s , r e l eas e, r e c e p t o r bi ndi ng a f f i n i t y , bi o l o g i c a l a c t i v i t y , and phys i ol ogi cal r ol e (8) . An account of

the above p r o p e r t i e s of Myxine i n s u l i n i s the main purpose of t h i s t h e s i s . St udies on speci es v a r i a n t and chemi call y modified i n s u l i n s c o n s t i t u t e the basi s f o r the s t r u c t u r e - f u n c t i o n ' r e l a t i o n s h i p s t h a t seem t o- be import ant

f o r at t empt s to e l u c i d a t e t he hormone's a b i l i t y t o express a c t i v i t y ( 9 , 1 0 ) .

TAXONOMY

The Lat i n name of t he A t l a n t i c hagf i sh was given in 1758 by Carl von Linné ( 1) . MyxTno. g lu tin o ó a belongs t o the phylum CHORDATA, t he subphylum VERTEBRATA9 the c l a s s CVCL0ST0M (or AGMATHA) ( j a w- l e s s f i s h ) , and the order MVXJNOJVEA ( h a g f i s h e s ) (11). As p r e vi ous l y d es cr i bed in d e t a i l ( 1 ) , t he hagf i sh may be c l os e t o a h ypot het i cal common Cambrian or Precambrian a n c e s t o r of a l l v e r t e b r a t e s , t h e r e a f t e r forming an e v ol ut i on l i n e , s e p a r a t e not only from a l l t he ot her more r e c e n t gnasthostomian v e r t e b r a t e s but a l s o from t he second e x t a n t order of t he cyclost omes, v i z . t he Petromyzontia ( t he lampreys). Foss i l remnants i n d i c a t e t h a t t he e v o l u t i o n a r y o r i g i n of t he e x t a n t lampreys i s among the l a t e Ordivi ci an C2.phalaApTd0m0h.phLy l i v i n g

(8)

about 500 mi l l i o n y ear s ago, whereas t h a t of t he r e c e n t hagf i s hes - t he PtQAaApidomo/Lpki - l i e s even f u r t h e r back (12). Although i t i s s t i l l a ma t t e r of cont r over s y whether or not t h e cyclostomes r e p r e s e n t r eal ances­

t o r s t o the s u p e r c l a s s of gnathostomian v e r t e b r a t e s ( 1 , 1 2 ) , MyxÀne. g lu tin o s a i s , " i n f a c t , one of t he few s ur v i v i n g r e p r e s e n t a t i ves of t h a t v e r t e b r a t e group which f i r s t appears in t he geologi cal d e pos i t s " (12) , and thus o f co n s i d e r a b l e phyl ogenet ic and e v o l u t i o n a r y i n t e r e s t ( 1 - 6 ) . I t

should be poi nt ed o ut , a l r eady a t t h i s j u n c t u r e , t h a t s t r u c t u r a l and func­

t i o n a l f e a t u r e s found in t he hagf i s h cannot à p r i o r i be assumed t o r e p r e s e n t c o ndi t i ons once p r e s e n t in the ostracoderms and even e a r l i e r in e v o l u t i o n , si n c e e x t a n t Myxinoids have had as much time t o evolve and adapt as the e n t i r e group of Gnathostomes has taken f o r i t s p h y l e t i c d i f f e r e n t i a t i o n (13) .

EVOLUTION OF THE ENDOCRINE PANCREAS AND INSULIN

Despit e t he f a c t t h a t t he . i s l e t organ (endocr i ne pancreas) did not appear in e v o l u t i o n u n t i l t he v e r t e b r a t e s evolved, t h e r e i s growing e vi de n­

ce t h a t i n s u l i n could have been p r e s e n t long befor e ( 8 , 1 4 ) . The evidence i s l a r g e l y based on radioimmunoassays and immunocytochemistry, using ant i ser a

a g a i n s t mammalian i n s u l i n s (14). There a r e no publ i shed dat a on t he chemical s t r u c t u r e of t he presumed p r e v e r t e b r a t e i n s u l i n s , and the s t r u c t u r e of such i n s u l i n s may, indeed, be highly d i f f e r e n t from v e r t e b r a t e i n s u l i n s , e s p e c i a l l y s i n c e c e r t a i n growth f a c t o r s l i k e IGF I and II ( i n s u l i n l i k e growth f a c t o r ) , r e l a x i n and p o s s i b l y NGF (nerve growth f a c t o r ) and MSA (multi pi i e at i ng s t i m u l a t i n g a c t i v i t y ) (15,16) show c o n s i d e r a b l e s t r u c t u r a l s i m i l a r i t i e s wi t h i n s u l i n . I t has been suggested t h a t the members of t h i s i n s u l i n family ar e uni t ed by a common a n c e s t o r (17). In a d d i t i o n , t h e r e i s evidence of an e v o l u t i o n a r y r e l a t i o n s h i p between i n s u l i n and t he s e r i n e pr ot e a s e s (18).

S t e i ne r (19) has s pe c ul a t e d t h a t l i mi t e d enzymatic d i g e s t i o n of t he c e l l s u r f a c e s could have been the most p r i mi t i ve c e l l - c e l l communication. Such ..

a system, o p e r a t i n g through a process analogous t o down- r egul at i on, could have become a dj us t e d t o u t i l i z i n g p r o t e o l y t i c f r agment (s) t h a t i n t e r a c t e d f avour ably with r e g u l a t o r y c e l l s u r f a c e p r o t e i n . Hence, a b as i c r e p e r t o i r e of p r o t e i n s t h a t had communicative a b i l i t i e s could have been generat ed and f u r t h e r d i v e r s i f i e d through gene d u p l i c a t i o n . I f s o , t h e the dual occurrence of many g a s t r o - e n t e r o - p a n c r e a t i c hormones in the gut and the nervous system i s perhaps not so s u r p r i s i n g (19) .

(9)

With t he aid of radioimmunoassay, i t has r e c e n t l y been claimed t h a t

" i n s u l i n " i s p r e s e n t a l r eady in u n i c e l l u l a r eukaryot es and p r o k a r y o t e s , alt hough in exceedi ngly low c o n c e n t r a t i o n s (about one molecule per organism or even l e s s in the case of E. c o l i ) ( 20, 21, 22) .

In protostomi an i n v e r t e b r a t e s , i n s u l i n i mmunoreacti vit y has been found in the nervous system of the tobacco hookworm Manduca A cxta ( 23) , and l a t e r i n s u l i n producing c e l l s were de t e c t e d in the nervous system of the blow­

f l y , CaLLcpkofia vom ttotiia (24) . The immunoreactive substance was f u r t h e r e x t r a c t e d and p a r t i a l l y p u r i f i e d , and i t was found t o d i s p l a c e ^ ^ I - i n s u l i n from l i v e r plasma membrane r e c e p t o r s and t o have i n s u l i n - l i k e b i o l o g i c a l a c t i v i t y on i s o l a t e d r a t f a t - c e l l s (25) . Recent l y, i n s u l i n producing c e l l s have been found al s o in t he h o v e r f l y , EtuL&taJLu a m z iu (14) . The precence of pept i de hormones p a r t i c u l a r i t y in t he c e n t r a l nervous system c o r r e l a t e s well with the sugges ti on t h a t al i ment ar y t r a c t pol ypept i de hormones have o r i g i n a t e d from the neural ectoderm as t r a n s m i t t e r s or modul ators and t h a t they l a t e r have accept ed a new hormonal r o l e as the g a s t r o - i n t e s t i n a l t r a c t developed ( 5, 2 6 ) . Havrankova a t a t . (27) r e por t e d an enrichment of i n s u l i n in the r a t b r a i n , and i t was suggested t h a t i n s u l i n might be s ynt hes i zed i n s i d e t he nervous system. La t e r , Eng and Yalow (28) f a i l e d t o confirm t h i s o bs er vat i on and i t remains an open que s t i on i f , in higher v e r t e b r a t e s , t h e r e ar e hi gher c o n c e n t r a t i o n s of i n s u l i n in t he br ai n than can be expect ed when c o r r e c t i o n has been made f o r i n t r a - v a s c u l a r and r e c e p t o r bound i n s u l i n . There i s no fi rm morphological suppor t f o r i n s u l i n c e l l s in the nervous system of mammals.

In c e r t a i n a d u l t protostomi an and deut er ost omi an i n v e r t e b r a t e s , i n s u l i n c e l l s have been found as di s semi nat ed c e l l s of open type in t he mucosa of t he al i ment ar y t r a c t (Fi g. 1) ( 5) . The o t h e r i s l e t hormones appear t o be p r e s e n t in the gut as well (ctf. 14). The gut i n s u l i n c e l l s in a mollusc responded t o glucose loadi ng by d e g r a n u l a t i o n , and i n s u l i n i mmunor eacti vit y was es t i mat ed in t he hemolympn. Moreover, t he t i s s u e glycogen l evel was suggested t o be under i n s u l i n c ont r ol (29). The i s o l a t i o n and p u r i f i c a t i o n of i n v e r t e b r a t e i n s u l i n has been hampered by t he low amount of i n s u l i n p r e s e n t in heterogenous t i s s u e s . , I t i s p o s s i b l e t h a t complementary nucleo­

t i d e probes from c e r t a i n sequences of i n s u l i n mRNA could help in i d e n t i ­ fyi ng i n s u l i n - l i k e cDNA sequences ( I I ) .

In v e r t e b r a t e s i t has been observed t h a t t he ev o l u t i o n of t he endocri ne

(10)

GUT LUM EN

iiili::; G L U C A G O N / i INSULIN CELL G A S T R IN CELL

! P P -C E L L

I

SO M A TO STA TIN CELL

FIG. 1. P r e - p a n c r e a t i c gut (Amphioxus and ot h e r deut er ost omi an i n v e r t e ­ b r a t e s ) . There i s no i s l e t organ. Zymogen and hormone c e l l s are found in t he mucosa.

B ILE D U C T

B U T LUMEIM

y n m i S ï ï i T H i i i i i H i a n i n i

FIG. 2. The g a s t r o - e n t e r o - p a n c r e a t i c endocri ne system of t he hagfish*

MyxÀne. g lu tin o s a . The i s l e t organ has no exocri ne parenchyma and con­

t a i n s mostly i n s u l i n c e l l s and few s oma t os t a t i n c e l l s . There a r e no i n s u l i n c e l l s in t he gut mucosa but a few s omat os t at i n c e l l s as well as glucagon and PP c e l l s of open type.

IN S U L IN C EL L

S O M A T O S T A T IN C E L L ( O P E N )

S O M A T O S T A T IN C E L L ( C L O S E D )

^ P P - C E L L

G L U C A G O N / G A S T R IN C E L L ( O P E N )

(11)

FIG. 3. Composite p i c t u r e of t he i s l e t organ in the A t l a n t i c ha gf i s h, MljxIykl g l u u t i n o A a , showing i t s main gr os s , l i g h t mi croscopi c, and u l t r a - s t r u c t u r a l f e a t u r e s .

a) The i s l e t organ (arrows) appears t o the naked eye as a whi t i s h swel l ing around t he s h o r t common b i l e duct (BD) a t i t s j u n c t i o n with t he gut. G=gut.

GB=gall bl adder .

b) Transver se s e c t i o n of the common b i l e duct (BD) with i t s surrounding s o l i d ne s t s of i s l e t parenchymal c e l l s , obviously budding out from the b i l e duct mucosa. There i s no exocri ne a c i n a r p a n c r e a t i c parenchyma, whatsoever.

This i s l e t organ i s from a small young h a gf i s h; consequentl y ( 2) , i t i s l acki ng those c y s t i c c a v i t i e s t h a t c h a r a c t e r i z e many i s l e t - c e l l lobul es of t he i s l e t organ of the a d u l t hagf i sh (Fi gs. 3c and d ) . x 300 (approx).

c and d) I s l e t l o b u l e s , immunostained by t he PAP ( p e r o x i d a s e - a n t i - p e r o x i ­ dase) procedure (5) t o v i z u a l i z e i n s u l i n (Fig. 3c) and s oma t os t a t i n (Fi g. 3d) producing parenchymal c e l l s , c o n s t i tuf ng about 95 and 5%, r e s p e c t i v e l y (6) . Glucagon and PP c e l l s do not occur in the hagf i sh i s l e t organ (cf_. Fig. 2) . Most of the t a l l columnar c e l l s , surrounding the c y s t i c c a v i t i e s ~ a n d occu- ri ng in the l obul es of the parenchymal c e l l s in the i s l e t organ of a d u l t hagf i sh (1, 2) , are of non-endocrjne t y p e . x 700 (approx),

e and f ) Elect r on micrographs of t he s e c r e t o r y granul es of the i n s u l i n (Fig. 3e) and the s omat os t at i n (Fi g. 3f) c e l l s , r e s p e c t i v e l y . Fig. 3e a l s o gives examples of the s o - c a l l e d c o n n e c t i v e - t i s s u e s e c r e t i o n t h a t has been descr i bed in endocri ne organs of j a w- l e s s f i s h ( c f . 3) , where s e c r e t o r y granul es seem t o fuse with f i b r e s of c o n n e c t i v e - t i s s u e type. The i n s u l i n granul es (Fig. 3e) ar e r a t h e r pleomorphic and e l e c t r o n dense, whereas the s e c r e t o r y granul es of t he somat os t at i n c e l l s (Fi g. 3f) are l e s s e l e c t r o n dense and s p h e r i c a l , e x 23,000 (appr ox. ) f x 9,000 ( appr ox. ) .

(12)

pancreas fol lows a st epwi se p a t t e r n , with regard t o t he occurrence of the four i s l e t hormones (5) . In cyclostomesa compact endocri ne pancreas i s found, e i t h e r around t he b i l e duct ( h a g f i s h e s ) , or in t he submucosa of t he gut

(l ampreys). The endocrine pancreas of cyclostomes cont ai ns agr anul ar c e l l s , i n s u l i n c e l l s , and few (about 1-5%) s o ma t os t a t i n c e l l s (Fi g. 2 and 3). At t h i s st age of e v ol ut i on the c e l l s s t o r i n g t he ot her two i s l e t hormones; PR and glucagon, remain in the gut mucosa as c e l l s of open type. In a d d i t i o n , the gut of the hagfi sh appears t o cont ai n s o ma t o s t a t i n , GIP, gastrin/CCK, and neur ot ensin c e l l s as demonstrated by immunological methods (14).

t u r e of hagf i sh i n s u l i n wi l l be d e a l t with l a t e r on in t he t e x t .

The next s t e p in t he ev o l u t i o n of t he endocri ne pancreas appears t o be a t the l evel of c a r t i l a g i n o u s holocephalan f i s h ( 5) . Only a few e x t a n t s p e c i ­ es e x i s t and they have a compact pancreas with both exo- and endocri ne parenchyma (Fig. 4) . The l a r ge i s l e t s are duct a s s o c i a t e d and cont ai n i n s u ­ l i n , somat os t at i n and glucagon c e l l s . The pancreas i s s i t u a t e d c l os e t o the spl een and i s connected t o the gut with a long duc t . There i s no s t r u c t u r a l inf ormat i on a v a i l a b l e on i n s u l i n from hol ocephalan s p e c i e s .

P A N C R E A T I C

I N S U L IN C E L L Q L U C A Q O N C E L L I S O M A T O S T A T I N

P P C E L L

O U T L U M E N

T n n i i i i n a r m n i m T T T

FIG. 4. The g a s t r o - e n t e r o - p a n c r e a t i c endocrine system of t he holocephalan r a t f i s h , Ckùna&ia monò&ioòa. or tìydAolaguA c o t t i c i . An exocr i ne p a n c r e a t i c gland is p r e s e n t , s i t u a t e d cl os e to t he spl een but widely sepa r a t e d from t he gut. A long s l e nde r duct connects t he gland with t he gut. PP c e l l s are p r e s e n t , but are mainly in the gut mucosa with occasi onal c e l l s in the p a n c r e a t i c duct epi t hel i um. Glucagon c e l l s are p r e s e n t in t he endocri ne pancreas which i s now a t h r e e hormone organ. There are no i n s u l i n c e l l s in t he gut mucosa but t h e r e ar e glucagon and s o ma t os t a t i n c e l l s in a d d i t i o n t o t he PP c e l l s .

(13)

In elasmobranchian c a r t i l a g i n o u s f i s h a d i s t i n c t stomach and duodenum appear f o r t he f i r s t time in v e r t e b r a t e e v o l u t i o n . The compact pancreas i s c l o s e l y apposed t o the duodenum. The i s l e t parenchyma has now become a f o u r - hormone organ and PP c e l l s are p r e s e n t ( 5) (Fig.5). Apart from compositional dat a on i n s u l i n and glucagon from the spiny d o g f i s h , Squaluò a c a n tfv ù u , t h e r e i s no s t r u c t u r a l inf ormat ion on the elasmobranchian i s l e t hormones.

In t he l a r ge group on bony f i s h a four hormone i s l e t i s found, with c h a r a c t e r i s t i c s of t h a t in mammals. The PP c o n t a i ni ng i s l e t s appear t o be l oc a t e d near t he duodenum and seems t o be absent in t he s p l e n i c Brockman body ( 5) . A s i m i l a r topogr aphi c d i s t r i b u t i o n i s found in mammals i ncl udi ng man (30). Above t he l evel of t he bony f i s h ( i . e . amphibians, r e p t i l e s , b i r d s , and mammals) t h e r e i s no gross change of i s l e t o r g a n i s a t i o n of hormo­

nal cont ent s as t he p h y l e t i c d i f f e r e n t i a t i o n proceeds (14). The s t r u c t u r e s of sever al f i s h i n s u l i n s , as well as t he s t r u c t u r e s of sever al r e p t i l i a n , a vi a n, and mammalian i n s u l i n s ar e known (17).

PANCREATC

D U C T H I I N S U L I N C E L L

O U T L U M E N

FIG. 5. The g a s t r o - e n t e r o - p a n c r e a t i c endocri ne system in an elasmobranch c a r t i l a g i n o u s f i s h . The pancreas i s c l o s e l y a s s o c i a t e d with t he gut.

Numerous PP c e l l s appear in the endocrine pancr eas , t o g e t h e r with i n s u l i n , glucagon and s o ma t os t a t i n c e l l s . Except f o r i n s u l i n c e l l s , t he i s l e t hormo­

ne c e l l s are a l s o p r e s e n t in t he mucosa of t he i n t e s t i n e .

AIMS OF THE INVESTIGATION

1. To determi ne t he primary and the t e r t i a r y molecular s t r u c t u r e of the i n s u l i n e x t r a c t e d from the i s l e t organ of t he A t l a n t i c h a g f i s h , Myxlne.

gtuùtnoóa.

(14)

2. To give some experi ment al as pect s on the b i o s y n t h e s i s of Myxine i n s u l i n . 3. To st udy t he r e c e p t o r binding a f f i n i t y and b i o l o g i c a l a c t i v i t y of Myxine

i n s u l i n in mammalian t e s t systems and t o c o r r e l a t e the r e s u l t s with the i n s u l i n s t r u c t u r e .

4. To develop a homologous r a d i o-immunoassay f o r Myxine i n s u l i n . 5. To st udy the r e l e a s e of Myxine i n s u l i n â j l v â j ü i o.

6. To t r y to get an idea of the physol ogical r o l e of Myxine i n s u l i n in t he hagfi sh by some experi ment al s t u d i e s .

MATERIALS AND METHODS

Animals

Adult hagf i sh were caught a t the Kr i s t i ne be r g Marine Biology S t a t i o n , f o r sever al year s a t a l l seasons in the Gullmar f i o r d on the Swedish West Coast. A d e t a i l e d account of c a t c hi ng, handli ng and keeping of t he animals has been given by Östberg ( 1 ) , and f u r t h e r d e t a i l s are found in the i n d i v i ­ dual papers ( I , I I , V I I , and VI I I ) .

I s o l a t i o n of hagf i sh i n s u l i n

Hagfish i n s u l i n was e x t r a c t e d with a c i d- et hanol and p u r i f i e d by gel f i l t r a t i o n on Bio-Gel P-30 columns, e l u t e d with 3 M a c e t i c acid ( I ) . Fur t her p u r i f i c a t i o n , when neces s ar y, was accomplished by ion-exchanqe chromatoqraphy on OAE-Sephadex A-25 in 0.05 M NH4 Cl pH 8. 60, in 60% ethanol with a l i n e a r . C l ~ - g r a d i e n t ( I V ).

Amino acid sequence a n a l y s i s

Edman degr adat ion of hagfi sh i n s u l i n and C-pepti de was c a r r i e d out manually using a semi-micro procedure (31 and I ) . Labeled hagfi sh p r e pr oi n- s u l i n was subj e c t e d t o automated Edman degr adat i on in a Beckman 890 C sequencer ( I I ) .

Pr e p r o i n s u l i n mRNA i s o l a t i o n and cDNA sequencing

Hagfish i s l e t RNA was e x t r a c t e d and polyA-enriched mRNA was i s o l a t e d usi ng o l i g o ( d T ) - c e l l u l o s e ( I I ) . DNA sequence a n a l y s i s was performed a c c o r ­ ding t o Maxam and G i l b e r t (32). The methods of c e l l - f r e e t r a n s l a t i o n ,

cloni ng and h y b r i d i z a t i o n are descr ibed in one of t he most r e c e n t r e p o r t s ( I I ) .

(15)

C r y s t a l l i s a t i o n and X-ray crys t al l ogr aphy.

Hagfish i n s u l i n was c r y s t a l l i z e d under z i n c - f r e e condi t i ons in e i t h e r c i t r a t e or a c e t a t e buf f er ed aqeous s o l u t i o n s cont ai ni ng acet one, pH 5. 2- 6. 0 (33 and I I I ) . Heavy atom d e r i v a t i v e s were obt ai ned with l e a d , uranyl and gold cyanide ( I I I ) . The methods of dat a c o l l e c t i o n , phase c a l c u l a t i o n and ref inement are given in one of t he r e p o r t s ( I I I ) .

Pr epar at i on of 125I - i n s u l i n

I n s u l i n was i odi na t e d with 125I (The Radiochemical Cent re, Amersham) using chloramine T ( 3 4 , IV, and VI). The assays f o r i n s u l i n r e c e p t o r bi ndi ng, b i o l o g i c a c t i v i t y and degr adat i on have been descr i bed (IV).

Pr epar at i on of hagf i sh i n s u l i n analogues

Des-B^-j-hagfish i n s u l i n was prepared as des cr i bed (IV). Des B3Q-3 1 hagf i sh i n s u l i n was prepared from 0. 9 mg d e s - B^ - a n a l o g u e by i ncubat i on with 90 yg carboxypept i dase B (Sigma type I, DFP- t r eat ed) i n 0.1 M di met hyl - a l lyl-amine-HCl pH 7.2 f or 45 min a t 25°C. The d i g e s t was a c i d i f i e d and gel f i l t e r e d over a Bio Gel P-30 column (1 x 40 cm). Amino acid a n a l y s i s showed 2.7 ( pr edict ed;3) lysine r e s i due s in des B ^ - i n s u l i n and 1.97 (pr edi ct ed; 2) l y s i n e r e s i d u e s in the gel f i l t e r e d d i g e s t . The b i o l o g i c a l a c t i v i t y and t he r e c e p t o r bi nding (IV) was measured in i s o l a t e d r a t f a t c e l l s . The

a c t i v i t y was 84-9%. (S.D.; n=5) and the binding was 80% (mean of two e x p e r i ­ ments) of t h a t of n a t i v e hagfi sh i n s u l i n .

B i o s ynt he t i c experiments

In the b i o s y n t h e t i c experiments t he i s l e t s were removed and trimmed from adherent t i s s u e (VII) and f i n a l l y cut i n t o 2-4 pi ece s . All the i s l e t pieces f o r each experi ment were pooled and then di vi ded i n t o d i f f e r e n t tubes and i ncubat ed, with occasi onal a g i t a t i o n . The i ncubat i on medium (VII) was desi gned t o correspond t o hagf i sh plasma (35) . I t contai ned (per ml);

p e n i c i l l i n 100 U, fungizone 0.25 yg and st reptomyci n 100 yg. Before use, the medium was s t e r i l i z e d by f i l t r a t i o n . I n i t i a l l y , bi car bonat e (5mM) was used and t he medium was i n t e r m i t t e n t l y gassed with 97% 02/ 3% C02 . La t e r , b i car bonat e was exchanged f o r N- 2- hydr oxyet hyl pi per azi ne- N- 2- s ul f oni c acid (HEPES), wi t hout observing any adverse e f f e c t s . For the i ncubat i ons 0.1 ml medium with 5 yCi L- ( 4 , 5 - H) l euci ne (The Radiochemical Centr e, Amersham) 3 per i s l e t was used. The remaining unl abel ed amino aci ds were added in c o n c e n t r a t i o n s accordi ng t o Eagle (36). I s l e t s were then e x t r a c t e d f o r

(16)

i n s u l i n as descr ibed ( I ) . Bovine i n s u l i n and unlabel ed L- l euc i ne (both 0 . 5 - Img) were i ncl uded in t he e x t r a c t i o n procedure. The i s l e t e x t r a c t s were f r a c t i o n a t e d on 100x1 cm Bio-Gel P 30 columns e l u t e d with 3 M a c e t i c aci d and the r a d i o a c t i v i t y counted. Before gel f i l t r a t i o n some bovine serum albumin and L- l euc ine were added t o t he sample. The p o s i t i o n s of t he void volume and the bovine i n s u l i n peak were determined by readi ng the absorbance a t 276 nm.

S u b c e l l u l a r f r a c t i o n a t i o n

Hagfish i s l e t s were homogenized in a small g l a s s - Te f l o n homogenizer in a bu f f e r con t a i n i n g ; 10 mM KH^PO^S mM NaCl, 1 mM CaCl2 , 0.25 M s uc r os e , 1% (w/v) Fi c o l l , and 0.5% (w/v) bovine serum albumin, pH 6. 0 . The homogenate was c e n t r i f u g e d in a Beckman SW 56 r o t o r as des cr i bed (V), and t he amount of i n s u l i n was es t i mat ed in each f r a c t i o n (VI). The c ont e nt s of the f r a c ­ t i o n s were a l s o judged from e l e c t r o n micrographs. F i n a l l y i s l e t s were puls e- chased with 3H-leucine and processed as above, and t he f r a c t i o n s were then e x t r a c t e d and gel f i l t e r e d ( V ) .

Morphology

Ti ssue f o r t r a ns mi s s i on e l e c t r o n microscopy (V) and immunofluorescence (VI) were processed as d es cr i bed (1 and V).

Hagfish i n s u l i n radioimmunoassay

The development of t he radioimmunoassay and t he r e l a t e d methods ar e d es cr i bed s e p a r a t e l y (VI).

I n s u l i n r e l e a s e I n v W io

Hagfish i s l e t organs were i ncubated e i t h e r s t a t i c a l l y or in a p e r i - f us i on system (VII). Insulir> r e l e a s e was measured with t he i n s u l i n r a d i o ­ immunoassay (VI).

Metabolism o f 14C-glucose and 14C- l euci ne I n vivo

The met abol i c f a t e s of t he two i s ot ope s in the presence of i n s u l i n was st u d i e d In vivo as s p e c i f i c a c t i v i t i e s of l i v e r and s k e l e t a l muscle p r o t e i n or glycogen. The assays of t h e s e along with the assays of t r i g l y c e r i d e s , f r e e f a t t y a c i d s , gl ucos e, and a-ami no- ni tr ogen were made by conventi onal methods and ar e des cr i bed s e p a r a t e l y ( VI I I ) .

(17)

RESULTS AND DISCUSSION I s o l a t i o n of hagf i sh i n s u l i n :

Hagfish i s l e t organs were r i ch in i n s u l i n and a f t e r e x t r a c t i o n and gel f i l t r a t i o n c o n s i s t e n t y i e l d s of 1 mg i n s u l i n per g t i s s u e (wet weight) were obt ai ned. The simple procedure followed ( I ) gave i n s u l i n p r e p a r a t i o n s 80-90%

pure, contaminated with two bands, more a c i d i c than hagf i s h i n s u l i n on p o l y ­ acryl ami de gel e l e c t r o p h o r e s i s (37) a t pH 8. 7. Af t er e l u t i o n from t he gel s they showed i n s u l i n immunoreacti vit y and amino aci d compositions i n ­ d i s t i n g u i s h a b l e from hagfi sh i n s u l i n and t hey were presumed t o r e p r e s e n t i n s u l i n mono- and didesamidoforms. Ion exchange chromatography (IV) gave a pure i n s u l i n , a s judged from gel e l e c t r o p h o r e s i s a t aci d and ba s i c pH. When using endogenously l abel ed H-hagfish i n s u l i n t he recovery o f t he gel f i l t ­3 r a t i o n s t e p was 69.9 - 3.1% (S.D.;n=4) and 88-94% of l abel ed i n s u l i n was recovered in the f i na l p r e c i p i t a t e when c a r r i e d through the e x t r a c t i o n procedure in the presence of un t r e a t e d whole i s l e t s . Attempts t o p u r i f y hagf i sh p r o i n s u l i n were hampered by the low amounts (1-2% of i n s u l i n , as judged by i mmunoreactivit y) p r e s e n t in i s l e t s , and c ons i der abl e l os ses duri ng p u r i f i c a t i o n .

Primary s t r u c t u r e of hagf i sh i n s u l i n

Hagfish i n s u l i n d i f f e r s in 17 out of 51 r e s i d u e s and i s one of the most hi ghl y s u b s i t u t e d n a t u r a l i n s u l i n s (I and I I ) . On t he ot h e r hand, 23 of t he 24 r e s i d u e s known t o be i n v a r i a n t among ot h e r i n s u l i n s are preserved ( I ) . These r e s i due s incl ude t he dimer forming r es i dues ( 38) , t he p u t a t i v e r e c e p t o r s i t e (9) and the regi on suggested r e s p o n s i b l e f or negat i ve co­

op e r a t i v i t y (39). Among t he r es i dues r e s p o n s i b l e f o r Zn- i ns ul i n hexamer formati on a number of s u b s t i t u t i o n s have occurred in hagf i sh i n s u l i n , i n ­ cl udi ng the z i n c - c o o r d i n a t i n g B-jq h i s t i d i n e r e s i d u e . Hagfish i n s u l i n shows f e a t u r e s common t o both mammalian and f i s h i n s u l i n s but does not seem t o be s p e c i f i c a l l y r e l a t e d t o e i t h e r of the groups ( I ) . This i s c o n s i s t e n t with t he cyclostomes di ver ging from the gnathostomes befor e the d i v e r s i on of mammals and f i s h . By using t he c a l c u l a t e d r a t e of evol ut i on f o r i n s u l i n (40) i t i s p o s s i b l e to c a l c u l a t e (50) t h a t the cyclostomes and the gnatho­

stomes (50) s e pa r a t e d some 540 mi l l i o n y ear s ago.

S t r u c t u r e of preproinsulin(mRNA)

The mRNA of hagf i sh p r e p r o i n s u l i n i s over 900 n u c l e o t i d e s long, due t o

(18)

t he presence of a l ar ge (500 n u c l e o t i d e s ) 3#n o n - t r a n s l a t e d regi on. The nu c l e o t i d e sequence homology, in comparison with human, r a t I and I I , c h i c ­ ken and a n g l e r f i s h p r e p r o i n s u l i n mRNAs, ar e r e s p e c t i v e l y ; pr epept i de 25%, B-chain 48%, C-peptide 19%, and A-chain 57% ( I I ) . This c l e a r l y confirms t h a t t he r a t e s of evol ut i on can d i f f e r markedly between regi ons with d i f f e r e n t f unc t i ons in a s i n g l e p r o t e i n . The N-terminal pr epept i de e x h i b i t s f e a t u r e s t h a t have been consi dered import ant f o r v e c t o r i a l di s char ge through the rough endoplasmic ret i cul um (41). The p r epept i de cont ai ns a hydrophobic c e n t e r , and a t ur n near the B-chain N-terminus can be p r e d i c t e d (42). The C-pepti de i s s i m i l a r in lengt h and general composition, and seems t o r e t a i n many of the non- pol ar r e s i d u e s in the N-terminal h a l f of t he molecule, but has no s i g n i f i c a n t homology with t he C- pepti de of hi gher v e r t e b r a t e s . I t i s p o s s i b l e t h a t the C-pepti de, in a d d i t i on t o i t s f unct i on in providing c o r r e c t o r i e n t a t i o n f or s u l fhydryl o x i d a t i o n , a l s o ser ves as a spacer in keeping a minimum over al l lengt h of t he p r o i n s u l i n mol ecule. The double b a s i c r e s i due s l i nki ng t he C-pepti de with t he A and B-chains in the pro­

i n s u l i n moiety e x i s t e d al r e a d y in h a g f i s h . Hence, t he s p e c i f i c i t y of t he converting enzyme system has remained un a l t e r e d t hr oughout v e r t e b r a t e e v o l ut i on.

Fig. 6. Hagfish i n s u l i n c r y s t a l s ( s l i g h t l y l e s s than 1 mm), grown in a cet o- n e - c i t r ä t e bu f f e r a t pH 6. 0 in t he absence of zi nc.

(19)

Three-dimensional s t r u c t u r e of hagf i sh i n s u l i n

Hagfish i n s u l i n forms t e t r a g o n a l c r y s t a l s (Fi g. 6) with one molecule per asymmetric u n i t and i s organi zed as a p e r f e c t l y symmetrical dimer (i n c o n t r a s t t o 2Zn and 4Zn pig i n s u l i n s ) , l yi ng on a t w o - f o l d - c r y s t a l l o - gr aphic axi s (33, 43). As could be p r e d i c t e d from t he primary sequence, t h e r e i s no i n d i c a t i o n of hi gher or der s t r u c t u r e s . The r e s o l u t i o n of t he dat a r e por t e d here i s 3.1 Â ( I I I ) , but i s being extended t o 1.9 Â spacing (44). Despit e t he d i f f e r e n c e s in sequence and a g g r e g a t i o n , pig and hagf i sh i n s u l i n have c l o s e l y s i m i l a r s t r u c t u r e s ( I I I ) . The s i m i l a r i t i e s extend beyond t he general f o l d i n g of the back-bone, and many of the s i de chains are in the same p o s i t i o n s . The only c ons i de r a bl e d i f f e r e n c e s in s t r u c t u r e were found a t t he two ends of the B-chain, where t he r e s i d u e s in pig i n s u l i n are involved in hexamer for mat i on. Thei r s t r u c t u r a l a l t e r a t i o n in t he hag­

f i s h i n s u l i n molecule i s t h e r e f o r e under s t andabl e. At the o t h e r end of t he B-chain r e s i due s B28-31 ™ hagf i sh ta k e s a d i f f e r e n t path in t he c r y s ­ t a l s t r u c t u r e which probably r e f l e c t s the change in s t r u c t u r e in t h i s regi on.

In 2Zn pig i n s u l i n t he two molecules in t he dimer e x h i b i t d i f f e r e n c e s in conformation (38), and even more so in 4Zn i n s u l i n (44). The s t r u c t u r e of hagfi sh i n s u l i n i s c l o s e l y r e l a t e d t o pig i n s u l i n molecule 2 ( I I I ) . In f a c t , t he t e r t i a r y s t r u c t u r e of hagfi sh i n s u l i n was more s i m i l a r t o pig i n s u l i n molecule 2 than were pig i n s u l i n molecules 1 and 2. There a r e no publi shed data on hagf i sh i n s u l i n ' s behaviour in s o l u t i o n but the s t r i c t c ons er vat i on of the s t r u c t u r e of the dimer-forming r e s i due s in hagf i sh and pig 2Zn and 4Zn i n s u l i n s along with the obs er vat i on t h a t the d i m e n a t i on c ons t a nt of hagfi sh and pig i n s u l i n s are i n d i s t u i n g i s h a b l e wi t hi n one order of magnitude (B. Frank, unpublished), imply t h a t t h i s s t a b l e r egi on of the dimer i s p r e ­

served in s o l u t i o n , perhaps a l s o in the f r e e monomer (44).

Molecular e v o l ut i on of i n s u l i n

Since any b i o l o g i c a l funct i on i s a t l e a s t bi mol ecul ar i t follows t h a t i t s ev o l u t i o n i s a t l e a s t dual . I d e a l l y , t h e ev o l u t i o n of a hormone should i ncl ude a l s o t he e v o l ut i on of i t s e f f e c t o r ( s ) I n s u l i n r e c e p t o r s are consi dered t o have remained f u n c t i o n a l l y un a l t e r e d duri ng e v o l u t i o n , s i nce i n s u l i n s bind t o s pe c i e s d i f f e r e n t r e c e p t o r s in a way which r e f l e c t the o r i g i n of t he hormone r a t h e r than the r e c e p t o r ( 45) , with t he p o s s i b l e except i on of some i n s u l i n r e c e p t o r s from Hystricomorph r odent s (46). The cons er vat i on of t he behaviour of i n s u l i n r e c e p t o r s a ppl i e s t o i n s u l i n r e c e p t o r s from t he A t l a n t i c hagf i sh as well (47). Thus, hagf i s h e r y t h r o c y t e

(20)

i n s u l i n r e c e p t o r s show t i me - , t e mp e r a t u r e - , and pH dependence of i n s u l i n bindi ng t h a t ar e c h a r a c t e r i s t i c of ot he r i n s u l i n r e c e p t o r s . Moreover, t he h agf i s h e r y t h r o c y t e r e c e p t o r s (of unknown p hys i ol ogi cal s i g n i f i c a n c e ) have t he same a b s o l u t e a f f i n i t y and rank order of pr ef er ence f o r i n s u l i n s and i n s u l i n anal ogues, and the bindi ng a f f i n i t y of hagfi sh i n s u l i n was around 25%

(Fi g. 7, reproduced from ( 47) ) .

C h i c k e n In su lin P o r k In s u lin H a g f is h In s u lin

P o r k P r o in s u l in G u in e a P ig I n s u lin

O O P In s u lin

FIGURE 7 Binding of insulin and insulin a n a lo g s to hagfish erythrocytes. 12sl-pork insulin w a s incubated with hagfish erythrocytes in the a b s e n c e and p rese n c e of u nlabeled horm ones for 3 h at 15°C. In this experim ent, the maximum sp ecific binding (in the a b s e n c e of unlabeled hormone) w a s 2.6% of the total radioactivity. The amount of radioactivity specifically bound to the receptor in the p rese n c e of ea c h of the polypeptide horm ones w a s ex p re ssed a s a percent of maximum sp ecific binding. In Table 1, the results of this experim ent are com pared with five similar stu dies.

INSULIN CONCENTRATION (ng/ml)

Evolution, in t he Darwinian view, i s des cr i bed as p o s i t i v e nat ur al s e l e c t i o n . At t he mol ecul ar l e v e l , evo l u t i o n a r y change r e s u l t s from the spr eadi ng of accept ed f avour abl e mut ati ons in a populat ion (ctf. 48).

The f a c t t h a t , in a given famil y of p r o t e i n s t he number of s u b s t i t u t i o n s between two s pe c i e s i s a f unct i on of the known time of di ver gence, and i s independent of t he s peci es chosen suggest t h a t sequence changes are mostly n e u t r a l and f u n c t i o n a l l y i n s i g n i f i c a n t from t he s t a n d p o i n t of nat ur al s e l e c ­ t i o n (49). This ne ut r a l mut ati on theor y impl i es t h a t molecules evolve i n ­ d i v i d u a l l y a t a r a t e dependent on the f unc t i ona l co n s t r a i n t s of t he mol ecule, and once t he s t r u c t u r e and f unc t i on of a molecule are determined, e v ol ut i on a c t s mainly t o mai nt ai n them. Ohta (48) has suggested t h a t mol ecular e vol u­

t i o n appears t o be a continuum where, a t one end, a r e l a t i v e l y l a r g e number of ne ut r a l mut ati ons occur wi t hout phenotypi c consequence. At t he o t h e r end, r e l a t i v e l y few mut ati ons a f f e c t i n g secondary and t e r t i a r y s t r u c t u r e s are found, on which Darwinian s e l e c t i v e pr e s s ur e s can a c t . The r a t e of i n s u l i n ev o l u t i o n is slow and uniform, except f o r t h a t of t he Hystricomorphs (38) and t h i s uniform r a t e of ev o l u t i o n has been taken as evidence in f avour of

(21)

ne u t r a l mut ati ons ( 40, 50) . The slow r a t e of i n s u l i n e v ol ut i on (about one t ent h of t h a t of t he C-pept ide) i n d i c a t e s t h a t the i n s u l i n molecule i s under heavy s t r u c t u r a l and f u n c t i o n a l c o n s t r a i n t s . On the ot he r hand Blundell and Wood have d es cr i bed i n s u l i n evol u t i o n as a Darwinian adapt i ve pr oces s , s uppor ti ng t h e i r ideas l a r g e l y on data from the Hystricomorph i n s u l i n s (10).

The s t r i c t p r e s e r v a t i o n of the t h r e e dimensional s t r u c t u r e of i n s u l i n in t he h a g f i s h , d e s p i t e changes in s t r u c t u r e and aggr egat ion (I and I I ) , favours t he idea t h a t e v o l ut i on has proceeded along a ne ut r a l p a t h, al though s u b t l e adapt i ve pr oces ses cannot be r ul e d out . In a d d i t i o n , the conser vat i on of r e c e p t o r bi ndi ng a f f i n i t y and b i o l o g i c a l a c t i v i t i e s (IV and VIII) s t r o n g ­ ly s ugges t t h a t i n s u l i n and i t s pr e c ur s or s were s t r u c t u r a l l y and b i o l o g i c a l ­ ly we l l - d e f i n e d a l r e a dy some 500 mi l l i o n year s ago. This al s o makes i t r eas onabl e t o assume t h a t the e n t i r e i n s u l i n pr oces si ng machinery ant edat ed t he appearance of t he v e r t e b r a t e s .

Degradation, r e c e p t o r bi ndi ng a f f i n i t y and potency of hagf i sh i n s u l i n in i s o l a t e d r a t f a t c e l l s

The degr adat i on of hagfi sh i n s u l i n , by a membrane a s s o c i a t e d f a t c e l l p r ot e a s e was s t udi e d in a c oncent r at ed f a t c e l l suspension (IV). The r e s u l t s i n d i c a t e t h a t both V a max and K of hagf i sh i n s u l i n degradat i on ar e about 10 m t imes lower than the corr espondi ng values f o r pig i n s u l i n . In d i l u t e f a t c e l l sus pensions , t he r e c e p t o r bindi ng a f f i n i t y of hagfi sh i n s u l i n i s 23%

of t h a t of pig i n s u l i n . The potency of hagfi sh i n s u l i n , with r e s p e c t to a c t i v a t i o n of 1 i p o ge ne s i s i s only about 5%. Hagfish i n s u l i n was t h e r e f o r e t he f i r s t p a r t i a l a n t a g o n i s t on the r e c e p t o r . On the whole c e l l i t e l i c i t s a f u l l response due t o the precence of spar e r e c e p t o r s (IV). The p a r t i a l antagonism demonstrates a d i s s o c i a t i o n between i n s u l i n bindi ng and e x p r e s s i ­ on of b i o l o g i c a l a c t i v i t y , and a l s o t h a t the hagf i sh i n s u l i n - r e c e p t o r complex, a c t i v a t e s fewer glucose c a r r i e r s than t he pig i n s u l i n - r e c e p t o r complex.

However, Muggeo eX a t . could not reproduce t he observed dis cr epancy when t e s t i n g hagfi sh i n s u l i n (47). This prompted a r e - i n v e s t i g a t i o n using a

125 125

somewhat d i f f e r e n t approach (51). By using I - h a g f i s h and I - p i g i n ­ s u l i n s i odi na t e d in p a r a l l e l , t h e i r binding in t r a c e equimolar concen­

t r a t i o n (80 pM) to r a t f a t c e l l s was s t u d i e d . Of the added pig t r a c e r , 1,72%

was bound t o t he c e l l s and the corr esponding value f o r the hagf i sh i n s u l i n t r a c e r was 0.44%. The f r a c t i o n 0. 44/ 1. 72 (25.6%) is a d i r e c t measure of hag­

f i s h i n s u l i n ' s r e l a t i v e r e c e p t o r a f f i n i t y . Despit e hagf i sh i n s u l i n ' s lower a f f i n i t y i t was e s t a b l i s h e d t h a t the d i s s o c i a t i o n r a t e co n s t a n t of hagfi sh i n s u l i n was about h a l f of t h a t of pig i n s u l i n ( Fi g. 8 reproduced from ( 5 1 ) ) . Hence, the a s s o c i a t i o n co n s t a n t can be c a l c u l a t e d t o be about 12% of t h a t

(22)

of pig i n s u l i n . I t was concluded t h a t Muggeo z t a t , (47) did not measure t he bi nding of hagf i sh i n s u l i n under s t eady s t a t e c o n d i t i o n s . Hagfish i n s u ­ l i n ' s behavi our in s ever al t e s t systems i s shown in Table 1.

TABLE 1

Hagfish i n s u l i n : summary of b i o l o g i c a l behaviour r e l a t i v e to pig i n s u l i n

Rat f a t - c e l l s : References

Bi ol ogical a c t i v i t y 4-7% IV, 47

Receptor binding as:

I n h i b i t i o n of 125I - p i g i n s u l i n bi nding

125I - h a g f i s h i n s u l i n binding

Degradation as:

I n h i b i t i o n of 125I - pi g i n s u l i n degra d a t i o n by the membrane a s s o c i a t e d pr ot e a s e

Receptor mediated degr adat i on Rat 1i v e r cel Is :

Receptor bindi ng as:

I n h i b i t i o n of 125I - p i g i n s u l i n binding 3-7% 60, 61 Degradation as:

I n h i b i t i o n of 125I - p i g i n s u l i n degr a­

dat i o n by the membrane a s s o c i a t e d 15nM(hagfish) 61

pr o t e a s e 120nM(pig)

Degradation v e l o c i t y 4% 60

Hagfish e r y t h r o c y t e s :

I n h i b i t i o n of 125I - p i g i n s u l i n bindi ng 25% 47 Human IM 9 lymphocytes:

I n h i b i t i o n of 125I - p i g i n s u l i n bindi ng 5-10% 47

125i - hagfis h i n s u l i n bindi ng 23% 51

A b i l i t y to induce negati ve c o - o p e r a t i v i t y 5% 39, 47

Other a nt a g o n i s t s have l a t e r been i d e n t i f i e d . Hence, porcupine i n s u l i n has been shown t o have a bindi ng a f f i n i t y and b i o l o g i c a l a c t i v i t y almost i d e n t i c a l t o hagf i sh i n s u l i n (52). S i mi l a r di s c r e p a n c i e s have been demon­

s t r a t e d with a s y n t h e t i c A^-j - asparagi nami de-insul i n, which had 60% bindi ng a f f i n i t y and about 12% b i o l o g i c a l a c t i v i t y (53). Covalent l y l i nked i n s u l i n

- 12nM( hagfi s h ) IV 130nM(pig)

80-100% 51

23% IV

5-10% 47

25% 51

References

Related documents

3.4 Phage selections toward higher affinity for the C5a receptor In the phage selection the library with all the different variants of the CHIPS was first screened for binders to

The central hypothesis was that mammalian target of rapamycin (mTOR) signaling regulates placental amino acid transporters in the human placenta in response to nutrient

Keywords: amino acids, fetal growth restriction, human, mammalian target of rapamycin, membrane transporters, metabolism, placenta, pregnancy, system A, system L, taurine

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton & al. -Species synonymy- Schwarz & al. scotica while

Aims: (1) To analyse clinicopathological characteristics, treatment and outcome of liposarcoma, and to determine whether, and how, the Scandinavian Sarcoma Group

The presence of (1,3;1,4)-β- D -glucan in the cell walls of Equisetum arvense, Phaeo- phyceae (brown algae) in phylum of Stramenopiles that is not closely related to any land plants

[r]

We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen