• No results found

ADVANCED TIME AVERAGE DIGITAL HOLOGRAPHY BY MEANS OF FREQUENCY AND ___PHASE MODULATION

N/A
N/A
Protected

Academic year: 2022

Share "ADVANCED TIME AVERAGE DIGITAL HOLOGRAPHY BY MEANS OF FREQUENCY AND ___PHASE MODULATION"

Copied!
117
0
0

Loading.... (view fulltext now)

Full text

(1)

ADVANCED TIME AVERAGE DIGITAL HOLOGRAPHY BY MEANS OF FREQUENCY AND ___PHASE MODULATION

PhD dissertation

Study program: P3901 Applied Sciences Engineering Field of study: 3901V055 Applied Sciences Engineering

Author: Ing. Pavel Psota

Supervisor: prof. Ing. Václav Kopecký, CSc.

Tutor: Ing. Vít Lédl, Ph.D.

Liberec 2015

(2)
(3)
(4)
(5)
(6)
(7)
(8)

2.7 × 10 −4 𝜆

(9)

(10)
(11)
(12)

𝑬(𝒓, 𝑡)

𝑯(𝒓, 𝑡) 𝒓 𝑡

𝛻 × 𝑯 = 𝜀 0 𝜕𝑬

𝜕𝑡 ,

𝛻 × 𝑬 = −𝜇 0 𝜕𝑯

𝜕𝑡 ,

𝛻. 𝑬 = 0,

𝛻. 𝑯 = 0,

(𝛻 ×)

(𝛻. ) 𝑬, 𝑯

𝜇 0 = 4𝜋 × 10 −7 𝐻𝑚 −1 𝜀 0 = 8,85 × 10 −12 𝐹𝑚 −1

𝑫 𝑩

𝑫 𝑬

𝑩 𝑯

(13)

𝑫 = 𝜀 0 𝑬 + 𝑷,

𝑩 = 𝜇 0 𝑯 + 𝑴

𝑷 𝑴

𝑬 𝑯 𝑫 𝑩

𝛻 × 𝑯 = 𝜀 0 𝜕𝑫

𝜕𝑡 ,

𝛻 × 𝑬 = −𝜇 0 𝜕𝑩

𝜕𝑡 ,

𝛻. 𝑫 = 0,

𝛻. 𝑩 = 0.

𝑷 𝑬

𝑷 = 𝑴 = 𝟎

𝛻 × (𝛻 × 𝑬) = 𝛻. (𝛻. 𝑬) − 𝛻 2 𝑬

𝛻 2 𝑬(𝒓, 𝑡) − 1 𝑐 2

𝜕 2 𝑬(𝒓, 𝒕)

𝜕𝑡 2 = 0,

𝛻 2 𝑯(𝒓, 𝑡) − 1 𝑐 2

𝜕 2 𝑯(𝒓, 𝑡)

𝜕𝑡 2 = 0, 𝑐 = √ 𝜇 1

0 𝜀 0 = 299 792 458 𝑚𝑠 −1 𝛻 2 = 𝜕 2

𝜕𝑥 2 + 𝜕 2

𝜕𝑦 2 +

𝜕 2

𝜕𝑧 2

𝑬 𝑯

(14)

𝛻 2 𝑢(𝒓, 𝑡) − 1 𝑐 2

𝜕 2 𝑢(𝒓, 𝑡)

𝜕𝑡 2 = 0, 𝑢(𝒓, 𝑡)

𝑺

𝑺 = 𝑬 × 𝑯

𝐼

𝐼 = 〈|𝑺|〉

𝑬 𝑯

𝜔

𝑬(𝒓, 𝑡) = 𝑬 𝟎 (𝒓)𝑐𝑜𝑠(𝜔𝑡 + 𝜑(𝒓)),

𝑯(𝒓, 𝑡) = 𝑯 𝟎 (𝒓)𝑐𝑜𝑠(𝜔𝑡 + 𝜑(𝒓)),

𝑬 𝟎 (𝒓) 𝑯 𝟎 (𝒓) 𝜑(𝒓)

𝒓 𝜔𝑡

𝑗 = √−1

1

(15)

𝑬(𝒓, 𝑡) = 𝑅𝑒{𝑬̇(𝒓)𝑒𝑥𝑝(𝑗𝜔𝑡)},

𝑯(𝒓, 𝑡) = 𝑅𝑒{𝑯̇(𝒓)𝑒𝑥𝑝(𝑗𝜔𝑡)},

𝑬̇(𝒓) 𝑯̇(𝒓)

𝜔

𝑓 𝑇

𝜔 = 2𝜋𝑓 = 2𝜋 𝑇 .

𝑬̇ 𝑯̇ 𝑑/𝑑𝑡 = 𝑗𝜔

𝛻 × 𝑯̇ = 𝑗𝜀 0 𝜔𝑬̇,

𝛻 × 𝑬̇ = −𝑗𝜇 0 𝜔𝑯̇,

𝛻. 𝑬̇ = 0,

𝛻. 𝑯̇ = 0,

𝛻 2 𝑈(𝒓) + 𝑘 2 𝑈(𝒓) = 0,

𝑈(𝒓) 𝑬̇(𝒓)

𝑯̇(𝒓) 𝑘 = 𝜔/𝑐

𝑈(𝑡) 𝑈(𝑟)

𝑈(𝑡) ω

(16)

〈𝑺〉 = 〈𝑅𝑒{𝑬̇(𝒓)𝑒𝑥𝑝(𝑗𝜔𝑡)} × 𝑅𝑒{𝑯̇(𝒓)𝑒𝑥𝑝(𝑗𝜔𝑡)}〉 = 𝑅𝑒{𝑺̇},

𝑺̇

𝑺̇ = 1

2 𝑬̇ × 𝑯̇ ,

𝐼 = |𝑅𝑒{𝑺̇}|

𝑬̇(𝒓) 𝑯̇(𝒓)

𝒌

𝑬̇(𝒓) = 𝑬 𝟎 𝑒𝑥𝑝(−𝑗𝒌𝒓),

𝑯̇(𝒓) = 𝑯 𝟎 𝑒𝑥𝑝(−𝑗𝒌𝒓),

𝑬 𝟎 𝑯 𝟎

𝑬̇(𝒓) 𝑯̇(𝒓)

𝒌 × 𝑯 𝟎 = −𝜔𝜀 0 𝑬 𝟎 ,

(17)

𝒌 × 𝑬 𝟎 = 𝜔𝜇 0 𝑯 𝟎 .

𝑬 𝑯

𝑯 𝑬

𝒌 𝑬 𝑯

𝑬 𝑯 𝒌

𝜆

𝜆 = 𝑐𝑇 = 𝑐 𝑓 = 2𝜋

𝑘 .

human eye. VIS is

(18)

𝑟 = 𝑟 0

𝒌 = 𝑘𝒆 𝟑 ,

𝒆 𝟏 , 𝒆 𝟐 , 𝒆 𝟑

𝑬 = 𝐸 0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝒆 𝟏 ,

𝑯 = 𝐻 0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝒆 𝟐 .

𝑬

+ 𝜋 2 ⁄

𝑬 = 𝐸 0 𝑐𝑜𝑠 (𝜔𝑡 − 𝑘𝑧 + 𝜋

2 ) 𝒆 𝟐 = 𝐸 0 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)𝒆 𝟐 , 𝑯 = 𝐻 0 𝑐𝑜𝑠 (𝜔𝑡 − 𝑘𝑧 + 𝜋

2 ) 𝒆 𝟏 = 𝐻 0 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)𝒆 𝟏 .

𝑬 = 𝐸 0 [𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝒆 𝟏 − 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)𝒆 𝟐 ],

𝑯 = 𝐻 0 [𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝒆 𝟏 + 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)𝒆 𝟐 ].

(19)

𝑬 𝒙 = 𝐸 0 𝑐𝑜𝑠(𝜔𝑡) 𝑎𝑛𝑑 𝑬 𝒚 = −𝐸 0 𝑠𝑖𝑛(𝜔𝑡),

𝑯 𝒙 = 𝐻 0 𝑠𝑖𝑛(𝜔𝑡) 𝑎𝑛𝑑 𝑯 𝒚 = 𝐻 0 𝑐𝑜𝑠(𝜔𝑡),

𝑬 𝟐 = 𝑬 𝒙 𝟐 + 𝑬 𝒚 𝟐

𝑯 𝟐 = 𝑯 𝒙 𝟐 + 𝑯 𝒚 𝟐 ,

𝑬 𝒙 = 𝐸 01 𝑐𝑜𝑠(𝜔𝑡 − 𝜃 1 ) 𝑎𝑛𝑑 𝑬 𝒚 = −𝐸 02 𝑐𝑜𝑠(𝜔𝑡 − 𝜃 2 ).

( 𝑬 𝒙 𝐸 01 )

𝟐

+ ( 𝑬 𝒚 𝐸 02 )

𝟐

− 2 𝑬 𝒙 𝐸 01

𝑬 𝒚

𝐸 02 𝑐𝑜𝑠(𝜃 2 − 𝜃 1 ) = 𝑠𝑖𝑛 2 (𝜃 2 − 𝜃 1 ).

𝜃 2 − 𝜃 1 = 𝜋

2 , 3𝜋

2 , …

𝐸 01 = 𝐸 02

𝜃 2 − 𝜃 1 = 0, 𝜋, 2𝜋, …

(20)

𝑬 𝒙 = ∓ 𝐸 02 𝐸 01 𝑬 𝒚 ,

𝑈 1 (𝒓), 𝑈 2 (𝒓),

𝑈(𝒓) = 𝑈 1 (𝒓) + 𝑈 2 (𝒓).

𝐼 1 = |𝑈 1 | 2 𝐼 2 = |𝑈 2 | 2

𝐼(𝒓) = |𝑈(𝒓)| 2 = |𝑈 1 (𝒓) + 𝑈 2 (𝒓)| 2 =

= |𝑈 1 (𝒓)| 2 + |𝑈 2 (𝒓)| 2 + 𝑈 1 (𝒓)𝑈 2 (𝒓) + 𝑈 1 (𝒓)𝑈 2 (𝒓).

𝑈 1 = √𝐼 1 𝑒 𝑗𝜑

1

𝑈 2 = √𝐼 2 𝑒 𝑗𝜑

2

, 𝜑 1 , 𝜑 2

(21)

𝐼 = 𝐼 1 + 𝐼 2 + 2√𝐼 1 𝐼 2 𝑐𝑜𝑠𝜑,

𝜑 = 𝜑 2 − 𝜑 1

𝑈 𝜑

𝑈 1 , 𝑈 2

𝐼

𝜑 𝑈 1 , 𝑈 2

𝜑 = 𝜑 2 − 𝜑 1

2√𝐼 1 𝐼 2 𝑐𝑜𝑠𝜑

𝑉 = 𝐼 𝑚𝑎𝑥 − 𝐼 𝑚𝑖𝑛 𝐼 𝑚𝑎𝑥 + 𝐼 𝑚𝑖𝑛

𝐼 𝑚𝑎𝑥 𝐼 𝑚𝑖𝑛

𝐼 𝑚𝑎𝑥 𝐼 𝑚𝑖𝑛 𝜑 = 0 𝜑 = 𝜋

𝑉 = 2√𝐼 1 𝐼 2 𝐼 1 + 𝐼 2 .

𝐼 1 = 𝐼 2

𝑉 = 1

(22)

𝐺(𝜏) = 〈𝑈 (𝑡)𝑈(𝑡 + 𝜏)〉 = 𝑙𝑖𝑚 1

𝑇→∞ 2𝑇

∫ 𝑈 (𝑡)𝑈(𝑡 + 𝜏)𝑑𝑡.

𝑇

−𝑇

𝐼 = 𝐺(0) 𝐺(𝜏) 𝜏 = 0

𝐺(𝜏) 𝐼 = 𝐺(0)

𝑔(𝜏) = 𝐺(𝜏)

𝐺(0) = 〈𝑈 (𝑡)𝑈(𝑡 + 𝜏)〉

〈𝑈 (𝑡)𝑈(𝑡)〉 ,

0 ≤ |𝑔(𝜏)| ≤ 1.

𝐼 = 𝐼 1 + 𝐼 2 + 2√𝐼 1 𝐼 2 |𝑔(𝜏)|𝑐𝑜𝑠𝜑

𝑉 = 2√𝐼 1 𝐼 2

𝐼 1 +𝐼 2 |𝑔(𝜏)|.

𝐼 1 = 𝐼 2

𝑉 = |𝑔(𝜏)|

(23)

|𝑔(𝜏)| = 1

|𝑔(𝜏)| = 0

0 < |𝑔(𝜏)| < 1

𝑟 1 , 𝑟 2

𝐺(𝒓 𝟏 , 𝒓 𝟐 , 𝜏) = 〈𝑈 (𝒓 𝟐 , 𝑡)𝑈(𝒓 𝟏 , 𝑡 + 𝜏)〉 =

= 𝑙𝑖𝑚 1

𝑇→∞ 2𝑇

∫ 𝑈 (𝒓 𝟐 , 𝑡)𝑈(𝒓 𝟏 , 𝑡 + 𝜏)𝑑𝑡

𝑇

−𝑇

,

𝑔(𝒓 𝟏 , 𝒓 𝟐 𝜏) = 𝐺(𝒓 𝟏 , 𝒓 𝟐 , 𝜏)

√𝐺(𝒓 𝟏 , 𝒓 𝟏 , 0)𝐺(𝒓 𝟐 , 𝒓 𝟐 , 0) ,

𝐺(𝒓 𝟏 , 𝒓 𝟏 , 0) 𝒓 𝟏 𝐺(𝒓 𝟐 , 𝒓 𝟐 , 0) 𝒓 𝟐

𝒓 𝟏 𝑡 𝒓 𝟐 𝑡 + 𝜏

(24)

𝜀(𝒓)

𝑈(𝑃)

𝑃

(25)

𝑃

𝑈(𝑃) 𝑃

𝑘 𝑈 0

𝑈(𝑃) = 𝑗𝑈 0

2𝜆 ∬ 𝑒𝑥𝑝 [−𝑗𝑘(𝑟 0 + 𝑟 1 )]

𝑟 0 𝑟 1

𝑆1

(𝑐𝑜𝑠(𝑟 1 , 𝒏) + 𝑐𝑜𝑠 (𝑟 0 , 𝒏))𝑑𝑆.

𝑗/2𝜆 (𝑐𝑜𝑠(𝑟 1 , 𝒏) + 𝑐𝑜𝑠 (𝑟 0 , 𝒏)) 𝒏

𝑈

𝑈

𝑐𝑜𝑠(𝑟 0 , 𝒏) = 1

𝑐𝑜𝑠(𝑟 1 , 𝒏)

(26)

𝑗/𝜆

𝑈(𝑃) = 𝑗𝑈 0

𝜆 ∬ 𝑒𝑥𝑝 [−𝑗𝑘(𝑟 0 + 𝑟 1 )]

𝑟 0 𝑟 1

𝑆1

𝑑𝑆,

(𝑥 0 , 𝑦 0 )

𝑃 0 (𝑥 0 , 𝑦 0 , 0) 𝑃 1 (𝑥, 𝑦, 𝑧)

|𝑃 0 𝑃 1 | 𝑟

𝑈(𝑃 1 )

𝑈(𝑃 1 ) = 𝑗

𝜆 ∬ ℎ(𝑥 0 , 𝑦 0 , 0) 𝑒𝑥𝑝 [−𝑗𝑘𝑟]

𝑆1 𝑟

𝑑𝑥 0 𝑑𝑦 0 ,

𝑟 = √(𝑥 0 − 𝑥) 2 + (𝑦 0 − 𝑦) 2 + 𝑧 2 . 𝑟

1 ℎ(𝑥

0

, 𝑦

0

, 0) ℎ(𝑥

0

, 𝑦

0

, 0) = 1 ℎ(𝑥

0

, 𝑦

0

, 0) ∈ 𝑆1

ℎ(𝑥

0

, 𝑦

0

, 0) = 0 ℎ(𝑥

0

, 𝑦

0

, 0)

(27)

𝑟 = √(𝑥 0 − 𝑥) 2 + (𝑦 0 − 𝑦) 2 + 𝑧 2 ~𝑧 + 1

2𝑧 [(𝑥 0 − 𝑥) 2 + (𝑦 0 − 𝑦) 2 ]

− 1

8𝑧 [(𝑥 0 − 𝑥) 2 + (𝑦 0 − 𝑦) 2 ] 2 + ⋯

𝑈(𝑥, 𝑦, 𝑧) = 𝑗

𝑧𝜆 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑧 [𝑥 2 + 𝑦 2 ]) × × ∬ ℎ(𝑥 0 , 𝑦 0 , 0) 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑧 [𝑥 0 2 + 𝑦 0 2 ])

−∞

×

× 𝑒𝑥𝑝 (−𝑗2𝜋[𝑥 0 𝑥

𝜆𝑧 + 𝑦 0 𝑦

𝜆𝑧 ]) 𝑑𝑥 0 𝑑𝑦 0 .

1

8 𝑘𝑧 ( 𝑥 2 + 𝑦 2 𝑧 2 )

2

≪ 𝜋 2 .

𝜋/2

𝑈(𝑥, 𝑦, 𝑧) ( 𝑥

2

+𝑦

2

𝑧

2

) = 𝑡𝑎𝑛 2 (𝑟 1 , 𝒏)

𝑡𝑎𝑛 4 (𝑟 1 , 𝒏) < 2𝜆 𝑧 .

𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑧 [𝑥 0 2 + 𝑦 0 2 ]) ≈ 1

𝑈(𝑥, 𝑦, 𝑧) = 𝑗

𝑧𝜆 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑧 [𝑥 2 + 𝑦 2 ]) ×

× ∬ 𝑒𝑥𝑝 (−𝑗2𝜋[𝑥 0 𝑥

𝜆𝑧 + 𝑦 0 𝑦

𝜆𝑧 ]) 𝑑𝑥 0 𝑑𝑦 0

−∞

𝑗𝜋

𝜆𝑧 [𝑥 0 2 + 𝑦 0 2 ] ≪ 𝜋

2

(28)
(29)

𝑈 0

𝑈 𝑟

ℎ ≈ |𝑈 𝑜 + 𝑈 𝑟 | 2 = |𝑈 𝑜 | 2 + |𝑈 𝑟 | 2 + 𝑈 𝑜 𝑈 𝑟 + 𝑈 𝑜 𝑈 𝑟

𝑈 𝑜

1

(30)

𝑈 𝑟

𝑈 = ℎ𝑈 𝑟 ≈ 𝑈 𝑟 (𝐼 𝑟 + 𝐼 0 ) + 𝐼 𝑟 𝑈 0 + 𝑈 𝑟 2 𝑈 0 .

𝐼 𝑟 𝑈 0 𝐼 𝑟 𝐼 𝑟

𝑈 𝑟 2 𝑈 0 𝑈 𝑟 2

𝑈 𝑟 (𝐼 𝑟 + 𝐼 0 )

𝐼 𝑟 𝐼 0

𝜗

𝑈 ≈ 𝑈 𝑟 (𝐼 𝑟 + 𝐼 0 ) + 𝐼 𝑟 𝑒𝑥𝑝(−𝑗𝑘𝑥 𝑠𝑖𝑛(𝜗)) 𝑈 0 + 𝑈 𝑟 2 𝑒𝑥𝑝(𝑗𝑘𝑥 𝑠𝑖𝑛(𝜗)) 𝑈 0 . 𝑒𝑥𝑝(−𝑗𝑘𝑥 𝑠𝑖𝑛(𝜗))

−𝜗 𝑈 𝑟

𝜗 𝑈 𝑟

(31)

θ

1/𝛬 𝜃

𝛬 = 𝜆 𝑠𝑖𝑛𝜃 .

Λ

𝛬 > 2∆𝜉,

∆𝜉 𝜃 𝑠𝑖𝑛𝜃 ≈ 𝜃

𝜃 𝑚𝑎𝑥

𝜃 𝑚𝑎𝑥 ≈ 𝜆

2∆𝜉 .

(32)

𝑑 0 𝑥

𝑑 0 𝑑

𝑡𝑎𝑛𝜃 = 𝑑 0

2 + 𝑁∆𝜉

2

𝑑 ,

𝑁 𝑥

𝜃 𝑚𝑎𝑥

𝜆 2∆𝜉 =

𝑑 0 2 +

𝑁∆𝜉 2 𝑑

𝑑 0 < 𝜆𝑑

∆𝜉 − 𝑁∆𝜉,

𝑑 0 𝑑

1

tanθ ≈ θ

(33)

𝑑 𝑣 𝑑 0 1

𝑓 = 1

𝑔 − 1

𝑏 𝑍 = 𝑑

𝑣

𝑑

0

= 𝑓

𝑔−𝑓

𝑡𝑎𝑛𝜃 = 𝑑

𝑣

2(𝑎+𝑏)

𝑎 = 𝑓𝑔

𝑔 − 𝑓 − 𝑓𝑑 0 (𝑔 − 𝑓)2𝑡𝑎𝑛𝜃 .

𝑑 = 𝑎 + 𝑏 𝑑 = 𝑎 + 𝑔 𝜃 𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝜃 𝑙𝑒𝑛𝑠𝑙𝑒𝑠𝑠

ℎ 𝑈𝑟

𝜉, 𝜂

𝑑

𝑥, 𝑦

(34)

𝜃 1 𝜃 2

𝑈𝑟 = 𝐴𝑒𝑥𝑝 𝑗2𝜋

𝜆 (𝑠𝑖𝑛𝜃 1 𝜉 + 𝑠𝑖𝑛𝜃 2 𝜂).

𝑑 𝑆𝑝ℎ

𝑈𝑟 = 𝐴𝑒

𝑗2𝜋𝑑 𝑆𝑝ℎ

𝜆 𝑒 𝜆𝑑 𝑗𝜋 (𝜉 2 +𝜂 2 ) .

𝑈 (𝑥, 𝑦)

𝑈(𝑥, 𝑦) = 1

𝑗𝜆 ∬ ℎ(𝜉, 𝜂)𝑈𝑟 (𝜉, 𝜂) 𝑒𝑥𝑝(𝑗𝑘𝑟) 𝑟 𝑑𝜉𝑑𝜂,

𝑟 = √𝑑 2 + (𝜉 − 𝑥) 2 + (𝜂 − 𝑦) 2 = 𝑑√1 + (𝜉−𝑥)

2

+(𝜂−𝑦)

2

𝑑

2

.

𝑟

𝑈(𝑥, 𝑦, 𝑑) = 𝑗

𝑑𝜆 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [𝑥 2 + 𝑦 2 ]) ×

× ∬ ℎ(𝜉, 𝜂) 𝑈𝑟 (𝜉, 𝜂)𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [𝜉 2 + 𝜂 2 ])

−∞

×

× 𝑒𝑥𝑝 (−𝑗2𝜋[𝜉 𝑥

𝜆𝑑 + 𝜂 𝑦

𝜆𝑑 ]) 𝑑𝜉𝑑𝜂.

𝛥𝜉 × 𝛥𝜂 𝑁 × 𝑀

𝜉 = 𝑘𝛥𝜉 𝑤ℎ𝑒𝑟𝑒 1 < 𝑘 < 𝑁 𝑎𝑛𝑑 𝜂 = 𝑙𝛥𝜂 𝑤ℎ𝑒𝑟𝑒 1 < 𝑙 < 𝑀.

𝑥 = 𝑛𝛥𝑥 𝑤ℎ𝑒𝑟𝑒 1 < 𝑛 < 𝑁 𝑎𝑛𝑑 𝑦 = 𝑚𝛥𝑦 𝑤ℎ𝑒𝑟𝑒 1 < 𝑚 < 𝑀.

(35)

𝑈(𝑛𝛥𝑥, 𝑚𝛥𝑦) = 𝑗

𝑑𝜆 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [(𝑛𝛥𝑥) 2 + (𝑚𝛥𝑦) 2 ]) ×

× ∑ ∑ ℎ(𝑘𝛥𝜉, 𝑙𝛥𝜂)

𝑀

𝑚=1 𝑁

𝑛=1

𝑈𝑟 (𝑘𝛥𝜉, 𝑙𝛥𝜂) ×

× 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [(𝑘𝛥𝜉) 2 + (𝑙𝛥𝜂) 2 ]) ×

× 𝑒𝑥𝑝 (−𝑗2𝜋 ( 𝑘𝑛 𝑁 + 𝑙𝑚

𝑀 )) 𝑑𝜉𝑑𝜂.

𝛥𝑥, 𝛥𝑦 𝑁∆𝜉 × 𝑀∆𝜂

𝑑 𝜆

∆𝑥 = 𝜆𝑑

𝑁∆𝜉 𝑎𝑛𝑑 ∆𝑦 = 𝜆𝑑 𝑀∆𝜂 .

𝑈(𝑛𝛥𝑥, 𝑚𝛥𝑦) = 𝑗

𝑑𝜆 𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [(𝑛𝛥𝑥) 2 + (𝑚𝛥𝑦) 2 ]) ×

× ℱ −1 {ℎ(𝑘∆𝜉, 𝑙∆𝜂)𝑈𝑟 (𝑘∆𝜉, 𝑙∆𝜂)𝑒𝑥𝑝 (− 𝑗𝜋

𝜆𝑑 [(𝑘𝛥𝜉) 2 + (𝑙𝛥𝜂) 2 ])}, ℱ −1

𝑈(𝑥, 𝑦) = ∬ ℎ(𝜉, 𝜂)𝑈𝑟 (𝜉, 𝜂)𝑔(𝑥 − 𝜉, 𝑦 − 𝜂) 𝑑𝜉𝑑𝜂

𝑔(𝑥, 𝑦) = 1 𝑗𝜆

𝑒𝑥𝑝(𝑗𝑘√𝑑 2 + 𝑥 2 + 𝑦 2 )

√𝑑 2 + 𝑥 2 + 𝑦 2 .

𝑔(𝑥, 𝑦, 𝜉, 𝜂) = 𝑔(𝑥 − 𝜉, 𝑦 − 𝜂)

𝑈(𝑥, 𝑦) = (ℎ𝑈𝑟 ) ∗ 𝑔 = ℱ −1 {ℱ(ℎ𝑈𝑟 )ℱ(𝑔)}.

(36)

𝑔(𝑛, 𝑚) =

= 1 𝑗𝜆

𝑒𝑥𝑝 (𝑗 2𝜋

𝜆 √ 𝑑 2 + (𝑛 − 𝑁/2) 2 ∆𝜉 2 + (𝑚 − 𝑀/2) 2 ∆𝜂 2 )

√𝑑 2 + (𝑛 − 𝑁/2) 2 ∆𝜉 2 + (𝑚 − 𝑀/2) 2 ∆𝜂 2 .

𝑁/2 𝑀/2

𝐺(𝑘, 𝑙) 𝑔(𝑛, 𝑚)

𝐺(𝑘, 𝑙)

𝐺(𝑘, 𝑙) = 𝑒𝑥𝑝 (

𝑗 2𝜋𝑑 𝜆

√ 1 −

𝜆 2 ( 𝑘 + 𝑁 2 ∆𝜉 2 2𝑑𝜆 )

2

𝑁 2 ∆𝜉 2 +

𝜆 2 ( 𝑙 + 𝑀 2 ∆𝜂 2 2𝑑𝜆 )

2

𝑀 2 ∆𝜂 2

) ,

𝑈(𝑥, 𝑦) = ℱ −1 {ℱ(ℎ𝑈𝑟 )𝐺}.

∆𝑥 = ∆𝜉 𝑎𝑛𝑑 ∆𝑦 = ∆𝜂.

𝛥𝜉 × 𝛥𝜂

𝑁∆𝜉 × 𝑀∆𝜂

(37)

𝑓 = (1/𝑑 + 1/𝑑̇) −1

𝑑̇ 𝑑̇ = 𝑑𝑀 𝑀

𝐿(𝜉, 𝜂) = 𝑒𝑥𝑝 [ 𝑗𝜋

𝜆 (1/𝑑 + 1/𝑑̇)(𝜉 2 + 𝜂 2 )]

𝑈(𝑥, 𝑦) = ℱ −1 {ℱ(𝐿 ℎ 𝑈𝑟 )ℱ(𝑔)}.

𝑑̇ 𝑑

𝑀 = 1

∆𝑥 = ∆𝜉 ∆𝑦 = ∆𝜂

𝑈(𝑛∆𝑥, 𝑚∆𝑦)

𝐼(𝑛∆𝑥, 𝑚∆𝑦) 𝜑(𝑛∆𝑥, 𝑚∆𝑦)

𝐼(𝑛∆𝑥, 𝑚∆𝑦) = |𝑈(𝑛∆𝑥, 𝑚∆𝑦)| 2 ,

𝜑(𝑛∆𝑥, 𝑚∆𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 𝐼𝑚{𝑈(𝑛∆𝑥, 𝑚∆𝑦)}

𝑅𝑒{𝑈(𝑛∆𝑥, 𝑚∆𝑦)} ,

(38)

𝑑 = 0.6 𝑚

𝑁 = 𝑀 = 2048 𝑝𝑖𝑥 ∆𝜉 = ∆𝜂 = 3.45 𝜇𝑚 𝜆 = 532𝑛𝑚

𝑁∆𝑥 = 𝜆𝑑

∆𝜉 = 92.5 𝑚𝑚

𝐼 𝑟 𝑈 0

𝑈 𝑟 2 𝑈 0 ∗ 𝑈 𝑟 (𝐼 𝑟 + 𝐼 0 )

(39)

𝑧 = −𝑑

ω 𝑅

𝒅(𝑅, 𝑡) = 𝒅(𝑅) 𝑠𝑖𝑛(𝜔𝑡 + 𝜓 0 (𝑅)).

𝛺(𝑅) 𝒅(𝑅)

𝑅 𝛿(𝑅)

𝑅 𝐵

𝛺(𝑅)

𝛺(𝑅) = 2𝜋 𝜆 𝛿(𝑅).

𝑆 𝐵

𝑅

(40)

𝑅 1 𝑅 2

𝑑 = 𝑅 2 − 𝑅 1

𝛿(𝑅) = |𝑆 𝑅 1 | + | 𝑅 1 𝐵| − |𝑆 𝑅 2 | − | 𝑅 2 𝐵| =

= 𝑠 1 𝑆 𝑅 1 + 𝑏 1 𝑅 1 𝐵 − 𝑠 2 𝑆 𝑅 2 − 𝑏 2 𝑅 2 𝐵,

𝑠 1 𝑠 2 𝑏 1 𝑏 2

𝑆 𝑅 𝑖 𝑅 𝑖 𝐵 𝑆

𝑅 𝑖 𝑅 𝑖 𝐵

𝒅(𝑅) = 𝑹 𝟏 𝑩 − 𝑹 𝟐 𝑩 = 𝑺 𝑹 𝟐 − 𝑺 𝑹 𝟏 .

𝑑 |𝑆 𝑅 𝑖 | | 𝑅 𝑖 𝐵|

s 1 , s 2

𝑏 1 , 𝑏 2 𝑏 = 𝑏 1 = 𝑏 2 𝑠 = 𝑠 1 = 𝑠 2

𝛿(𝑅) = 𝒅(𝑅)[𝒃(𝑅) − 𝒔(𝑅)].

𝒆(𝑅) = 2𝜋

𝜆 [𝒃(𝑅) − 𝒔(𝑅)].

(41)

𝑑

𝛺(𝑅) = 𝒅(𝑅)𝒆(𝑅).

𝑡 𝑅

𝑈 𝑂 (𝑅, 𝑡) 𝑈 0 (𝑅)

𝑈 𝑂 (𝑅, 𝑡) = 𝑈 0 (𝑅)𝑒𝑥 𝑝(𝑗𝛺(𝑅) 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 (𝑅)]).

ℎ ≈ |𝑈 𝑜 + 𝑈 𝑟 | 2 𝑈 𝑟

𝑇

ℎ(𝜉, 𝜂, 0) = ∫ ℎ(𝜉, 𝜂, 0, 𝑡)

𝑇 0

𝑑𝑡.

𝑈 𝑟𝑒𝑎𝑙 (𝑅, 𝑡) ≈ ∫ 𝑈 0 (𝑅)𝑒𝑥𝑝(𝑗𝛺(𝑅) 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 (𝑅)])

𝑇 0

𝑑𝑡.

∑ 𝐽 𝑛 (𝐴) 𝑒𝑥𝑝(𝑗𝑛𝐵)

𝑛=0

= 𝑒𝑥𝑝(𝑗𝐴 𝑠𝑖𝑛(𝐵)),

𝐽 𝑛

𝑈 𝑟𝑒𝑎𝑙 (𝑅, 𝑡) ≈ ∫ ∑ 𝑈 0 (𝑅)𝐽 𝑛 (𝛺(𝑅)) 𝑒𝑥𝑝(𝑗𝑛[𝜔𝑡 + 𝜓 0 (𝑅)])

𝑛=0 𝑇 0

𝑑𝑡 =

= ∑ 𝑈 0 (𝑅)𝐽 𝑛 (𝛺(𝑅)) ∫ 𝑒𝑥𝑝(𝑗𝑛[𝜔𝑡 + 𝜓 0 (𝑅)]) 𝑑𝑡

𝑇

0

𝑛=0

.

1

(42)

𝑇 ≫ 2𝜋 /𝜔

𝑈 𝑅𝑒𝑎𝑙 (𝑅) = 𝑙𝑖𝑚

𝑇→∞ ∑ 𝑈 0 (𝑅)𝐽 𝑛 (𝛺(𝑅)) ∫ 𝑒𝑥𝑝(𝑗𝑛 [𝜔𝑡 + 𝜓 0 (𝑅)]) 𝑑𝑡 =

𝑇

0

𝑛=0

= 𝑈 0 (𝑅)𝐽 0 (𝛺(𝑅)).

ψ 0 (𝑅)

𝐼(𝑅) = |𝑈(𝑅)| 2 = 𝐼 0 (𝑅)𝐽 0 2 (𝛺(𝑅)),

𝐼 0

𝑅 𝐽 0 2

𝐽 0 2 (0) = 1

𝐽 0 2 (𝛺(𝑅)) = 0

1

T ≈ 1 s

ω ≈ 0.01 s

2

𝑈 0 𝑈

𝑛𝑜𝑟𝑚

(𝑅) = 𝑈(𝑅)𝑈

0

(𝑅)/|𝑈

0

|

(43)

𝒅(𝑅) = (0, 0, 𝑑 𝑍 (𝑅)) 𝒔(𝑅) = (0,0, −1) 𝒃(𝑅) = (0,0,1)

𝒆(𝑅) = 2𝜋/𝜆(𝒃(𝑅) − 𝒔(𝑅)) = (0,0,4𝜋/𝜆)

𝑑 𝑍 = 𝑏 𝑚 𝜆/4𝜋 𝑏 𝑚 𝐽 0

(44)

𝐽 0 2

𝐽 0 2

𝑑 𝑍 (𝑅) = 𝑏 𝑚 𝜆 4𝜋 ⁄ 𝑏 𝑚 𝐽 0

𝑏 𝑚

(45)

𝐽 𝑛 (𝛺) = ∑ (−1) 𝑖 𝛺 𝑛+2𝑖 /(2 𝑛+2𝑖 𝑖! (𝑛 + 𝑖)!)

∞ 𝑖=0

|Ω| < ∞ 𝛺

𝛺 → 0

𝛺→0 𝑙𝑖𝑚

𝑑𝐽 0

𝑑𝛺 = 0.

(46)

𝐼 = 𝐽 0 2 (𝛺 → ∞ ) ≈ 𝑐𝑜𝑠 2 (𝛺 − 𝜋 4 ⁄ )

𝛺 = (4𝜋 𝜆 ⁄ )𝑑 𝑍

∆ 𝛺 = 𝜋 ∆ 𝑑 𝑍 = 𝜆/4

𝜆/8

1

𝐼 ≈ 𝑐𝑜𝑠 2 (4𝜋𝑑 𝑍 ⁄ − 𝜋 4 𝜆 ⁄ )

2

𝑠 = 𝜆𝑑𝜋

2𝑁∆𝜉

𝑠 = 𝜋

2 ∆𝑥~2∆𝑥

(47)

𝜆/16

5 𝜇𝑚

(48)

𝑓 0 𝐵 𝑓 𝑚𝑜𝑑

𝑣

Λ = 𝑣 𝑓 ⁄

𝑚𝑜𝑑

(49)

𝜆 = 𝑐 𝑓 ⁄ 0 𝜃 𝐵𝐴

𝑠𝑖𝑛𝜃 𝐵𝐴 = 𝜆 2𝛬

𝑓 1 = 𝑓 0 (1 + 𝑣

𝑐 ) 𝑠𝑖𝑛𝜃 𝐵𝐴 ≈ 𝑓 0 + 𝑓 𝑚𝑜𝑑 .

𝑓

𝑚𝑜𝑑

𝑢(𝑡) = 𝐴(𝑡)𝑠𝑖𝑛 (2𝜋𝑓 𝑚𝑜𝑑 𝑡 − 𝜙(𝑡)),

𝐴(𝑡) 𝜙(𝑡)

𝑣

𝛥𝑛(𝑦, 𝑡) = 𝐶𝑢(𝑡 − 𝜏),

𝐶 𝜏 = 𝑡 0 − 𝑦 𝑣 ⁄

𝑡 0 = 𝐿/2𝑣

𝑈 0 (𝑦, 𝑡) = 𝑈 𝑖𝑛 𝑒𝑥𝑝 (𝑗 2𝜋𝑑𝐶

𝜆 𝐴(𝑡 − 𝜏)𝑠𝑖𝑛[2𝜋𝑓 𝑚𝑜𝑑 (𝑡 − 𝜏) − 𝜙(𝑡 − 𝜏)]),

𝑈 𝑖𝑛

(50)

𝑈 +1 (𝑦, 𝑡) = 𝜋𝑑𝐶

𝜆 𝑈 𝑖𝑛 𝐴(𝑡 − 𝜏)𝑒𝑥𝑝(−𝑗𝜙(𝑡 − 𝜏)) ×

× 𝑒𝑥𝑝 (𝑗 2𝜋𝑦

𝛬 ) 𝑒𝑥𝑝(𝑗2𝜋𝑓 𝑚𝑜𝑑 (𝑡 − 𝑡 0 )).

(51)

𝑈 𝑜 𝑈 𝑟

𝑈 𝐵𝐶𝑜 , 𝑈 𝐵𝐶𝑟

ℎ ≈ |𝑈 𝑜 𝑈 𝐵𝐶𝑜 + 𝑈 𝑟 𝑈 𝐵𝐶𝑟 | 2 =

= |𝑈 𝑜 𝑈 𝐵𝐶𝑜 | 2 + |𝑈 𝑟 𝑈 𝐵𝐶𝑟 | 2 + 𝑈 𝑜 𝑈 𝐵𝐶𝑜 𝑈 𝑟 𝑈 𝐵𝐶𝑟 + 𝑈 𝑜 𝑈 𝐵𝐶𝑜 𝑈 𝑟 𝑈 𝐵𝐶𝑟 . 𝐴, 𝜙, 𝑓 𝑚𝑜𝑑

𝐼 𝑟 𝑈 0

𝜗

𝑈 𝑟 = 𝑒𝑥𝑝(−𝑗𝑘𝑥 𝑠𝑖𝑛(𝜗))

𝜗 = 0

𝒰 𝓇 , 𝒰 , ℋ 𝑈 𝑟 , 𝑈 𝑜

ℋ ≈ (𝒰 𝓇 + 𝒰 ) ∗ (𝒰 𝓇 + 𝒰 ) =

= 𝒰 𝓇 ⋆ 𝒰 𝓇 + 𝒰 ⋆ 𝒰 + 𝒰 ∗ 𝒰 𝓇 + 𝒰 ∗ 𝒰 𝓇 ,

∗,⋆

𝒰 𝓇 = ℱ{𝑈 𝑟 } = 𝛿(𝑓 − 𝑓 𝑐 )

𝑓 𝑐 = 𝑠𝑖𝑛(𝜗)

𝜆

𝛿 ∗ 𝑔 = 𝑔 ∗ 𝛿 = 𝑔 𝑔

ℋ ≈ 𝛿 ⋆ 𝛿 + 𝒰 ⋆ 𝒰 + 𝒰 ∗ 𝛿 + 𝛿 ∗ 𝒰 = 𝛿 + 𝒰 ⋆ 𝒰 + 𝒰 + 𝒰 .

(52)

𝑓 𝐵 𝑑 0

𝑑 𝑓 𝐵 = 𝑑

0

𝑑𝜆 𝒰

𝒰

𝑓 𝑐

𝜗 𝜗

𝑓 𝑐 < 𝑓 𝑚𝑎𝑥 = 1

2∆𝜉

𝑓 𝑐 > 1.5𝑓 𝐵 = 1.5 𝑑

0

𝑑𝜆

𝒰

〈−𝑓 𝑚𝑎𝑥, 𝑓 𝑚𝑎𝑥

𝑓 𝑐 = 0

(53)

𝑈 𝑟 = |𝑈 𝑟 | 𝑈 𝑜 = |𝑈 𝑜 |𝑒𝑥𝑝(−𝑗𝜑 𝑜 )

ℎ ≈ |𝑈 𝑟 | 2 + |𝑈 𝑜 | 2 + 2|𝑈 𝑟 ||𝑈 𝑜 | 𝑐𝑜𝑠(𝜑 𝑜 )

ℎ ≈ 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑 𝑜 ),

𝑎 = |𝑈 𝑟 | 2 + |𝑈 𝑜 | 2 𝑏 = 2|𝑈 𝑟 ||𝑈 𝑜 |

𝑈 0 = |𝑈 𝑜 |exp (−𝑗𝜑 𝑜 )

|𝑈 𝑜 | = √𝐼 𝑜

|𝑈 𝑜 |

𝜑 𝑜

∆𝜑

𝑁

𝑖 ≈ 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑 𝑜 + ∆𝜑 𝑖 ),

𝑖 𝑖 = 1,2,3, … 𝑁 𝜑 𝑜

𝜑 𝑜 (𝜉, 𝜂) ∆𝜑 𝑖 (𝑡)

∆𝜑 𝑖

𝜑 𝑜

(54)

𝑓 𝑅−𝑚𝑜𝑑 𝑓 𝑂−𝑚𝑜𝑑

𝜔 𝑟 = 2𝜋(𝑓 0 + 𝑓 𝑅−𝑚𝑜𝑑 ) 𝜔 𝑂 = 2𝜋(𝑓 0 +

𝑓 𝑂−𝑚𝑜𝑑 ) 𝑓 0 𝜔 𝑅 ≠ 𝜔 𝑂

ℎ ≈ 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑 𝑜 + (𝜔 𝑂 − 𝜔 𝑅 )𝑡).

𝜔 𝐵 = 2(𝜔 𝑂 − 𝜔 𝑅 ) = 2∆𝜔

∆𝜑 𝑖

𝐹𝑃𝑆

∆𝜑

∆𝜑(∆𝜔) = 𝜑(𝑡) − 𝜑 (𝑡 + 1

𝐹𝑃𝑆 ) = (𝜔 𝑂 − 𝜔 𝑅 ) 1

𝐹𝑃𝑆 = ∆𝜔 𝐹𝑃𝑆 .

∆𝜑 ℎ 𝑖𝑖+1

𝐹𝑃𝑆 = 6.5 𝐻𝑧 ∆𝜔

∆𝜔

(55)

∆𝜑 = 𝜋/2

𝐹𝑃𝑆 = 6.5 𝐻𝑧

∆𝑓 = 1.625𝐻𝑧

∆𝜑(∆ω) 𝑖 ∆𝜑 𝑖

∆𝜑 𝑖 = 0, 𝜋/2, 𝜋, 3𝜋 /2 𝑖 = 1,2,3,4

1 ≈ 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑 𝑜 ),

(56)

2 ≈ 𝑎 + 𝑏 𝑐𝑜𝑠 (𝜑 𝑜 + 𝜋

2 ) = 𝑎 − 𝑏 𝑠𝑖𝑛(𝜑 𝑜 ), ℎ 3 ≈ 𝑎 + 𝑏 𝑐𝑜𝑠(𝜑 𝑜 + 𝜋) = 𝑎 − 𝑏 𝑐𝑜𝑠(𝜑 𝑜 ),

4 ≈ 𝑎 + 𝑏 𝑐𝑜𝑠 (𝜑 𝑜 + 3𝜋

2 ) = 𝑎 + 𝑏 𝑠𝑖𝑛(𝜑 𝑜 ).

𝑎, 𝑏, 𝜑 𝑜 𝑎

1 − ℎ 3 = 2𝑏𝑐𝑜𝑠(𝜑 𝑜 ),

4 − ℎ 2 = 2𝑏𝑠𝑖𝑛(𝜑 𝑜 ).

𝑈 𝑜 = |𝑈 𝑜 | exp(−𝑗𝜑 𝑜 ) = |𝑈 𝑜 |(cos(𝜑 𝑜 ) − 𝑗𝑠𝑖𝑛(𝜑 𝑜 ))

𝑈 𝑜 = 𝐴((ℎ 1 − ℎ 3 ) − 𝑗(ℎ 4 − ℎ 2 )),

𝐴 𝐴 ≈ 1/4|𝑈 𝑟 |

𝑈 0

𝑑 0−𝑥 = 49 𝑚𝑚 𝑑 0−𝑦 = 21 𝑚𝑚

𝑑 = 600 𝑚𝑚

𝑁 = 𝑀 = 2048 𝑝𝑖𝑥 ∆𝜉 = ∆𝜂 = 3.45 𝜇𝑚

𝜆 = 532 𝑛𝑚

𝒰

(57)

𝑓 𝑐−𝜂

𝑓 𝐵−𝜂 = 𝑑

0−𝑦

𝑑𝜆 = 66 𝑚𝑚 −1

𝒰 ⋆ 𝒰 𝑓 𝑐−𝜂 < 1.5𝑓 𝐵

𝜔 𝑜 = 2𝜋 𝑓 𝑂 𝑓 𝑂 = 40𝑀𝐻𝑧

𝑓 𝑟−𝑚𝑜𝑑 = 𝐹𝑃𝑆 4 ⁄ = 1.625𝐻𝑧

∆𝜑 = 𝜋/2

𝜔 𝑟 = 2𝜋(𝑓 0 + 𝑓 𝑟−𝑚𝑜𝑑 )

(58)

𝜂 𝑁 𝒰

𝜂 = ∑ |𝒰 𝑓

𝑏

(𝑓 𝑏 )| 2 ⁄ 𝑁 𝒰

𝑑 = 350 𝑚𝑚

𝑓 𝐵−𝜂 = 121𝑚𝑚 −1

𝑓 𝐵−𝜉 = 263 𝑚𝑚 −1 𝑓 𝑚𝑎𝑥 = 290 𝑚𝑚 −1

𝑑 = 350 𝑚𝑚

1

𝜂

(59)

𝑓 0 + 𝑓 𝑅−𝑚𝑜𝑑

𝑈 𝐵𝐶𝑟 = 𝑒𝑥𝑝(𝑗2𝜋(𝑓 0 + 𝑓 𝑅−𝑚𝑜𝑑 )𝑡) = 𝑒𝑥𝑝 (𝑗(𝜔 0 + 𝜔 𝑅−𝑚𝑜𝑑 )𝑡)

(60)

𝜔 𝑅−𝑚𝑜𝑑 = 𝑚𝜔 𝜔

𝜔 0 = 2𝜋𝑓 0 : 𝑈 𝐵𝐶𝑜 = 𝑒𝑥𝑝 (𝑗𝜔 0 𝑡)

𝑈 𝑟𝑒𝑎𝑙 (𝑅, 𝑡) ≈ ∫ 𝑈 𝑜 𝑈 𝐵𝐶𝑜 𝑈 𝑟 𝑈 𝐵𝐶𝑟

𝑇 0

𝑑𝑡 =

= ∫ 𝑒𝑥𝑝(𝑗𝛺(𝑅) 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 (𝑅)])

𝑇 0

𝑒𝑥𝑝(−𝑗𝑚𝜔𝑡) 𝑑𝑡,

𝑈 𝑟 ∗ = 1

𝑈 𝑟𝑒𝑎𝑙 (𝑅, 𝑡) ≈ 𝑙𝑖𝑚

𝑇→∞ ∑ 𝐽 𝑛 (𝛺(𝑅)) ∫ 𝑒𝑥𝑝(𝑗𝑛[𝜔𝑡 + 𝜓 0 (𝑅)]) ×

𝑇

0

𝑛=1

× 𝑒𝑥𝑝(−𝑗𝑚𝜔𝑡) 𝑑𝑡.

𝑛 = 𝑚

|𝑈(𝑅)| ≈ |𝐽 𝑚 (𝛺(𝑅))|.

𝛺(𝑅) ≪ 1

|𝑈| ≈ |𝐽 0 (0)|

|𝑈| ≈ |𝐽 1 (0)|

lim Ω→0

𝑑𝐽

𝑚2

𝑑Ω = 0

(61)

𝑙𝑖𝑚 𝛺→0

𝑑𝐽 1 𝑑𝛺 = 0.5

𝑓 = 𝜔 2𝜋 ⁄ = 6000 𝐻𝑧

𝑢

𝑑 𝑍 = 𝐶 𝑣 𝑢 𝐶 𝑣

𝑓 𝑜 = 𝑓 𝑟 = 𝑓 0 = 40 𝑀𝐻𝑧

𝑓 0

|𝑈 𝐽0 | ≈ |𝐽 0 (

𝜆 𝐶 𝑣 𝑢)| 𝒆 =

(0, 0, 4𝜋 𝜆) ⁄

𝑢 = 0.05 𝑉

Δ𝑢 = 0.05 𝑉

𝑢 = 0.5 𝑉

(62)

𝑓 𝑟 = 𝑓 0 + 𝑓 𝑅−𝑚𝑜𝑑 =

𝑓 0 + 𝑚𝑓 𝑚 = 1 𝑓 𝑟 = 40.006 𝑀𝐻𝑧

𝑓 𝑜 = 𝑓 0 = 40 𝑀𝐻𝑧

|𝑈 𝐽1 | ≈ |𝐽 1 (

𝜆 𝐶 𝑣 𝑢)|

(63)

|𝑈 𝐽0 |

|𝑈 𝐽1 |

|𝐽 0 ( 4𝜋

𝜆 𝐶 𝑣 𝑢)|

|𝐽 1 ( 4𝜋

𝜆 𝐶 𝑣 𝑢)|

𝐶 𝑣

|𝑈 𝐽0 | |𝑈 𝐽1 |

𝐶 𝑣 = 589 |𝑈 𝐽0 | 𝐶 𝑣 = 585 |𝑈 𝐽1 |

𝑑 𝑍−𝑛𝑜𝑛 = 294 .5 𝑛𝑚 𝑑 𝑍−𝑚𝑜𝑑 = 292 .5 𝑛𝑚

𝑏 2

𝐶 𝑣 =

589 𝑑 𝑍 = 235.6 𝑛𝑚

𝐶 𝑣 = 141 𝐶 𝑣 = 136

|𝑈 𝐽0 | |𝑈

𝐽1

|

𝑑 𝑍−𝑛𝑜𝑛 (𝑢 = 0.5) = 70.5 𝑛𝑚 𝑑 𝑍−𝑚𝑜𝑑 (0.5) = 68 𝑛𝑚

(64)

𝛺 = 4𝜋

𝜆 𝑑 𝑧

𝐽 1−𝑚𝑎𝑥 (𝛺 = 1.84) = 0.58 𝛺 < 0.5

𝐽 1 (𝛺) ≈ 1

2 𝛺

|𝑈 𝐽1 |~0.001

(65)

𝑑 𝑧 = 2 𝜆 4𝜋 |𝑈 𝐽1 |,

𝑑 𝑧 ~0.085 𝑛𝑚 𝑑 𝑧 ~ 𝜆

6000

|𝑈

𝐽1

|

〈|𝑈

𝐽1

|〉 〉 |𝑈 𝐽1 |

〈|𝑈 𝐽1 |〉

(66)

〈|𝑈 𝐽1 |〉

|𝑈 𝐽1 |

𝑝(𝐼) = 𝑒𝑥𝑝 (− 〈𝐼〉 𝐼 )

𝐼 〈𝐼〉

(67)

𝑑 𝑧 ~0.42 𝑛𝑚

|𝑈 𝐽1 (𝑅)| = |𝑈 0 (𝑅)||𝐽 1 (𝛺(𝑅))|,

|𝑈 0 (𝑅)|

𝑆

𝑆(𝑅) = 𝑑|𝑈 𝐽1 (𝑅)|

𝑑𝑑 𝑍 =

𝑑 (|𝑈 0 (𝑅)| |𝐽 1 ( 4𝜋

𝜆 𝑑 𝑍 (𝑅))|) 𝑑𝑑 𝑍

𝐽 1 (Ω) = 1/2[𝐽 0 (Ω) − 𝐽 2 (Ω)]

𝑆(𝑅) = 2𝜋

𝜆 |𝑈 0 (𝑅)| (|𝐽 0 ( 4𝜋

𝜆 𝑑 𝑍 (𝑅))| − |𝐽 2 ( 4𝜋

𝜆 𝑑 𝑍 (𝑅))|).

|𝑈 0 (𝑅)|

𝐽 0 (Ω(𝑅)) ≈ 1 𝐽 2 (Ω(𝑅)) ≈ 0

𝑆(𝑅) = 𝑑|𝑈 𝐽1 (𝑅)|

𝑑𝑑 𝑍 ≈ 2𝜋

𝜆 |𝑈 0 (𝑅)|,

|𝑈 0 (𝑅)| 𝑅

|𝑈 0 (𝑅)| |𝑈 0 | 𝑅1 |𝑈 0 (𝑅1)| = 1

|𝑈 0 (𝑅2)| = 0.25 𝑅2

|𝑈

0

(𝑅)|

(68)

𝑅1

|𝑈 𝐽1 (𝑅1)|~0.001

∆|𝑈 𝐽1 |

𝑑 𝑍−𝑀𝐼𝑁 (𝑅2) = 𝜆

2𝜋

∆|𝑈

𝐽1

|

|𝑈

0

(𝑅2)| = 𝜆

2𝜋

∆|𝑈

𝐽1

| 0.25 = 5 𝜆

2𝜋 ∆|𝑈 𝐽1 |

|𝑈 𝐽0 |

|𝑈

0

(𝑅)|

(69)

𝑓 𝑟 = 𝑓 0 + 𝑚𝑓 =

40𝑀𝐻𝑧 + 50 ∗ 100𝐻𝑧 |𝑈 𝐽50 |

|𝑈 𝐽50 |

|𝑈

𝐽0

| |𝑈 𝐽50 | |𝑈 𝐽150 |

𝑓 0 1

𝑢(𝑡) = 𝑠𝑖𝑛 (2𝜋𝑓 0 𝑡 − 𝜙(𝑡))

𝑓

0

= 40 𝑀𝐻𝑧

(70)

𝑈 +1 = 𝑈 𝑖𝑛 𝑒𝑥𝑝(−𝑗𝜙)𝑒𝑥𝑝(𝑗2𝜋𝑓 0 )).

𝜔 𝜙 𝐵𝐶

𝑈 𝑟 𝑈 𝐵𝐶𝑟 = 𝑒𝑥𝑝(𝑗𝜙 𝐵𝐶 𝑠𝑖𝑛(𝜔𝑡))𝑒𝑥𝑝(𝑗2𝜋𝑓 0 ),

𝑈 𝑜 𝑈 𝐵𝐶𝑜 = 𝑒𝑥𝑝(𝑗𝛺 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 ]) 𝑒𝑥𝑝(𝑗2𝜋𝑓 0 ).

𝑈 𝑟𝑒𝑎𝑙 ≈ ∫ 𝑈 0 𝑇 𝑜 𝑈 𝐵𝐶𝑜 𝑈 𝑟 𝑈 𝐵𝐶𝑟 𝑑𝑡 = ∫ 𝑒𝑥𝑝 (𝑗(𝛺 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 𝑇 0 ] − 𝜙 𝐵𝐶 𝑠𝑖𝑛(𝜔𝑡))) 𝑑𝑡 = 𝐽 0 (√𝛺 2 − 2𝛺𝜙 𝐵𝐶 𝑐𝑜𝑠 𝜓 0 + 𝜙 𝐵𝐶 2 )

𝜓 0 = 0

|𝑈 𝑟𝑒𝑎𝑙 | ≈ |𝐽 0 (𝛺 − 𝜙 𝐵𝐶 )|.

𝛺 = 𝜙 𝐵𝐶

𝜙

𝐵𝐶

𝜙 𝐵𝐶 = 0 𝑟𝑎𝑑

𝜋/31 2𝜋

(71)

|𝐽 0 (𝛺 − 𝜙 𝐵𝐶 )|

〈0, 𝜋〉

𝑐𝑜𝑠(𝑥 − 𝑦) = 𝑐𝑜𝑠(𝑥)𝑐𝑜𝑠(𝑦) + 𝑠𝑖𝑛(𝑥)𝑠𝑖𝑛(𝑦)

𝛺

𝛺

𝜙 𝐵𝐶

(72)

|𝑈 𝑖 | = 𝑎 + 𝑏|𝐽 0 (𝛺 − 𝜙 𝐵𝐶𝑖 )|~𝑎 + 𝑏|𝑐𝑜𝑠(𝛺 − 𝜙 𝐵𝐶𝑖 )|,

𝑎 𝑏

𝜙 𝐵𝐶𝑖 = 𝜋/4

|𝑈 1 |~𝑎 + 𝑏|𝑐𝑜𝑠(𝛺 )|,

|𝑈 2 |~𝑎 + 𝑏|𝑐𝑜𝑠(𝛺 + 𝜋/4)| = 𝑎 + 𝑏|𝑠𝑖𝑛(𝛺 )|,

|𝑈 3 |~𝑎 + 𝑏|𝑐𝑜𝑠(𝛺 + 𝜋/2)| = 𝑎 − 𝑏|𝑐𝑜𝑠(𝛺 )|,

|𝑈 4 |~𝑎 + 𝑏|𝑐𝑜𝑠(𝛺 + 3𝜋/4)| = 𝑎 − 𝑏|𝑠𝑖𝑛(𝛺 )|.

𝑎, 𝑏, 𝛺 𝑎

|𝑈 1 | − |𝑈 3 | = 2𝑏|𝑐𝑜𝑠(𝛺 )|,

|𝑈 4 | − |𝑈 2 | = 2𝑏|𝑠𝑖𝑛(𝛺 )|,

𝛺

𝛺 = 𝑎𝑡𝑎𝑛 ( |𝑈 4 | − |𝑈 2 |

|𝑈 1 | − |𝑈 3 | ).

𝜋/4

𝛺 = 𝑎𝑡𝑎𝑛 ( −4𝐴 − 12𝐵 + 16𝐶 + 24|𝑈 7 |

3𝐷 + 4𝐴 − 12𝐸 − 21𝐹 − 16𝐺 ),

(73)

𝐴 = |𝑈 2 | − |𝑈 12 |, 𝐵 = |𝑈 3 | + |𝑈 11 | + |𝑈 4 | + |𝑈 10 |, 𝐶 = |𝑈 6 | + |𝑈 8 |, 𝐷 = |𝑈 1 | − |𝑈 13 |, 𝐸 =

|𝑈 4 | − |𝑈 10 | 𝐹 = |𝑈 5 | − |𝑈 9 | 𝐺 = |𝑈 6 | − |𝑈 8 | 𝜋/8

|𝑐𝑜𝑠 𝑥| |𝐽 0 (𝑥)|

𝛺 〈−𝜋, 𝜋〉

1

2𝜋 𝛺

𝛺

∆= 𝛺 − 𝛺 |𝑐𝑜𝑠 𝑥| |𝐽 0 (𝑥)|

𝛺 = 𝛺 + ∆

〈−𝝅, 𝝅〉

〈−𝜋/2, 𝜋/2〉

(74)

Ω Ω

𝛺

|𝑈 𝐶𝑎𝑙 | = |𝐽 0 (Ω)|

|𝑈 𝑀𝑒𝑎𝑠 |

𝛺

𝑑 𝑧 = 𝜆

4𝜋 𝛺

𝑑 𝑧 (𝑅)

̅̅̅̅̅̅̅̅ = 1

𝑁 ∑ 𝑁 𝑛=1 𝑑 𝑧 𝑛 (𝑅)

𝜎(𝑅) = √ 1

𝑁 ∑ 𝑁 𝑛=1 (𝑑 𝑧 𝑛 (𝑅) − 𝑑 ̅̅̅̅̅̅̅̅) 𝑧 (𝑅) 2

(75)

𝜎(𝑅) = Α + Β 𝑑 ̅̅̅̅̅̅̅̅ 𝑧 (𝑅)

1

𝜎(𝑅) = 0.05 + 0.01 𝑑 ̅̅̅̅̅̅̅̅ [𝑛𝑚], 𝑧 (𝑅)

100𝜎 𝑑

𝑧

̅̅̅̅ = 5

𝑑

𝑧

̅̅̅̅ + 1 [%]

𝑑 𝑧

̅̅̅̅ = 300 𝑛𝑚 𝜎 = 3. 05 𝑛𝑚 ~ 1.17 %

σ

(76)

𝜎

3𝜎 3𝜎 = 9.2 𝑛𝑚~3.5% 𝑑 ̅̅̅̅ = 300 𝑛𝑚 𝑧

𝜆/6000

20𝜆 120000

1

1

20𝜆

(77)

𝑢 𝐵𝐶𝑅 (𝑡) = 𝑠𝑖𝑛 (2𝜋𝑓 𝑅−𝑚𝑜𝑑 𝑡 − 𝜙(𝑡)) 𝑢 𝐵𝐶𝑂 (𝑡) = 𝑠𝑖𝑛 (2𝜋𝑓 𝑂−𝑚𝑜𝑑 𝑡)

𝑈 𝐵𝐶𝑟 = 𝑒𝑥𝑝(−𝑗𝜙)𝑒𝑥𝑝(𝑗2𝜋𝑓 𝑅−𝑚𝑜𝑑 ))

𝑈 𝐵𝐶𝑜 = 𝑒𝑥𝑝(𝑗2𝜋𝑓 𝑅−𝑚𝑜𝑑 ))

ω

𝜙 𝐵𝐶 : 𝜙 = 𝜙 𝐵𝐶 sin (𝜔𝑡)

𝑚 𝑓

𝐹𝑃𝑆

𝜋/2 𝑓 𝑅−𝑚𝑜𝑑 = 𝑓 0 + 𝑚𝑓 + 𝐹𝑃𝑆 4 ⁄

𝑈 𝐵𝐶𝑜

𝑒𝑥𝑝 (𝑗𝛺(𝑅) 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 (𝑅)])

𝑈 𝑜 𝑈 𝐵𝐶𝑜 = 𝑈 0 𝑒𝑥𝑝 (𝑗𝛺(𝑅) 𝑠𝑖𝑛[𝜔𝑡 + 𝜓 0 (𝑅)])𝑒𝑥𝑝(𝑗2𝜋𝑓 𝑅−𝑚𝑜𝑑 ))

𝑈 𝑜

𝑈 𝑟𝑒𝑎𝑙 ≈ 𝑈 0 𝑛=−∞ 𝐽 𝑛 (𝛺 − 𝜙 𝐵𝐶 ) ∫ −𝑇/2 𝑇/2 𝑒𝑥𝑝(𝑗𝑛[𝜔𝑡 + 𝜓 0 ]) × × 𝑒𝑥𝑝(−𝑗𝑚𝜔𝑡) 𝑑𝑡

|𝑈 𝑟𝑒𝑎𝑙 | ≈ |𝑈 0 ||𝐽 𝑛 (𝛺 − 𝜙 𝐵𝐶 )|

1

𝐹𝑃𝑆 𝑀 ⁄ 𝑀

(78)

1000 𝐻𝑧 200 𝜇𝑉 200 𝑚𝑉

𝑖 = 0,1,2 … 12 𝜙 𝐵𝐶 = 𝑖𝜋/8

𝑑 𝑧

(79)

0.1 𝑛𝑚

100000

|𝑈 𝐽𝑛 | = |𝑈 0 | (1 + 𝑉 |𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )|) 𝑛 𝑆 𝑛 𝐸∗ + 𝑛 𝐸+ + 𝑛 𝐷

|𝑈 0 |

𝑉

𝑛 𝑆

𝑛 𝐸+ 𝑛 𝐸∗

𝑛 𝐷

𝛺 𝐷

𝐴 𝐵

|𝑈 𝐽𝑛 | = 𝐴 + 𝐵 |𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )|.

𝑉 = 2|𝑈 𝑟 ||𝑈 𝑜 |/(|𝑈 𝑟 | 2 + |𝑈 𝑜 | 2 ) 𝐵 = |𝑈 0 |𝑉𝑛 𝑆 𝑛 𝐸∗

|𝐽 𝑛 (

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )| ≪ 1 𝑉 = 1

|𝑈 𝑟 | = |𝑈 𝑜 | 𝐴

𝛺 𝑆

(80)

~𝑈 𝐽𝑛

~𝑈 0 𝑈 = 𝑅𝑒{𝑈} +

𝑗𝐼𝑚{𝑈}

𝑈 0 𝑈 𝐽𝑛

𝑈 0 = 𝐵 0 𝑒𝑥𝑝[𝑗(𝛺 𝑆 + 𝛺 𝐷0 )],

𝑈 𝐽𝑛 = 𝐵 1 𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 ) 𝑒𝑥𝑝[𝑗(𝛺 𝑆 + 𝛺 𝐷1 )],

𝑈 𝐽𝑛 𝑈 0 |𝑈 0 |

〈 𝑈 𝐽𝑛 𝑈 0

|𝑈 0 | 2 〉 = 𝐵 1

𝐵 0 𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 ) 𝑒𝑥𝑝[𝑗(𝛺 𝐷1 − 𝛺 𝐷0 )].

𝛺 𝑆 ∆𝛺 𝐷 = 𝛺 𝐷1 − 𝛺 𝐷0

𝑈 0 𝑈 𝐽𝑛

𝑈 𝐽𝑛 𝑈 0 ∗ /|𝑈 0 | 2

〈 〉

𝑎𝑡𝑎𝑛 ( 𝐼𝑚{𝑈}

𝑅𝑒{𝑈} ) = ∆𝛺 𝐷 + 𝜋

2 𝑠𝑔𝑛 (𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 ) + 1)

(81)

|𝑈 𝐽𝑛 | = 𝐵̃ |𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )|,

𝐵̃ = 𝐵 1 /𝐵 0

𝑈 𝐽𝑛 𝑈 0 𝐵 1 = 𝐵 0

|𝑈 𝐽𝑛 |~|𝑈 𝐽𝑛 𝑈 0 ∗ /|𝑈 0 | 2 |

𝐵̃, 𝜆, 𝜙 𝐵𝐶

𝑑|𝑈 𝐽𝑛 | = √( 𝜕|𝑈 𝐽𝑛 |

𝜕𝐵̃ 𝑑𝐵̃)

2

+ ( 𝜕|𝑈 𝐽𝑛 |

𝜕𝜆 𝑑𝜆)

2

,

𝜕|𝑈 𝐽𝑛 |

𝜕𝐵̃ = |𝐽 𝑛 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )|,

𝜕|𝑈 𝐽𝑛 |

𝜕𝜆 = 𝐵̃

2 ||𝐽 𝑛−1 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )| − |𝐽 𝑛+1 ( 4𝜋

𝜆 𝑑 𝑧 − 𝜙 𝐵𝐶 )|| 4𝜋 𝜆 2 𝑑 𝑧 .

∆𝜆/𝜆 2

𝜙 𝐵𝐶 = 0

(82)

𝑑𝐵̃

𝜀 𝜙̂ 𝐵𝐶

𝜙 𝐵𝐶 = 𝜙̂ 𝐵𝐶 + 𝜀.

𝜙 𝐵𝐶

𝜓 0 ≠ 0

𝑑𝐵̃

𝐵̃ 𝐵̃ 𝐴𝑉𝐸

σ(𝐵̃)

𝐵̃ = 𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃).

𝜀 𝐵̃

|𝑈 1 | = (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) |𝑐𝑜𝑠(𝛺 )|,

|𝑈 2 | = (𝐵̃ 𝐴𝑉𝐸 − 𝜎(𝐵̃)) |𝑐𝑜𝑠 (𝛺 + 𝜋 4 + 𝜀)|,

|𝑈 3 | = (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) |𝑐𝑜𝑠 (𝛺 + 𝜋 2 + 𝜀)|,

|𝑈 4 | = (𝐵̃ 𝐴𝑉𝐸 − 𝜎(𝐵̃)) 𝑐𝑜𝑠 (𝛺 + 3𝜋

4 + 𝜀).

(83)

|𝑈 1 | ≈ (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) |𝑐𝑜𝑠(𝛺 )|,

|𝑈 2 | ≈ − (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) |𝑠𝑖𝑛(𝛺 ) 𝑐𝑜𝑠 𝜀|,

|𝑈 3 | ≈ − (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) |𝑐𝑜𝑠(𝛺 )𝑐𝑜𝑠 𝜀|,

|𝑈 4 | ≈ (𝐵̃ 𝐴𝑉𝐸 + 𝜎(𝐵̃)) 𝑠𝑖𝑛(𝛺 ) 𝑐𝑜𝑠 𝜀.

𝑐𝑜𝑠 𝜀 = 1 − 𝜀 2 /2 |𝑈 1 | − |𝑈 3 | |𝑈 4 | − |𝑈 2 |

𝛺 = 𝑎𝑡𝑎𝑛 ( 2𝐵̃ 𝐴𝑉𝐸 + 2|𝜎(𝐵̃)|

2𝐵̃ 𝐴𝑉𝐸 − 2|𝜎(𝐵̃)|

𝜀 2 4 − 𝜀 2

|𝑈 4 | − |𝑈 2 |

|𝑈 1 | − |𝑈 3 | ).

𝑐 𝑣 = |σ(𝐵̃)|

𝐵̃

𝐴𝑉𝐸

σ ( 𝐵 ̃) ≪ 𝐵 ̃ 𝐴𝑉𝐸

𝛺 = 𝑎𝑡𝑎𝑛 ((1 + 2𝑐 𝑣 ) (1 + ( 𝜀 2 )

2

) |𝑈 4 | − |𝑈 2 |

|𝑈 1 | − |𝑈 3 | ).

∆𝛺

𝑑𝛺 = √( 𝜕𝛺

𝜕𝑐 𝑣 𝑑𝑐 𝑣 )

2

+ ( 𝜕𝛺

𝜕𝜀 𝑑𝜀)

2

.

1

𝑐𝑜𝑠(𝑥 + 𝑦) = 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) − 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛 (𝑦) ≈ 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠 (𝑦) 𝑦

2

(1 + 2𝑐 𝑣 )(1 + 𝜀 2 /4) ≈ 1 + 2𝑐 𝑣 + 𝜀 2 /4

2𝑐 𝑣 𝑡𝑎𝑛𝛺̇ + (𝜀 2 /4) 𝑡𝑎𝑛 𝛺̇ + 𝑡𝑎𝑛𝛺̇ ≈ 𝑡𝑎𝑛𝛺̇

(|𝑈 4 | − |𝑈 2 |)/(|𝑈 1 | − |𝑈 3 |) = 𝑡𝑎𝑛𝛺̇

(84)

𝑑𝛺 = √(𝑠𝑖𝑛2𝛺̇ 𝑑𝑐 𝑣 ) 2 + (𝑠𝑖𝑛2𝛺̇ ∗ 𝜀

4 𝑑𝜀) 2

𝛺̇

𝑑𝑑 𝑧 = 𝑑𝑑 𝑧

𝑑𝛺 𝑑𝛺 =

= 𝜆

4𝜋 √[(𝑠𝑖𝑛2𝛺̇ 𝑑𝑐 𝑣 ) 2 + (𝑠𝑖𝑛2𝛺̇ 𝜀 4 𝑑𝜀)

2

+ ( 𝜕∆(𝛺 )

𝜕𝛺 𝑑𝛺 ) 2 ]

𝑑 𝑧 = 𝜆

4𝜋 [𝛺 + ∆(𝛺 ) ] ∆(𝛺 )

𝑑𝑐 𝑣 𝑑𝜀

𝜙 𝐵𝐶

𝜋 2

𝜙 𝐵𝐶 = 𝑎𝑐𝑜𝑠 ( 1 2

|𝑈 5 | − |𝑈 1 |

|𝑈 4 | − |𝑈 2 | ).

𝜙

𝐵𝐶

𝑅

𝜙 𝐵𝐶 (𝑅)

(85)

𝜋 2

𝜀 = 0.0035 𝑟𝑎𝑑 𝑑𝐵̃

𝑑𝐵̃

𝑈 1 = 𝐵 0 𝑒𝑥𝑝[𝑗(𝛺 𝑆 + 𝛺 𝐷0 )],

𝑈 2 = 𝐵 1 𝑒𝑥𝑝[𝑗(𝛺 𝑆 + 𝛺 𝐷1 )].

𝑈 2 𝑈 1

|𝑈 1 |

〈 𝑈 2 𝑈 1

|𝑈 1 | 2 〉 = 𝐵 1

𝐵 0 𝑒𝑥𝑝[𝑗(𝛺 𝐷1 − 𝛺 𝐷0 )].

|𝑈 12 | = 𝐵̃

𝐵̃ = 𝐵 1 /𝐵 0 𝑈 1 , 𝑈 2

|𝑈 12 |

𝐵̃

1

2

𝑑

𝑧

= 0 𝐽

0

(0) = 1

(86)

𝐵̃ 𝐴𝑉𝐸 = 0.977

σ(𝐵̃) = 0. 018 𝑐 𝑣 = |σ(𝐵̃)|

𝐵̃

𝐴𝑉𝐸

= 0.018

𝐵̃

𝑐 𝑣 𝜀

𝑑𝛺 𝛺

sin2𝛺̇ ∗ 𝜀

4 𝑑𝜀 sin2 𝛺 ̇ 𝑑𝑐 𝑣

𝐜 𝐯 𝛆

𝜀

𝐵̃

𝛺

(87)

𝛺

(𝜕∆(𝛺 )/𝜕𝛺 )𝑑𝛺 𝜕∆(𝛺 )/𝜕𝛺

𝑐 𝑣

𝑑𝑑 𝑧 𝐵̃

𝜕∆(𝛺 )/𝜕𝛺

1

(88)

𝐵̃ = 𝐵̃ 𝐴𝑉𝐸 + σ(𝐵̃)

𝐵̃ = 𝐵̃ 𝐴𝑉𝐸

σ(𝐵̃) = 0.96 |𝐽 1 (

𝜆 𝑑 𝑧 )|

𝐵̃ |𝐽 1 (

𝜆 𝑑 𝑧 )| 𝑑|𝑈 𝐽1 |

𝑑𝑑 𝑧

σ(𝐵̃) → 0

σ(𝐵̃) 𝑐 𝑣 = |σ(𝐵̃)|

𝐵̃

𝐴𝑉𝐸

𝑐 𝑣 → 0

𝐵̃ → 𝐵̃ 𝐴𝑉𝐸

(89)

σ(𝜀) ≈ 0.1 𝑟𝑎𝑑

𝑢 𝜀 = 𝜆 𝜎 2 (𝜀)

32𝜋 𝑠𝑖𝑛 ( 8𝜋 𝜆 𝑑 𝑧 )

B ̃ 𝐵 ̃

𝐵̃ ∈ 〈0.9955, 1.016〉

σ(𝐵̃) ≈ 𝐵̃

𝑚𝑎𝑥

−𝐵̃

𝑚𝑖𝑛

2√3 = 0.018

1

𝑢 𝐵̃ = 𝜆𝜎(𝐵̃)

4𝜋 𝑠𝑖𝑛 ( 8𝜋 𝜆 𝑑 𝑧 ).

𝑢 = 𝜕∆(𝑑 𝑧 )

𝜕𝑑 𝑧 𝑑𝑑 𝑧 .

𝑢 𝐴 = 0.05 + 0.01 𝑑 𝑧 .

𝑢 𝑐 = √𝑢 𝜀 2 + 𝑢 𝐵̃ 2 + 𝑢 2 + 𝑢 𝐴 2

𝑢 𝑐

1

σ(B ̃)

(90)

𝑢 𝑐 k 𝑈 = 𝑘𝑢 𝑐

k

𝑈 = 𝑘𝑢 𝑐 𝑈 = 2𝑢 𝑐

𝑑 𝑧

𝑑 𝑧 = 10 𝑛𝑚 𝑑 𝑧 = 100 𝑛𝑚 𝑑 𝑧 = 1000 𝑛𝑚

𝑢 𝑐 [𝑛𝑚] 0.4 1.3 10.1

𝑑 𝑧 ± 𝑈 (𝑘 = 2) (10.0 ± 0.8) 𝑛𝑚 (100.0 ± 2.6) 𝑛𝑚 (1000.0 ± 20.2) 𝑛𝑚

1

(91)
(92)
(93)
(94)
(95)

(96)
(97)

𝜋/2

(98)

𝑑 = 𝑈 𝑂𝑈𝑇 𝑈 𝑃𝑃

𝜆

√2𝜋 ,

𝑈 𝑂𝑈𝑇 𝑈

𝑃𝑃

𝜆

(99)
(100)
(101)
(102)

𝑧 𝑚

𝑝 𝑣

𝑧 𝑚 = 𝑝 𝑣 ,

𝑇𝐿 = 20𝑙𝑜𝑔 10 |1 + 𝑧 𝑚 2𝑧 𝑎 |,

𝑧 𝑎

𝑧 𝑚 𝑧 𝑚

𝑧 𝑚

(103)
(104)

𝜔 𝑜

(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)

References

Related documents

In order to measure the performance of a Machine Learning model performing this task, we quantify the distance between target sound t and candidate sound c with respect to

By using galvanic vestibular stimulation to create illusionary movements, response to vestibular signals can be investigated independently from other sensory

(a) Comparison of leakage current density vs electric field across the oxide (J-E) of differently prepared Al2O3 along with a reference sample with thermal SiO2 grown in O2, (b)

Each library works with a specific area and is used by higher level libraries, for ex- ample the time stepping library uses the vector library and the non-linear solver library to

In this section, we recorded a piece of human voice by using microphone on computer. The recording is used as the original signal and added Gauss white noises with 5dB SNR upon it

Figure 5.2 shows four of the targets in the three full point clouds using the voxel size 7.5 cm and Figure 5.3 shows the full SLAM cloud in the same scene using different voxel

Figure 4.1 displays the temporal evolution of frame-averaged structure size, number of pulsating structures, intensity ratio and peak emission height of one such typical event.. Not

In order to address these problems, two BDI-model agents (mission-agent and local-agent) are defined to implement a theoretical decentralized mechanism for WSN