• No results found

Modeling of HVDC IGBT in Pspice

N/A
N/A
Protected

Academic year: 2021

Share "Modeling of HVDC IGBT in Pspice"

Copied!
81
0
0

Loading.... (view fulltext now)

Full text

(1)

Modeling of HVDC IGBT in Pspice

Serving an ultimate goal for converter station EMC studies

JIN YANG

(2)

 

   

 

Modeling of HVDC IGBT in Pspice

Serving an ultimate goal for converter station EMC studies

   

Jin Yang

               

School of Electrical Engineering Royal Institute of Technology

Supervisor:  Daniel  Månsson   Examiner:  Martin  Norgren  

Commissioned by ABB AB Power Systems in Ludvika HVDC Supervisor:  Jing  Ni,  Sanchit  Singh  

(3)

Abstract

An IGBT/diode model with more accurate characteristics than simple switch is required to serve for EMC issues from converter valve. The purpose of this master thesis is to develop an IGBT and diode model to achieve both accu-rate transient behavior and fast simulation time during single pulse switching test circuit for the 4.5 kV and 2.0 kA StakPakTM IGBT module. A gate unit which resembles the ABB gate unit is implemented to obtain a good agreement between simulation and measurement. For demonstration and verification, the IGBT/diode model is applied in a simplified arm simulation of full scale ABB Generation 4 HVDC-VSC converter station and capable of a half cell consisting of 8 series-connected IGBTs and their anti-paralleled diodes. The arm simula-tion results are analyzed further for converter stasimula-tion EMC studies.

Convergence issue is the most important problem in the whole process of model implementation and application. To guarantee the convergence in simulation some characteristics such as the tail voltage at the end of turn-off is disregarded. But overall, the model is validated and adopted successfully.

Sammanfattning

En IGBT-/diodmodell med mer exakta egenskaper ¨an en enkel switch kr¨avs f¨or att hantera EMC-problem fr˚an omvandlarventilen. Syftet med denna magis-teruppsats ¨ar att utveckla en IGBT- och diodmodell f¨or att uppn˚a b˚ade nog-grant ¨overg˚aende beteende och snabb simuleringstid under enkelpulsomkop-plingstestkrets f¨or 4,5 kV och 2,0 kA-StakPak IGBT-modulen. En grindenhet som liknar ABB-grindenheten implementeras f¨or att f˚a god ¨overensst¨ammelse mellan simulering och m¨atning. F¨or demonstration och verifiering, till¨ampas IGBT-/diodmodellen i en f¨orenklad armsimulering av en fullskalig ABB Genera-tion 4 HVDC-VSC-omvandlarstaGenera-tion och med kapacitet f¨or en halvcell best˚aende av 8 seriekopplade IGBT och deras anti-parallellkopplade dioder. Resultaten fr˚an armsimuleringen analyseras vidare f¨or EMC-studier av omvandlarstatio-nen.

Konvergensfr˚agan ¨ar det viktigaste problemet i hela processen f¨or modellimple-mentering och -till¨ampning. F¨or att garantera konvergensen i simulering ignor-eras vissa egenskaper s˚asom svanssp¨anningen vid slutet av avst¨angning. Men totalt sett, valideras och antas modellen framg˚angsrikt.

Keywords

StakPakTM IGBT module, IGBT behavioral model, Single pulse test circuit,

(4)

Acknowledgment

(5)

List of Figures

2.1 A hierarchical structure of StakPak IGBT module. . . 4

2.2 The single pulse test circuit in Pspice. . . 5

3.1 The diode reverse recovery current during turn-off switching. . . 8

4.1 Darlington circuit of IGBT. . . 10

4.2 The structure of Hammerstein-like IGBT model. . . 11

4.3 The typical output characteristics of an IGBT. . . 12

4.4 The capacitance extraction of IGBT model. . . 14

4.5 The structure of alternative Hammerstein-like IGBT model. . . . 16

4.6 ABM block to implement the turn-off time delay. . . 17

5.1 The Pspice schematic of static characteristics circuit. . . 18

5.2 Static characteristic of collector current versus gate-emitter volt-age at constant collector-emitter voltvolt-age of 15 V. . . 19

5.3 Static characteristic of collector current versus collector-emitter voltage for a series of constant gate-emitter voltage at 9 V, 11 V, 13 V and 15 V. . . 20

5.4 The Pspice schematic of single pulse test circuit with rectangular voltage source. . . 21

5.5 Simulation results under standard operation mode with voltage source driving. . . 22

5.6 The Pspice schematic of single pulse test circuit with constant current source. . . 24

5.7 Simulation results under standard operation mode with current source driving. . . 25

5.8 The Pspice schematic of single pulse test circuit with ABB gate unit model. . . 26

5.9 Turn-on simulation results under standard operation mode with ABB gate unit model: collector-emitter voltage and collector cur-rent. . . 28

5.10 Turn-off simulation results under standard operation mode with ABB gate unit model: collector-emitter voltage and collector cur-rent. . . 28

5.11 Simulation results of diode reverse recovery under standard op-eration mode with ABB gate unit model. . . 29

(6)

5.13 Turn-off comparison under standard operation mode with ABB gate unit model in frequency domain. . . 32 6.1 Turn-on simulation results under 3.6 kV and 1.2 kA mode with

ABB gate unit model: collector-emitter voltage and collector cur-rent. . . 34 6.2 Turn-off simulation results under 3.6 kV and 1.2 kA mode with

ABB gate unit model: collector-emitter voltage and collector cur-rent. . . 34 6.3 Simulation results of diode reverse recovery under 3.6 kV and

1.2 kA mode with ABB gate unit model. . . 35 6.4 Turn-on comparison under 3.6 kV and 1.2 kA mode with ABB

gate unit model in frequency domain. . . 36 6.5 Turn-off comparison under 3.6 kV and 1.2 kA mode with ABB

gate unit model in frequency domain. . . 37 7.1 The example of STP function in capacitance Ccg. . . 38

8.1 The simplified arm simulation composition of the full scale Light G4 converter. . . 42 8.2 Single pulse test results of collector-emitter voltage and collector

current with voltage source driving under standard operation mode. 43 8.3 Voltage and current Waveforms for IGBT and diode models

com-pared with simple switches and diodes in time domain. . . 44 8.4 Stray current waveforms for IGBT and diode models compared

with simple switches and diodes in time domain. . . 45 8.5 Stray current waveforms for IGBT and diode models compared

with simple switches and diodes in frequency domain. . . 46 8.6 Stray current waveforms including extra damper for IGBT and

diode models compared with simple switches and diodes in fre-quency domain. . . 47 B.1 MOSFET channel threshold voltage (VT H) increases from 6.5 V

to 8 V. . . 58 B.2 Process transconductance parameter (kp) increases from 0.68 S

to 1.2 S. . . 59 B.3 Current gain of BJT transistor (β) increases from 150 to 280. . . 59 B.4 MOSFET channel threshold voltage (VT H) increases from 6.8 V

to 7.3 V. . . 60 B.5 Approximated turn-on voltage of the p + /n− junction (VD)

in-creases from 0.6 V to 0.8 V. . . 60 B.6 Process transconductance parameter (kp) increases from 0.68 S

to 1 S. . . 61 B.7 Current gain of BJT transistor (β) increases from 170 to 250. . . 61 B.8 Gate resistance (Rg) increases from 0.7Ω to 1.2 Ω. . . 62

B.9 Diode diffusion transit time (ttdi) increases from 8 × 10−7s to 2.5 × 10−6s. . . 62 B.10 On-state resistance of h1 block (r1on) increases from 38Ω to 310 Ω. 63

(7)

B.13 Ratio of IC after and before the fast decay at turn-off (α)

in-creases from 0.1 to 0.3. . . 64 B.14 On-state resistance of h1block (R1on) increases from 38Ω to 310 Ω. 65

B.15 Off-state resistance of h1block (r1off) increases from 35Ω to 270 Ω. 65

B.16 Stray inductance (LS) increases from 50 nH to 150 nH. . . 66

B.17 Diode minority carrier lifetime (taud) increases from 0.5µs to 4 µs. 66 B.18 On-state resistance of h1block (R1on) increases from 40Ω to 150 Ω. 67

B.19 Off-state resistance of h1 block (R1of f) increases from 40Ω to

(8)

List of Tables

5.1 Scope of influence of different parameters on the dynamic behavior. 23 5.2 The entire parameter set extracted with the ABB gate unit model. 27 6.1 Parameter variation from table 5-2 for 3.6 kV and 1.2 kA

opera-tion mode. . . 33 9.1 Differences/Similarities between lumped charge model and new

model. . . 49 9.2 Advantages/disadvantages of lumped charge model and new model. 49 9.3 Advantages/disadvantages of all the simulations from previous

(9)

List of Symbols

a0, a1, a2 Polynomial factors for correction functions f1 n.u.

b0, b1, b2 Polynomial factors for correction functions f2 n.u.

C1 Paralleled capacitance of h1 block in IGBT model F

C2 Paralleled capacitance of h2 block in IGBT model F

Cce IGBT collector-emitter capacitance F

Ccg IGBT collector-gate capacitance F

Cge IGBT gate-emitter capacitance F

Cies IGBT input capacitance F

Coes IGBT output capacitance F

Cres IGBT reverse transfer capacitance F

Cj0 Junction capacitance at zero bias in diode model F

f1, f2 correction functions in IGBT model n.u.

fC Point where the capacitance becomes linear (SPICE

capac-itance model parameter) in diode model

n.u.

IC IGBT collector current A

iD Diode instantaneous forward current A

IDC IGBT DC collector current A

Iload Load current in single pulse test circuit A

IS Diode saturation current A

k Process transconductance coefficient in IGBT model S

LS Stray inductance in single pulse test circuit H

LL Load inductance in single pulse test circuit H

mj Junction capacitance grading coefficient in diode model n.u.

n Diode emission coeffcient n.u.

qE, qM, TM Three diode substitution variables n.u.

R1on On-state resistance of h1block in IGBT model Ω

R1of f Off-state resistance of h1 block in IGBT model Ω

R2on On-state resistance of h2block in IGBT model Ω

R2of f Off-state resistance of h2 block in IGBT model Ω

RCE Series resistor between gate and emitter in alternative

IGBT model structure

RG Gate resistance in single pulse test circuit Ω

RL Load resistance in single pulse test circuit Ω

RS Stray resistance in single pulse test circuit Ω

RS Series resistance in diode model Ω

tau Minority carrier lifetime in diode model s

(10)

U1 IGBT voltage variables of instantaneous DC collector

cur-rent IC

A U2 IGBT conduction component of the collector current IC A

U3 IGBT voltage variables of instantaneous dynamic collector

current IC

A U4 IGBT displacement component of the collector current IC A

VCE IGBT collector-emitter voltage V

vD Diode instantaneous forward voltage V

VD IGBT approximated turn-on voltage of the p+/n− junction V

VG Simple voltage source gate unit V

VGE IGBT gate-emitter voltage V

Vj Junction built-in potential in diode model V

VS Voltage supply in single pulse test circuit V

Vth Diode instantaneous threshold voltage V

VT H MOSFET channel threshold voltage V

α IGBT ratio of the collector current after and before the fast decay at turn-off

n.u.

β IGBT current gain of BJT n.u.

τ Diode lifetime s

(11)

List of Abbreviations

ABB Asea Brown Boveri Ltd.

BJT Bipolar Junction Transistor EMC Electromagnetic Compatibility GTO Gate Turn Off (thyristor) HVDC High Voltage Direct Current IGBT Insulated-Gate Bipolar Transistor Light ABB name of HVDC-VSC converter

MATLAB MATrix LABoratory

MOSFET Metal-Oxide Semiconductor Field-Effect Transistor PSCAD Power System Computer Aided Design

Pspice Personal Computer Simulation Program with Integrated Circuit Emphasis

StakPak a family of high power IGBT press-packs and diodes in an advanced modular housing

(12)

Contents

List of Symbols v

List of Abbreviations vii

1 Introduction 1

1.1 Main motivation . . . 1

1.2 Main objective and model review . . . 1

1.3 Structure . . . 3

2 Basis for the project development 4 2.1 StakPak IGBT module . . . 4

2.2 Single pulse test circuit . . . 5

3 Diode model 7 3.1 Model description . . . 7 3.2 Parameter extraction . . . 8 4 IGBT model 10 4.1 General description . . . 10 4.2 DC model . . . 11 4.3 Dynamic model . . . 13 4.3.1 Model of capacitors . . . 13

4.3.2 Model of block h1and block h2 . . . 15

4.3.3 Model of time delay block . . . 16

5 Simulation results 18 5.1 DC characteristics . . . 18 5.1.1 IC versus VGE . . . 19 5.1.2 IC versus VCE . . . 19 5.2 Dynamic characteristics . . . 20 5.2.1 Voltage driving . . . 20 5.2.2 Current driving . . . 24

5.2.3 Complex ABB gate unit model . . . 25

5.2.4 Frequency domain results . . . 30

(13)

8 Application in arm simulation for demonstration 41

9 Discussion 48

10 Conclusion 51

11 Future work 52

Appendix A Pspic schematics 55

A.1 IGBT model . . . 55 A.2 Diode model . . . 57

Appendix B Parametric analysis 58

B.1 Parametric analysis for collector current versus gate-emitter volt-age at constant collector-emitter voltvolt-age of 15 V. . . 58 B.2 Parametric analysis for collector current versus collector-emitter

voltage for a series of constant gate-emitter voltage at 9 V, 11 V, 13 V and 15 V. . . 60 B.3 Parametric analysis for turn-on transient with voltage source

driving. . . 62 B.4 Parametric analysis for turn-off transient with voltage source

driving. . . 64 B.5 Parametric analysis for turn-on and off transient with current

(14)

Chapter 1

Introduction

1.1

Main motivation

Two main aspects are included in EMC requirements: the emission issues, i.e. electromagnetic interference to the environment generated from the device dur-ing normal operation cannot exceed certain limits; the apparatus has a certain degree of immunity (EMI), called electromagnetic sensitivity, to the electromag-netic interference in the environment.

As known, ABB needs to be able to meet all customers’ requirements regarding to high frequency conducted and radiated electromagnetic emissions, and make sure that the equipment we install does not break during the 30 years’ lifetime of the HVDC station under interference. For these reasons we need accurate and validated high frequency simulation models, especially a good IGBT/diode model, for correct switching so as to reflect the electromagnetic exchange be-tween converter station and the interference in the environment.

Before a proper IGBT/diode model was developed, in HVDC simulations for EMC, IGBTs and diodes were represented as simple switches and diodes in Pspice library. These models do not have accurate dynamic behaviors, for ex-ample, reverse recovery and realistic current and voltage derivatives. So sadly they made the EMC results deviate much more than expected and customers complain about it. The background for this thesis is, therefore, directly related to the need to represent the semiconductors more accurately without sacrificing simulation speed and convergence.

1.2

Main objective and model review

The insulated-gate bipolar transistor (IGBT) is a three-terminal power semi-conductor device primarily used as an electronic switch, which has high effi-ciency and fast switching. It combines the simple gate-drive characteristics of MOSFET device with the high-current and low-saturation-voltage capability of bipolar transistors.

(15)

con-nected with complex busbar, capacitor and snubber circuit. Traditionally they are modelled as lumped parameters in circuit simulation softwares such as PSCAD. Now, since more and more issues are related to the coupling or mu-tual effect/high frequency/transient effect, a better or so-called hybrid model is needed. This thesis is looking for an IGBT model for 4.5 kV and 2.0 kA StakPakTMIGBT module that can be used in simulations involving a full scale

converter for EMC System Studies. The model needs to be runnable (fast and stable), and be able to capture the basic behavior of currents and voltages during commutation events in both time and frequency domains. Speed and stability are more important than high accuracy. Thus, several goals need to be achieved: enable series connection, fast simulation time, correct di/dt and dv/dt during switching.

In order to obtain an accurate and realistic IGBT model, literature review is done and many different types of models are investigated. One of the first widely-accepted models, Hefner model [1] [2], is a physics model which has good accuracy and implemented in Saber [3] and Spice environments [4]. Afterwards, Lauritzen introduced a model based on Lumped Charge Approach [5] which has been successfully used for many power device models: diode [6] [7], GTO [8], and IGBT [9]. The main disadvantages of these models are complexity, time-consuming parameter extraction (in order to get an accurate agreement between the datasheet and the model simulation) and long simulation times.

In previous thesis work [10], modeling of IGBT modules with parasitic elements evaluation is done in Pspice based on Lauritzens lumped charge method. This flexible PSpice model is applicable to different IGBT modules with different voltage and current ratings by accordingly adjusting the parameters. With this model, Muhammad Nawaz has developed a platform for 4.5 kV and 2.0 kA StakPakTM IGBT module [11] [12], whose results show a good agreement with

experiment data and good prediction on the switching losses. However, limita-tion was found within this platform which does not allow for series conneclimita-tion as well as simulations involving multiple occurrences of this model.

In this thesis, a behavioral model is developed. This model is more accurate than a simple switch but at the same time it is less complex than the physics-based model. Behavioral models presented in [13] [14] using Hammerstein-like model is what we seek for, consisting of a dc part for the static behavior and a dynamic part for the transient behavior. In the thesis work by Henrik Hollander [15], an adopted model from [13] [14] is implemented in MATLAB with the design of gate unit in simulink. In this thesis, it is improved in Pspice environment and tested in single pulse test circuit simulations to see the dynamic performance. However, here the modeling of gate unit is not our interest, so the test circuit is driven first by a simple voltage source then a simple current source and finally using an ABB gate unit built by Muhammad Nawaz [12]. A method for parameter extraction is outlined by Hsu et al [16]. The behavior of this improved behavioral IGBT model much resembles the data from measurements, even though some drawbacks were clear, such as the lack of time delay at turn-off and sharp voltage drop at the end of turn-on.

(16)

supply voltage and 2.0 kA load current operation points. Later, the parameter set is adapted for other operating modes which are relevant to EMC studies in converter station and give satisfactory performance as well.

1.3

Structure

Chapter 2 describes the StakPakTM IGBT power module as well as composition

(17)

Chapter 2

Basis for the project

development

2.1

StakPak IGBT module

ABB StakPakTM K Series Press-Pack IGBT with voltage rating of 4.5 kV and

current rating of 2.0 kA is what being investigated in this thesis.

Figure 2.1: A hierarchical structure of StakPak IGBT module.

The StakPakTM IGBT module is expensive with complex packaging and made for series connection. ABB is the only supplier as well as customer of it in nowadays power semiconductor market. Each sub-module consists of six IGBTs and six diodes in parallel and the six sub-modules are connected in parallel to constitute the entire IGBT module. Therefore, a total of 36 IGBTs and 36 diodes are embedded in the StakPakTM IGBT module. An advantage is that

(18)

ABB Generation 4 HVDC-VSC Converter (HVDC Light) is a cascaded two-level converter with much lower converter losses than previous generations. It has 6 valve arms in total, one of each containing 36 cells, the interval structure of one cell is illustrated in figure 2.1. Inside each cell there are 16 series-connected IGBT power modules, but for simplicity every power module is represented by only one single IGBT and corresponding diode in the figure.

Similarly, in the full scale converter simulation, constructing a complete model for a whole power module is unnecessary from both simulation time and cost points of view. Therefore, the single pulse test circuit for testing the IGBT model feasibility is only conducted in the IGBT die level, not the sub-module or module level. A pair of paralleled IGBT and its free-wheeling diode replace an entire StakPakTMmodule. The working principle of test circuit is explained

in detail in chapter 2.2.

2.2

Single pulse test circuit

It is common to use the single pulse switching test circuit to observe the be-havior, especially the switching behavior of an IGBT. The circuit consists of a voltage supply VS, a stray resistance RS and inductance LS, a load resistance

RLand inductance LL, one upper and lower paralleled IGBT and diode as well

as their gate units. The upper IGBT and the lower diode are usually disre-garded since they are always in off state and do not have much impact on the simulation results. Therefore, the figure below which shows the structure of the test circuit uses dashed line to represent their inexistence, only the upper free-wheeling diode and the lower IGBT remained. The simplification can not only reduce the complexity of the circuit but also alleviate the convergence problem.

Figure 2.2: The single pulse test circuit in Pspice.

(19)
(20)

Chapter 3

Diode model

3.1

Model description

Since anti-parallel diode is also a key component in the StakPakTMIGBT power

module, the diode model is important in obtaining correct transient character-istics. A simple way to model the diode is to regard it as blocking in the reverse direction and the current as a function of the voltage drop in the forward direc-tion, as described by the Schottky diode equation below:

ID= IS[e

qV

kT − 1] (3.1)

However, this equation neglects the reverse recovery of diode, which accounts for the overshoot of collector current ICat the end of turn-off in the single pulse

test simulation. To include the reverse recovery, a better model derived from semiconductor charge transport equations is extended from the basic charge-control diode model.

In order to achieve the high level injection of carriers in the drift region, a high voltage p − i − n configuration is used for power diodes. According to [6], the original simple charge-control diode model only contains one storage node, so if the charge node becomes exhausted during reverse conduction, the diode will immediately turn to blocking. In our thesis, to model the reverse recovery caused by charge diffusion from the center of i region, a lumped charge method is used for the existence of diffusion current. Then, when being subjected to a reverse voltage, additional free charges will be left in this region and have to be removed before the diode turned off. Therefore, a simple diode model with reverse recovery can be described by the equations below [6]:

(21)

where qE, qM are two substitution variables which represent two excess stored

charges q0, q2, TM is the substitution variable which represents the approximate

diffusion time across the region q2, IS is the diode saturation current, τ is the

lifetime, n is the emission coefficient, iDis the diode current and vDis the diode

voltage. The steady-state DC forward I-V characteristics can be derived from (3.2) (3.3) (3.4) as: iD= IS 1 + TM τ [exp( vD nVth ) − 1] (3.5)

If TM is set to be zero, the equation is same as Schottky diode equation (3.1).

3.2

Parameter extraction

Two measurement setups have to be considered for parameter extraction: a static I-V characteristic and a turn-off switching.

Iterative approach is used to fit the parameters, as explained later in chapter 4, until the agreement with measurements achieves the accuracy. The waveform of diode reverse recovery current at inductive load turn-off switching is roughly shown in figure 3.1 [15].

Figure 3.1: The diode reverse recovery current during turn-off switching.

To extract the parameters TM and τ , the constants T0, T1, IRM, di/dt as well

as the point p are supposed to be derived from the figure above, among which a = di/dt is the slope of the line from t = 0 to t = T1. Thus, i(t) = IF+ (di/dt)t

during the linear part.

Equation (3.6) describes the depletion of qM during the straight line from t = 0

to t = T1, when the diode has low impedance. At t = T1, qE(T1) = 0, v(T1) = 0,

(22)

(3.8) is the reverse current after t = T1 i.e. when the current is no longer

dependent on the diode voltage and diode has high impedance. Equation (3.9) is modified from equation (3.6) at t = T1by substituting qM(T1) = IRMTM and

T0= T1−IRM/(di/dt). The reverse recovery time constant τrr can be measured

directly from point p in figure 3.1, while lifetime τ obtained by equation (3.9) with a measurement of T1and IRM. TM is then calculated from 1/τrr= 1/τ +

1/TM. More detailed process of parameter extraction can be found in [6] and

[15]. qM(t) = aτ [T0+ τ − t − τ exp(− t τ)], for t < T1 (3.6) I(T1) = −IRM = − qM(T1) TM , for t = T1 (3.7)

i(t) = −IRMexp(−

t − T1 τrr ), for t > T1 (3.8) IRM = a(τ − τrr)[1 − exp(− T1 τ )] (3.9)

The other two parameters, n and IS, are obtained from the figure of steady-state

(23)

Chapter 4

IGBT model

4.1

General description

Darlington representation with a MOSFET as the driver and a BJT as the out-put is used here to represent the IGBT in figure 4.1 [13]. Therefore, the transfer characteristic is similar to that of the MOSFET, and the output characteristic is consistent with that of the BJT, but the input is changing from current to voltage.

Figure 4.1: Darlington circuit of IGBT.

(24)

(a) Main structure of the behavioral model.

(b) Hammerstein like structure of IC.

Figure 4.2: The structure of Hammerstein-like IGBT model.

The model consists of two parts, static part and dynamic part. The equations that describe MOSFET in both linear and saturation regions and the equations that describe BJT in active region are used to model the static part. Since the model needs to reflect high-level injection associated with IGBT and the voltage drop in the extrinsic part of the IGBT, correction functions f1 and

f2 are introduced instead other more complicated ways that based on physics

model [17].

4.2

DC model

(25)

Figure 4.3: The typical output characteristics of an IGBT.

In the DC model, the DC collector current IDC= f (VCE, VGE) is modeled and

adapted from empirical MOSFET I-V characteristics:

IDC=      kf2[(VGE− VT H)(f1VCE− VD) − (f1VCE−VD)2 2 ], if VCE < VGE+ VD− VT H kf2 (VGE−VT H)2 2 , if VCE> VGE+ VD− VT H 0, if VGE ≤ VT H or VCE < VD      (4.1)

where f1 and f2 are presented in polynomial forms to extend the MOSFET I-V

characteristics for entire IGBT:

f1= a0+ a1VGE+ a2VGE2 (4.2)

f2= b0+ b1VGE+ b2VGE2 (4.3)

VT H is the MOSFET channel threshold voltage, VDis the approximated turn-on

voltage of the p+/n− junction and k = (1+β)kpis the process transconductance

parameter where β is the current gain of BJT. The six constants a0- a2and b0

-b2can be extracted from three saturation data points (VGE, VCE(sat), IC(sat))

from the I-V curves of datasheets or measurements, according to two sets of equations below:

f1VCE(sat) = VGE− VT H+ VD (4.4)

IC(sat)

f2

= k(VGE− VT H)2 (4.5)

Therefore, with given k, VD and VT H, a total of six equations can be obtained,

the first three from (4.4) are solved to get a0 - a2 while next three from (4.5)

(26)

4.3

Dynamic model

In order to model the nonlinearities in IGBT transient waveforms, linear dy-namic blocks in standard Hammerstein model become nonlinear by involving nonlinear elements (capacitors) in figure 4.2(a), and the dynamic blocks are achieved through RC low-pass filters in figure 4.2(b) which have different time constants at turn on and turn off.

4.3.1

Model of capacitors

Nonlinear capacitors include the collector emitter capacitance Cce, the collector

gate capacitance Ccg and the gate emitter capacitance Cge. Figure 4.4(a) [14]

shows an equivalent IGBT model that includes these capacitances between the terminals. To extract them, three capacitance curves for the input capacitance Cies, the output capacitance Coes and the reverse transfer capacitance Cres are

obtained from datasheet.

In the experiments to test dynamic characteristics for a real IGBT, the input capacitance Ciesis measured between the gate and emitter terminals with the

collector shorted to the emitter for AC signals. The output capacitance Coes

is measured between the collector and emitter terminals with the gate shorted to the emitter for AC voltages. And the reverse transfer capacitance Cres is

(27)

(a) Equivalent IGBT model including capacitors between terminals.

(b) Typical capacitances vs. collector-emitter voltage. Figure 4.4: The capacitance extraction of IGBT model.

Coes and Cres are both highly dependent on the collector emitter voltage as

shown in figure 4.4(b) [20], dropping quickly from over 100 nF to below 10 nF, which can be directly fitted by polynomial functions, look-up tables, or by some assumed nonlinear functions. Here polynomial functions are used for accurately approximate the nonlinear variation:

Cres(VCE) = Cres,0(1 + VCE)−kres+ Cres,high (4.6)

Coes(VCE) = Coes,0(1 + VCE)−koes+ Coes,high (4.7)

Since Cies is almost independent on VCE, it is assumed as constant in our

model. Cies, Coes and Cres are combinations of Cce, Ccg and Cge. Conversely,

the transformation from Cies, Coes and Cres to Cce, Ccg and Cge can be done

(28)

Cce= Coes− Cres (4.8)

Ccg= Cres (4.9)

Cge= Cies− Cres (4.10)

Thus, Cce, Ccg and Cge are all nonlinear models which have nonlinear

capaci-tances versus collector emitter voltage.

4.3.2

Model of block h

1

and block h

2

From figure 4.2 we can see the collector current IC consists of a conduction

component and a displacement component, U2 and U4, which are voltage

vari-ables with current units. In figure 4.2(b), U1 = f (VCE, VGE) which represents

the instantaneous DC collector current and U3= CCE(VCE) d(VCE)

dt which is the

current through CCE are followed by RC low-pass filter block h1and h2

respec-tively, to obtain the conduction component U2 and displacement component

U4.

Block h1 models the dynamics of the collector current IC during the constant

collector voltage switching test (e.g. d(VCE)

dt = 0) when the collector terminal is

connected directly to a DC source without load. Block h2 models the dynamics

of the collector current IC (e.g. d(VdtCE) 6= 0) when a resistive load is connected

to the collector terminal. With them, the transient behavior of the IGBT can be described more precisely. The parameters R1, C1, CX in h1 and R2, C2 in

h2 have different values at turn-on and turn-off. R1, C1, CX represent the fast

decay of IC at the beginning of turn-off and R2, C2 represent the redistribution

current as well as non-quasi-static time delay [18] [19].

Based on the process of parameter extraction in [16], normally, C1, C2are chosen

as constant. During the constant collector voltage switching test, with fixed C1,

R1and CX are modeled as below:

R1=  R1on, for VGE > VT H R1of f, for VGE ≤ VT H  (4.11) CX=  0, for VGE > VT H (1−αα )C1, for VGE ≤ VT H  (4.12)

where α means the ratio of the collector current after and before the fast decay at turn-off transients.

Similarly, with fixed C2, R2is modeled as below:

R2=



R2on, for turn on transient

R2of f, for turn off transient



(29)

where turn-on transient is when VGE > VT H, dVCE/dt < 0 and turn-off

tran-sient is when VGE > VT H, dVCE/dt > 0 or VGEVT H, dVCE/dt < 0.

An initial parameter set is obtained from the measurement setups in [16], then some iterative simulations are done and the results are used to compare with measurement data to further optimize the extracted parameters and improve the agreement with the measurements.

Besides the model in figure 4.2, an alternative model is shown in figure 4.5 [14] with Hammerstein like structure of displacement component V4 replaced by a

series capacitor and resistor, CCEand RCE. RCE is necessary here to represent

the non-quasi-static time delay of block h2.

In this case, with the assumption RCECCE≈ R2C2, RCE is obtained by RCE≈

R2C2/CCE, which also has different values at turn-on and turn-off transients.

(a) Main structure of the alternative model.

(b) Hammerstein like structure of IC.

Figure 4.5: The structure of alternative Hammerstein-like IGBT model.

4.3.3

Model of time delay block

Since the behavior model consists of only capacitors and voltage-controlled cur-rent sources in main structure, it is unable to capture the turn-off time delay due to the insufficiency of gate-emitter capacitance Cge. In the initial part of

turn-off, when the gate terminal receives the turn-off signal from driver, Cge starts

to discharge and gate-emitter voltage VGE starts to drop, the slope of which

depends on the value of capacitance. With discharging, VGE will be lowered to

a constant level and remain at this level while the collector-emitter capacitance Cce is charged to the full blocking voltage.

The turn-off time delay is the time from receiving turn-off signal to VGE

drop-ping to the constant level, which relates to the slope of VGE dropping at the

initial part of turn-off. Since the value of Cge is only several nF during that

(30)

Many ways to implement the additional capacitance block Cge parallel were

tried, one of the most useful is to connect a GVALUE block (shown in fig-ure 4.6) in parallel with Cge to produce the time delay. Only when VGE> VT H

and DDT (VGE) < 0 (i.e. the dropping period of VGE) the capacitance block

Cge parallel has positive value. During other period it equals to zero.

Figure 4.6: ABM block to implement the turn-off time delay.

Some trials have been done to find the suitable value of Cge parallel. With a value

of approximately 1µs, the time delay much more resembled the simulation for real IGBT. However, convergence problem always came in series connection and could not be avoided. Because of the convergence issue brought by Cge parallel,

(31)

Chapter 5

Simulation results

First of all, according to the calculation process described in chapter 3 and 4, followed by comparison with single pulse data of StakPakTM 4.5 kV and 2.0 kA IGBT power module, all the IGBT, diode and circuit parameters can be extracted in order to fit different characteristics.

The DC characteristic is first presented in chapter 5.1 then the single pulse switching test circuit is simulated with simple voltage gate in chapter 5.2.1. Afterwards, the simple current source gate as well as complex gate unit built in [12] which much resembles the real ABB one is implemented in chapter 5.2.2 and 5.2.3 to see the IGBT/diode performance with more accurate driving strategy.

5.1

DC characteristics

Before the dynamic behavior investigation, the static characteristics of collector current versus gate-emitter voltage at constant collector-emitter voltage, and collector current versus collector-emitter voltage for a series of constant gate-emitter voltage, are investigated. Besides, the forward I-V characteristic of diode model is simulated.

Figure 5.1 shows the setup circuit for static characteristics, gate and collector are both connected to a constant voltage source.

(32)

5.1.1

I

C

versus V

GE

The first test is ICversus VGEwhich varies from 7 V to 14 V when VCEis fixed at

15 V. From figure 5.2, the comparison between the measurement data presented in datasheet [20] and the simulation, a good agreement can be obtained which indicates the good accuracy of the parameter set.

Figure 5.2: Static characteristic of collector current versus gate-emitter voltage at constant collector-emitter voltage of 15 V.

Parametric analysis is run among all the model parameters to get analytical trend of the static behavior, from which the parameters mostly affect the static characteristic of the IGBT model is the MOSFET channel threshold voltage, process transconductance parameter and the current gain of BJT transistor. The parametric sweep in appendix B.1 shows the way to tune the parameters to fit different operation modes or devices with different voltage and current ratings. The suitable applicability of these parameters can be observed as well.

5.1.2

I

C

versus V

CE

The second test is IC versus VCE at a range of 0 V to 6 V when VGE is fixed at

four different values: 9 V, 11 V, 13 V and 15 V. Similarly, the comparison of this characteristic is given in figure 5.3. The simulation has satisfactory agreement with the measurement at middle-high current levels and in low current level the characteristic could be improved by sacrificing the accuracy at high collector-emitter voltage level, which is superfluous since the model will be applied in high collector-emitter level.

(33)

in switching simulation, dynamic behavior obtains most attention and has the priority at tuning the parameters compared to static behavior. Therefore, later when tuning a specific parameter set for single pulse switching simulation, the values of some parameters are changed from here and the accuracy of the static behavior is sacrificed.

Figure 5.3: Static characteristic of collector current versus collector-emitter voltage for a series of constant gate-emitter voltage at 9 V, 11 V, 13 V and 15 V.

Same parametric analysis is conducted for all the model parameters and the results is presented in appendix B.2. As can be seen, besides the three parame-ters discussed above, the approximated turn-on voltage of the p + /n− junction also has impact on the conducting point from off-state to conducting state. Since these parameters has big influence on the dynamic behavior as well, they have to be extracted again later based on the dynamic measurement data. The static characteristic will be sacrificed since according to goals of simulation the mismatch can be neglected to some extent.

5.2

Dynamic characteristics

5.2.1

Voltage driving

A rectangular pulse voltage source is used first to control the IGBT gate, which has −5 V low voltage level and 15 V high voltage level. However, since in Pspice the source is not a fully ideal step-shaped rectangular pulse but a trapezoidal pulse instead, a rise and fall time of 100 ns must be considered. Besides, in the simulation the IGBT is turned on at 1µs and turned off at 21 µs.

(34)

modes in order to show the influence of some parameters on the IGBT behavior and further optimize the design of IGBT model. Load current is also regarded as the diode free-wheeling current that is the initial current flowing through the load inductor realized by defining the IC parameter. The Pspice schematic of single pulse test circuit with rectangular voltage source is shown in figure 5.4 and the simulation results are presented in figure 5.5.

(35)

(a) Source voltage pulse (dotted line), gate-terminal voltage (solid line) and current through gate terminal (dashed line).

(b) Collector-emitter voltage (solid line) and collector current (dashed line). Figure 5.5: Simulation results under standard operation mode with voltage source driving.

The transition has similar behavior with a real IGBT power module. Therefore, the validation of the work of IGBT model can be obtained qualitatively, as well as the diode model given by the reverse recovery current at IGBT turn-on. In addition, it is obvious that the gate terminal has capacitive behavior and the shape of voltage waveform is related to the value of gate resistor.

To improve the agreement between simulation and measurement, parameters need to be tuned so parametric analysis must be done to invest which parameters have obvious impact on dynamic behavior, including all the circuit parameters (e.g. stray inductance and gate resistance) and IGBT/diode model parameters. Appendices B.3 and B.4 show some examples of parametric analysis for turn-on and turn-off, respectively.

A table is given to illustrate which parameters have influence on the turn-on transient and which affect turn-off. As seen, the gate resistance, diode diffusion transit time, on-state resistance of h1block and the current gain of BJT

transis-tor all can influence turn-on. Meanwhile, the stray inductance, ratio of ICafter

and before the fast decay at turn-off, on-state as well as off-state resistance of h1block all have great impact on turn-off. None of the diode parameters affect

(36)

Table 5.1: Scope of influence of different parameters on the dynamic behavior.

Parameter Scope Parameter Scope

Rg Turn on & off tau Turn on

LS Turn on & off ttd Turn on

kp Turn on & off R1on Turn on & off

β Turn on & off R1of f Turn off

VT H Turn on & off R2of f Turn off

(37)

5.2.2

Current driving

Since the IGBT device is controlled by charge in nature, to reproduce a better and more practical driving strategy, a step pulse current source is adopted. When the stimulus current is constant, the rate of charge injecting depends on the current value. Once the charge injected into gate reaches the threshold, IGBT is switched from off to on state. Thus, if corresponding voltages and currents have good behavior, the model could be more strictly verified.

Based on [12], two anti-paralleled current sources are necessary, as in the stan-dard operating mode in figure 5.6. One responsible for injecting charges into gate i.e. turn-on transition, and another responsible for extracting charges out of gate i.e. turn-off transition. A rise and fall time of 10 ns as well as a magnitude of 6 A is used for both current sources.

Since there is no constraint on gate terminal voltage as in voltage source driving, to get the correct high and low clamping gate voltage, two Zener diodes are put back to back in series with breakdown voltage of 15 V for upper one and 5 V for lower one. An initial value of gate node voltage is set by part IC for the simulator to do the initial bias point calculation.

Parameters have to be adjusted accordingly due to the change of the driving method in this chapter and simulation results are given in figure 5.7.

(38)

(a) Source current pulse (dotted line), current through diodes (solid line) and gate terminal voltage (dashed line).

(b) Collector-emitter voltage (solid line) and collector current (dashed line).

Figure 5.7: Simulation results under standard operation mode with current source driving.

From the gate terminal, it can be seen that the charging and discharging of gate-emitter voltage i.e. the capacitive behavior of the IGBT, is reproduced successfully, which means the current driving is also reliable in simulation and can replace the voltage source driving. Note that the charging speed varies with the magnitude of current pulse: higher the current is, faster the switching is. Once again, parametric analysis is conducted with examples in appendix B.5 to roughly show the impact of different model and circuit parameters. Some of them such as stray inductance have influence on both turn-on and off while some affect only turn-on (e.g. diode minority carrier lifetime) or turn-off (e.g. on and off state resistance of h1block).

5.2.3

Complex ABB gate unit model

(39)

Figure 5.8: The Pspice schematic of single pulse test circuit with ABB gate unit model.

Since only the switching of IGBT is concerned, many parts of the gate unit (e.g. supply voltage regulators and optical interfaces) have no need to be considered. Through the feedback of collector-emitter and gate-emitter voltages, paralleled current sources are controlled to turn on or turn off independently, making the total of output current of the gate unit automatically allocated to different levels. A detailed description of the gate unit can be found in [12].

(40)

Table 5.2: The entire parameter set extracted with the ABB gate unit model. (a) IGBT parameters.

Parameter Value Pspice name Parameter Value Pspice name

kp 1 V kp Cge1 30 nF Cge1

β 170 beta Coes,0 340 nF Coes0

VT H 7 V Vth koes 1.57 koes VD 0.7 V Vd Coes,high 10.4 nF Coeshigh a0 1.73 p0 Cies 220 nF Cies a1 0.21 p1 C1 1 nF c1 a2 0.01 p2 R1on 62.1040Ω r1on b0 4.23 q0 R1of f 51.1062Ω r1off b1 0.49 q1 α 0.14864 alpha b2 0.02 q2 C2 1 nF c2

Cres,0 400 nF Cres0 R2on 50Ω r2on

kres 1.56 kres R2of f 50Ω r2off

Cres,high 3.2 nF Creshigh

(b) Diode parameters.

Parameter Value Pspice name

IS 5.158 × 10−9A isaturazione tau 2.101 56 × 10−6s taud Cj0 0 nF cj0d mj 0.5 mjd Rs 220 × 10−6Ω rsd Vj 1 V vjd n 2.64 ndiodo ttd 1.2917 × 10−6s ttdi fc 0.5 fcdiode (c) Circuit parameters.

Parameter Value Pspice name

Rg 0.1Ω Rg LS 150 nF Ls RS 100 mΩ Rs LL 250µF Ll RL 1 mΩ Rl VS 2800 V Vce Iload 2000 A IC

All the IGBT, diode and circuit parameters with the ABB gate unit model are presented in table 5.2(a), (b) and (c). This parameter set is extracted from single pulse clamped inductance switching at basic case: 2.8 kV supply voltage and 2.0 kA load current, combined with static DC characteristics of collector current versus gate-emitter voltage and collector-emitter voltage.

Note that in the block of Cgein figure 4.2, to fix the low derivative of collector

(41)

voltage is below the constant level, Cgeis decreased to Cge1to faster discharge

leading to a higher derivative. Once the entire parameter set has already been accurately extracted, the simulation results with complex ABB gate unit are shown in figure 5.9 and figure 5.10, compared with single pulse test measurement data.

Figure 5.9: Turn-on simulation results under standard operation mode with ABB gate unit model: collector-emitter voltage and collector current.

(42)

A good agreement between simulation and measurement can be observed, es-pecially for turn-on. However, in simulation there is an apparent time lead at turn-off, because of the small gate-emitter capacitance, which causes rapid decrease of gate-emitter voltage at initial part of turn-off. But it can be disre-garded since what we concerned is the derivative rather than the accurate time to start turn-off, and the time difference can be estimated and predicted. In addition to the IGBT voltage and current variations at switching, the diode reverse recovery characteristic is also investigated and presented in figure 5.11. The big oscillation in measurement is something unwanted and comes from diode turn-off where the charges suddenly disappear in a snappy way. The measurement tried to make the diode softer during reverse recovery to minimize oscillation, which has not been successful at all conditions. It can be triggered by a snappy diode due to the internal chip structure giving capacitive behavior together with the mechanical layout giving inductances. Especially at cold device (room temperature), high voltage and low current it still appear on the 4.5 kV and 2.0 kA StakPakTM IGBT power module.

A physical behavior simulation tool is mandatory in order to model this big oscillation. Therefore, it is disregarded in my simulation.

(43)

5.2.4

Frequency domain results

To see the frequency content of the IGBT and diode model, time domain sim-ulation results are transformed into frequency domain by fast fourier transform (FFT) in MATLAB.

(44)

(a) Collector-emitter voltage.

(b) Collector current.

(45)

(a) Collector-emitter voltage.

(b) Collector current.

(46)

Chapter 6

Different operation modes

In order to test the possibility of this model being applied to different IGBT modules with different voltage and current ratings in the future, first we need to evaluate the performance of the model under different operation modes for 4.5 kV and 2.0 kA StakPakTM IGBT module. Simulations with varying load current and supply voltage, Iload and VS, have been performed in the same

single pulse test circuit. One more operating mode example is given in this chapter: 3.6 kV and 1.2 kA.

Table 6.1: Parameter variation from table 5-2 for 3.6 kV and 1.2 kA operation mode.

Parameter Old value New value Pspice name

Rg 1.2917 × 10−6s 6.2917 × 10−6s ttdi

LS 2800 V 3600 V Vce

RS 2000 A 1200 A IC

(47)

Figure 6.1: Turn-on simulation results under 3.6 kV and 1.2 kA mode with ABB gate unit model: collector-emitter voltage and collector current.

(48)
(49)

(a) Collector-emitter voltage.

(b) Collector current.

(50)

(a) Collector-emitter voltage.

(b) Collector current.

Figure 6.5: Turn-off comparison under 3.6 kV and 1.2 kA mode with ABB gate unit model in frequency domain.

(51)

Chapter 7

Convergence issues

There are always initial oscillations at collector current ICand collector-emitter

voltage VCE when simulation starts in single pulse test circuit, only after some

time the oscillations can disappear and the waveform can back to normal con-dition. The reason is, at t = 0, the derivative of current and voltage increase suddenly from zero to a very high value. Since the current through nonlinear capacitors equals to the capacitance times derivative of voltage drop, it changes dramatically during the beginning of simulation, introducing extra oscillations. To avoid these initial oscillations, the high derivative at t = 0 has to be elimi-nated, therefore, a STP function which suppress a value until a given amount of time has passed [22] is applied with the following expression in each ABM block. ST P (T IM E − 2000 ps) =  0, T IM E ≤ 2000 ps 1, T IM E > 2000 ps  (7.1)

As the Ccg block shows below, before 2000 ps the derivative always equals to

zero so the high derivative of current and voltage at the beginning is removed from simulation.

Figure 7.1: The example of STP function in capacitance Ccg.

7.1

Useful convergence solutions

(52)

In Pspice options, there are a lot of parameters which can influence and de-termine the accuracy of the simulation results. By changing their values, the convergence of the implemented circuit can be improved.

Consider our specific IGBT and diode models, the following convergence strate-gies are applied to aid the convergence:

• Taking strong nonlinearities and multiple cross references between different blocks into account, a big resistor is placed in parallel with each ABM block to ensure a DC path and the bias point (DC) convergence.

• Set reasonable values for parasitic circuit parameters, e.g. stray inductance and resistance.

• Set the rise and fall time of stimuli to be 100 ns, avoid too high derivative values.

• Set realistic model parameters for semiconductors, e.g. junction built-in po-tential of diode.

• The output of all behavioral modeling expressions must be within the range +/- 1e10, since the voltage and currents in Pspice are limited to this range. • Restrict behavioral modeling expressions. Use the LIMIT function to keep output within realistic bounds, not over the limited range.

• Relax the RELTOL restriction from the default value 0.001 to 0.05. It could bring the loss of the relative accuracy of voltages and currents, but given that the loss is not considerable and instead it will increase the simulation speed by 10% to 50%, therefore, it is recommended in this case. However, set RELTOL to a value either less than 0.001 or more than 0.05 is not recommended, since extra convergence problems may arise.

• Relax the ABSTOL restriction from the default value 1 pA to 1µA. This will aid the convergence a lot since 1 pA for absolute branch current tolerance is too strict in power electronics circuit, and the accuracy doesnt need to be that high. • Relax the VNTOL restriction from the default value 1µV to 10 µV. Since with default value there is always convergence problem in transient analysis, said that the time step is smaller than minimum allowable step size, the absolute node voltage tolerance has to be relaxed.

• SET IL4 from default value 10 to 100. This increases the number of transient iterations the simulator attempts at each time point before it gives up.

(53)

• Tick on GMIN stepping to improve the convergence. • Tick on preordering to reduce the matrix fill-in.

(54)

Chapter 8

Application in arm

simulation for

demonstration

Now with the behavioral model developed in this thesis, accuracy has been achieved. To test the created models in series connection, a much more simplified arm simulation is adopted instead of the full scale Light Generation 4 converter simulation. Only one of all the six arms in the converter is involved in the simulation which contains 36 cells. A figure of the simplified arm simulation composition is drawn in figure 8.1.

(55)

Figure 8.1: The simplified arm simulation composition of the full scale Light G4 converter.

A shield is included in each cell to smooth out the electrical field towards the grounded potential surfaces. There are stray capacitances from these shields to the ground. When we switch the semiconductors, we get a very fast change in the current and voltage i.e. high derivatives. This leads to high-frequency harmonics in the current. Without stray capacitances to ground, the currents through source voltage and terminate resistor should be same after switching. However, with stray capacitances, which acts as low impedance path for these high-frequency currents flowing to ground, the currents through source voltage and terminate resistor are not same anymore.

In a real HVDC converter station we minimize the current flowing through stray capacitances by using some damping circuit. Therefore, by measuring the stray current at the main path in the simulation, that is the current difference between voltage source and terminate resistor, the performance of semiconductor models are well evaluated.

(56)

(a) Turn-on.

(b) Turn-off.

Figure 8.2: Single pulse test results of collector-emitter voltage and collector current with voltage source driving under standard operation mode.

(57)

(a) Turn-on.

(b) Turn-off.

Figure 8.3: Voltage and current Waveforms for IGBT and diode models compared with simple switches and diodes in time domain.

(58)

(a) Turn-on.

(b) Turn-off.

Figure 8.4: Stray current waveforms for IGBT and diode models compared with simple switches and diodes in time domain.

Modeling semiconductors correctly is important, since the stray current is strongly affected by the way of modeling. Obviously the simple switch and diode give higher amplitude and less damped currents while new models give lower ampli-tude and more damped currents through stray capacitances. It is also concluded that switching goes back to static state more quickly under new models with more stable performance.

(59)

(a) Turn-on.

(b) Turn-off.

Figure 8.5: Stray current waveforms for IGBT and diode models compared with simple switches and diodes in frequency domain.

Above gives the amplitude of stray current at the valve arm in frequency do-main. The amplitude with simple switch and diode are much higher than with IGBT and diode models, especially around the neighbor of 1 MHz. In the high frequency region it is obvious that simple switch and diode result in more se-vere disturbance which does not exist in real measurements and will lead to inaccurate EMC analysis.

(60)

in each cell to further damp the high-frequency harmonics and obtain a much smaller stray current at main path as in figure 8.6. Again, turn-on has better damping performance than turn-off.

Now, we can say that the new IGBT and diode models achieve series-connection, simulation speed, convergence and enough accuracy at the same time.

(a) Turn-on.

(b) Turn-off.

(61)

Chapter 9

Discussion

The tail voltage at the end of turn-on is absent in this IGBT model, instead a rather sharp voltage drop is observed as in the comparison figure 5.14. Some trials has been done to smooth the drop and lower its derivative, however, con-sidering the possible convergence issue brought into series connection, it is not worthy to include a big capacitor to introduce the tail voltage. An underesti-mation of switching losses will also occur because normally there are some tail losses in the real IGBT. However, since the accurate power losses in the semi-conductors do not play a significant role in the EMC studies, the tail voltage can be disregarded.

Another drawback is the too sharp current peak during turn-on compared to the measurement, an inductor is recommended to be added between emitter and collector to smooth the sharp current peak. But no matter how big the inductor is the peak cannot be improved well. We have not found a proper way to obtain an apparently more flat overshoot yet.

Compared to the behavioral IGBT model, the diode model is a physical one based on the lumped charge method which has a really good reverse recovery behavior during IGBT switching.

(62)

Table 9.1: Differences/Similarities between lumped charge model and new model.

Lumped charge model New model

Differences

Physical model based on

lumped charge approach Behavioral model 17 parameters for IGBT 25 parameters for IGBT

In the charge level In the voltage/current level Charge equations embedded

into the equivalent circuit, 31 equations in total

Darlington representation with a DC part and a dynamic part Extract parameters through:

DC I-V characteristics; inductance load switching plot;

gate charge plot

Extract parameters through: DC I-V characteristics;

capacitance curves; Vce switching test with/without resistive load Similarities Implement a complex ABB gate unit model with ABS blocks

Use the same physics-based simple diode model with reverse recovery (by Lauritzen [6])

Table 9.2: Advantages/disadvantages of lumped charge model and new model.

Lumped charge model New model

Simulation speed

Slow,

infinitely long simulation time for simplified arm simulation

Fast, less than 20 minutes for simplified arm simulation Series

connection

Convergence fails when series connection,

even for a half cell

Enable series connection for at least 8 IGBTs and their anti-parallel diodes Parameter

extraction

Complex experiments and time-demanding calculation

Easy experiments and simple post-process of data

Accuracy

Highly accurate, given the physical structure

and the equation sets

Less accurate, but enough for EMC studies where speed and convergence

are most important Precise time delay at turn-off Lack of time delay at turn-off

which is not concerned Precise tail currents/voltages Lack of tail voltage

and too sharp current peak Application

range Widely validated To be investigated

(63)

devices besides StakPakTM 4.5 kV and 2.0 kA IGBT power module, parameters

have to be tuned once again and the use needs further validation.

For model users in the future, three things to be noticed: for every different operation mode, the parameter set has discontinuity and extraction has to be repeated even within one specific device; the temperature dependence is not considered in the model building and testing; the accuracy does not support the loss calculation and estimation for power modules.

Furthermore, in this thesis work, all the simulations that have been conducted as well as their pros and cons are summarized in table 9.3.

Table 9.3: Advantages/disadvantages of all the simulations from previous chapters.

Single pulse simulation Advantages

Simple structure,

an easy way to test IGBT/diode model correctness and accuracy

Disadvantages Cannot reproduce the actual switching behavior and disturbances in real converter station Simplified arm simulation for demonstration

Advantages Necessary for testing the ability of series connection and the general EMC performance of the converter station Disadvantages

Complicated,

(64)

Chapter 10

Conclusion

(65)

Chapter 11

Future work

The manual parameter extraction procedure can be adjusted to become an automatic procedure which save the time and lessen the workload at the same time. And the accuracy can be improved by ameliorating the internal structure of the IGBT model e.g. fixing the tail voltage at turn-off and the too sharp current peak at turn-on.

(66)

Bibliography

[1] A. R. Hefner, “An improved understanding for the transient operation of the power insulated gate bipolar transistor (igbt),” in Power Electronics Specialists Conference, 1989. PESC ’89 Record., 20th Annual IEEE, Jun 1989, pp. 303–313 vol.1.

[2] ——, “An investigation of the drive circuit requirements for the power insu-lated gate bipolar transistor (igbt),” Power Electronics, IEEE Transactions on, vol. 6, no. 2, pp. 208–219, Apr 1991.

[3] A. R. Hefner and D. Diebolt, “An experimentally verified igbt model im-plemented in the saber circuit simulator,” in Power Electronics Specialists Conference, 1991. PESC ’91 Record., 22nd Annual IEEE, Jun 1991, pp. 10–19.

[4] C. Mitter, A. Hefner, D. Chen, and F. Lee, “Insulated gate bipolar tran-sistor (igbt) modeling using ig-spice,” Industry Applications, IEEE Trans-actions on, vol. 30, no. 1, pp. 24–33, Jan 1994.

[5] C. Ma, P. Lauritzen, P.-Y. Lin, I. Budihardjo, and J. Sigg, “A system-atic approach to modeling of power semiconductor devices based on charge control principles,” in Power Electronics Specialists Conference, PESC ’94 Record., 25th Annual IEEE, Jun 1994, pp. 31–37 vol.1.

[6] P. O. Lauritzen and C. Ma, “A simple diode model with reverse recovery,” Power Electronics, IEEE Transactions on, vol. 6, no. 2, pp. 188–191, Apr 1991.

[7] C. Ma and P. Lauritzen, “A simple power diode model with forward and reverse recovery,” Power Electronics, IEEE Transactions on, vol. 8, no. 4, pp. 342–346, Oct 1993.

[8] C. Ma, P. Lauritzen, and J. Sigg, “A physics-based gto model for circuit simulation,” in Power Electronics Specialists Conference, 1995. PESC ’95 Record., 26th Annual IEEE, vol. 2, Jun 1995, pp. 872–878 vol.2.

[9] P. O. Lauritzen, G. Andersen, and M. Helsper, “A basic igbt model with easy parameter extraction,” in Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, vol. 4, 2001, pp. 2160–2165 vol. 4. [10] Z. Norouzian, “Modeling of igbt modules with parasitic elements

(67)

[11] M. Nawaz, F. Chimento, N. Mora, and M. Zannoni, “Simple spice based modeling platform for 4.5 kv power igbt modules,” in Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, Sept 2013, pp. 279–286. [12] M. NaWaZ and M. Zannoni, “Pspice modeling of 4.5 kv stakpak modules,”

Jan 2013.

[13] H. Oh and M. Nokali, “A new igbt behavioral model,” in Solid-State Elec-tronics, vol. 45, no. 12, Dec 2001, pp. 2069–2075.

[14] K. Asparuhova and T. Grigorova, “Igbt spice behavioral model using the hammerstein configuration,” vol. 1, Sept 2005, pp. 71–76.

[15] H. Hollander, “Modeling of an igbt and a gate unit,” Master’s thesis, Royal Institute of Technology,XR-EE-E2C 2013:001, 2013.

[16] J. Hsu and K. Ngo, “A behavioral model of the igbt for circuit simulation,” in Power Electronics Specialists Conference, 1995. PESC ’95 Record., 26th Annual IEEE, vol. 2, Jun 1995, pp. 865–871 vol.2.

[17] K. Narendra and P. Gallman, “An iterative method for the identification of nonlinear systems using a hammerstein model,” Automatic Control, IEEE Transactions on, vol. 11, no. 3, pp. 546–550, Jul 1966.

[18] A. Hefner Jr and D. Blackburn, “An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar transistor,” in Solid-State Electronics, vol. 31, no. 10, Oct 1988, pp. 1513–1532. [19] B. Wu, C. Chuang, and K. Chin, “Non-quasi-static effects in advanced

high-speed bipolar circuits,” Solid-State Circuits, IEEE Journal of, vol. 28, no. 5, pp. 613–617, May 1993.

[20] [Online;accessed 10-September-2015]. [Online]. Available: https://library.e.abb.com/public/6e6983faa83cded383257b4a00515559/ 5SNA%202000K450300%205SYA%201431-00%2003-2013.pdf

[21] [Online;accessed 10-September-2015]. [Online]. Available: http://www. physik.uni-wuerzburg.de/∼praktiku/Anleitung/Fremde/ANO14.pdf

(68)

Appendix A

Pspic schematics

(69)
(70)
(71)

Appendix B

Parametric analysis

B.1

Parametric analysis for collector current

ver-sus gate-emitter voltage at constant

collector-emitter voltage of 15 V.

(72)

Figure B.2: Process transconductance parameter (kp) increases from 0.68 S to 1.2 S.

(73)

B.2

Parametric analysis for collector current

ver-sus collector-emitter voltage for a series of

constant gate-emitter voltage at 9 V, 11 V,

13 V and 15 V.

Figure B.4: MOSFET channel threshold voltage (VT H) increases from 6.8 V to 7.3 V.

Figure B.5: Approximated turn-on voltage of the p + /n− junction (VD) increases

(74)

Figure B.6: Process transconductance parameter (kp) increases from 0.68 S to 1 S.

(75)

B.3

Parametric analysis for turn-on transient

with voltage source driving.

Figure B.8: Gate resistance (Rg) increases from 0.7Ω to 1.2 Ω.

(76)

Figure B.10: On-state resistance of h1 block (r1on) increases from 38Ω to 310 Ω.

(77)

B.4

Parametric analysis for turn-off transient

with voltage source driving.

Figure B.12: Stray inductance (LS) increases from 70 nH to 150 nH.

Figure B.13: Ratio of IC after and before the fast decay at turn-off (α) increases

(78)

Figure B.14: On-state resistance of h1 block (R1on) increases from 38Ω to 310 Ω.

(79)

B.5

Parametric analysis for turn-on and off

tran-sient with current source driving.

Figure B.16: Stray inductance (LS) increases from 50 nH to 150 nH.

(80)

Figure B.18: On-state resistance of h1 block (R1on) increases from 40Ω to 150 Ω.

(81)

References

Related documents

Generally Pulse-Width Modulated Voltage Source Inverter (PWMVSI) is used. The basic function of the VSI is to convert the DC voltage supplied by the energy storage device into an

Clarification: iodoxy- is referred to iodoxybenzoic acid (IBX) and not iodoxy-benzene

[r]

Perceptions of users and providers on barriers to utilizing skilled birth care in mid- and far-western Nepal: a qualitative study (*Shared first authorship) Global Health Action

Figure 4-47: Measurement results for the amplitude error and the relative phase shift as a function of the sensor distance, when the area of the sensors is varied.

This means only one converter operates towards achieving the voltage setpoint in the grid [10]. Centralized droop control is good at controlling active power at the power

Figure 3 also shows the strike point positions (as distance (Z ) below the JET mid-plane) for the pulses during which the QMB and RC were operational; an outline of the inner

The crystal structure of the open K V 1.2 channel [25], complemented with modeled regions where electron density was missing, was inserted into a lipid bilayer membrane and