• No results found

New methods for interaction analysis of complex processes using weighted graphs

N/A
N/A
Protected

Academic year: 2022

Share "New methods for interaction analysis of complex processes using weighted graphs"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal of Process Control

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

New methods for interaction analysis of complex processes using weighted graphs

MiguelCasta ˜noArranz,WolfgangBirk

LuleåUniversityofTechnology,SE-97187Luleå,Sweden

a r t i c l e i n f o

Articlehistory:

Received14January2011

Receivedinrevisedform9June2011 Accepted23July2011

Available online 19 September 2011

Keywords:

Complexsystems Interactionmeasures Structuralproperties Systemanalysis

a b s t r a c t

Theselectionofthestructureofacontrollerinlargescaleindustryprocessesusuallyrequiresextensive processknowledge.Theaimofthispaperistoreportnewresultsonrecentlysuggestedmethodsfor theanalysisofcomplexprocesses.Thesemethodsaidthedesignersincomprehendingaprocessby representingstructuralandfunctionalrelationshipsfromactuatorsandprocessdisturbancestomeasured orestimatedvariables.Themethodsareformulatedinaflexibleframeworkbasedongraphtheory,which canalsobeusedforclosed-loopanalysis.Additionally,thesensitivityofthemethodstoscalingandtime delaysarediscussedandresolved.Itisalsoproposedhowfilteringcanbeusedtorestricttheanalysisto afrequencyregionofinterest.

Thefeasibilityofthemethodsisshownbytheuseofthreecasestudies.Aquadrupletankprocessis usedtoexemplifythemethodsandtheiruse.Thenthemethodsareappliedonareal-lifeprocess,the stockpreparationplantofapulpandpapermill.Thethirdstudycaseanalyzesapreviouslypublished exampleinclosedloop.

Itisshownthatthemethodscanbeusedtotakeefficientdecisionsondecentralizedandsparsecontrol structures,aswellasassessingthechannelinteractionsinaclosed-loopsystem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Largescaleindustrialprocessplantsarecharacterizedbyahigh degreeofinteractionbetweenprocessvariables,wherehundreds oreventhousandsofvariablesareconnectedthroughdynamicsys- tems.Examplesofsuchinterconnectionsarematerialflowsand reflows,thelattere.g.duetodiscardedmaterialbeingreturnedto previousprocessstepswhichgives risetolargefeedbackloops.

Otherexamplesareconnectionsthroughsupplygridsfore.g.pres- surizedair.Oneprocessstepconsumingpressurizedairmaygive risetoapressuredropthatpropagatestoeveryotherconsumerin theplant.Addingcontrolloopstotheprocessondifferentlevelsof hierarchymayresultinasystemwithunintelligiblecausalityand unpredictabledynamics.

Forthecontrol engineer,theseverycomplexinterconnected systemsareachallenge.Thequestionishowtorepresentthecom- plexityinacomprehensiblewayandhowtoanalyzeitregardinge.g.

dynamicbehaviorandcontrolstructuredesign.Traditionally,inter- actionmeasuresareusedforthecontrolstructuredesign,namely controlstructureselectionanddecisiononthecontrollerconfig- uration.Controlstructure selection isaboutdetermining which dynamicinterconnectionsshouldbeusedforthecontrollerdesign;

∗ Correspondingauthor.Tel.:+46920492328.

E-mailaddress:miguel.castano@ltu.se(M.Casta ˜noArranz).

itisalsoreferredtoasinput/outputselection,seee.g.[1].When thestructureisselected,theinterconnectionscanbeusedtocon- figure a controller, that is decisions on e.g. degree-of-freedom, feed-forwards,orcascadedconfigurationsneedtobetaken.Inthis paperthefocuswillbeonthecontrollerstructureselection.

Oneofthemostwidelyspreadcontrolstructuresisthedecen- tralizedcontrolstructureinaonedegreeoffreedomsetting,and themostwell-knownmethodstodeterminetheinterconnections thatareusedforthecontrollerdesignaretheRelativeGainArray (RGA)[2],andtheDynamicRGA[3].Anextensionofcontrolstruc- tureselectiontoblockdiagonalcontrolstructuresisdiscussedin [4],[5].Generally,themethodsaredesignedfromtheperspective thatallcontrolledandmanipulatedvariablesareconsideredduring thestructureselectionandthatthecontrolconfigurationisoften seta-priori.Inthesurvey[1],mostoftheavailablemethodsforthe controlstructuredesignarereviewed,apartfromgramianbased methods which weresuggested more recently,[6,7]. Thelatter havetheadvantagethatnoassumptiononthecontrolconfiguration isusedandvirtuallyanycontrolstructurecouldbededuced.But theirinterpretationbecomesdifficultwhenthenumberofvariables becomeslarge.

For large scale systems, where the amountof variables can beinthemagnitudeofthousands,usuallythecontrolstructure selectionneedtobeprecededbyastepwheremanipulatedand controlledvariablesaregroupedintosetswherethenumberof variablesisreducedtoacoupleofdozens.Thus,makingtheabove

0959-1524/$seefrontmatter © 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jprocont.2011.07.011

(2)

methodsmoreapplicable.Methodsforsuchadecompositionare proposedin[8,9],wherestatespacerepresentationsareusedand produceinterconnectedmultivariablesystems.Itshouldalsobe notedthatinterconnectedsystemscanalsoberepresentedbysig- nalflow graphs, which dates backto thework of Mason [10], andprovidesacomprehensivevisualinterpretationatthesame time.

Analternativetotheaboveistheconceptofplantwidecontrol (PWC)whichhasreceivedmuchmoreattentioninrecentyears.

Methodologieslikethenine-stepmethodproposedbyLuybenetal.

[11]ortheself-optimizingcontrolprocedurebySkogestad[12]are suggestedandareevaluatedonrealisticlargescalesystem,seee.g.

[13].Inthis,acompleteproceduretoaddressthecontrolproblem ofalargescalesystemisprovided.

Ashortcomingofthementionedmethodsiseithertheirinability toscaletolargescaleproblemsorthatcontrolstructureandcon- figurationarelimiteda-priori.Theaimofthispaperistosuggest newmethodsforthecontrolstructureselectionwithoutimposing limitationsontheeitherstructureorconfiguration.Butforthetime being,itisassumedthatthelargescaleproblemisalreadydecom- posedin multivariable problems witha rather limited number ofmanipulatedandcontrolledvariables.Inordertodemonstrate theusefulnessofthesuggestedmethods,a2×2systemwithdis- turbances(Quadrupletanklaboratorysetup)anda5× 5real-life process(StockpreparationplantatSCAObbolaAB,Sweden)are discussed.

Themethodsareinspiredbytheworkwithinbrainconnectiv- itytheory[14],wheresignalflowgraphscanbeanalyzedfromthe perspectiveofthesignalenergyorpowerthatistransferredfrom aselectedinput/outputsetofnodes.Inthiscontext,structuraland functionalpropertiesaretreatedseparately,wherethestructural propertiescapturethestructural natureof a signalflow graph, whilethefunctionalpropertiesresolveallintermediateconnec- tionsinordertomapthepropertiestotheinput/outputsetalone.

Consequently,theanalysiscanbeadaptedtotheneedsforthetask athand,whichmakesthemethodsmoreversatile.

Asaresultquantitativemethodsarecombinedwiththesignal flowgraphsapproachbyintroducingweightsontheedges.Itwill beshownthattheH2-normcanbeeffectivelyusedtoassessthe significanceofedgesinrelationtoeachother,namelybytheassess- mentofthetransferofsignalenergyorpower.Itistheauthors believethatthiscombinationenablescontrolengineerstomake betterdecisionsonbothcontrolstructureselectionandcontroller configuration.But,itstillremainstoprovethescalabilitytolarge scalesystemsandifthemethodscanbeusedinthescopeofthe previouslymentionedPWCprocedures.Inapreparatorystepand tofacilitateapplicabilitythemethodshavebeenintegratedintoa prototypetoolcalledProMoVis,thatcanbeusedtobothmodel, visualizeandanalyzeindustrialprocesses,[15].

Thepaperlayoutisasfollows.Firstthepreliminariesforthe representationoflinearsystemsasasignalflowgraphisgivenin Section2.Section3introducesamethodologyforobtainingascal- ingindependentrepresentationoflinearprocessesasasignalflow graph.Section4describesthequadrupletankprocessandderives ascalingindependentrepresentationforaselectedworkingpoint.

Section5describesthenormsandnormalizationswhichwillbe usedforquantifyingandcomparingthesignificanceoftheprocess interconnections.Thequadrupletankprocess isusedinSection 6asanillustrativeexampleforintroducingthemethodsforthe structuralandfunctionalanalysisofcomplexprocesseswhichare thesubjectofthispaper.Section7describeshowtointerpretthe methodsandusethemforcontrolstructureselection,comparing theresultsobtainedintheanalysisofthequadrupletankwiththose oftheRGA.Section8analyzesthescalingsensitivityofthemeth- odsforthecasesinwhichascalingindependentrepresentationof theprocessisnotused.ThestockpreparationplantatSCAObbola,

Swedenisareal-lifeprocesswhichisanalyzedinthissectionto illustratehowthescalingissuespresentinthetraditionalgramian basedIMswhenanalyzingindustrialprocesscanberesolvedby usingthediscussedmethods.Section9introducestheusefulnessof theanalysismethodsfortheevaluationoftheinteractionbetween controlloops,andcontainsexampleswhichshowtheuseoffil- tersforselectingarangeof frequenciessubjecttoanalysis.The conclusionsarefinallygiveninSection10.

2. Signalflowgraphsrepresentingcomplexprocesses

Arepresentationofcomplexsystemsinrelationtographrepre- sentationswasintroducedin[16].Thesamerepresentationwillbe usedheredispensingwiththeoutputequation.Whenrepresent- inganopenloopprocess,itwillbeconsideredthattheinputvector uiscomposedbytheexogenousinputstotheprocess(actionson actuatorsandprocessdisturbances),andxcollectsalltheinternal statesandmeasurementswhicharesubjecttoanalysis,beingboth relatedinanexpressionlike:

xi=i1· x1+···+in·xn+i1·u1+···+ip·up

whereijandijarelineardynamicsystems.Thesignalflowgraph isthenformulatedas

x=x+u (1)

GivenamultivariablesystemH,theduple(,)iscalledavisual- izationofH.Theinput–outputmatrixofHcanbecomputedas

=(I)−1.

ThisformulationwillalsobeusedinSection9forrepresentinga closedloopsystem.Inthatcase,thereferencesignalsfortheclosed loopsareaggregatedtotheinputvectoru,andthecontrolactions whicharemanipulatedbyacontrollerarenowaggregatedtothe vectorxandremovedfromtheinputvectoru.

Thefollowingtransformationswillbehereusedforobtaining processrepresentationsdescribingthenodesandinterconnections whichareofinterestfortheanalysis.

2.1. Hidingofself-references

Anodedependingonitself isknownasa self-reference.For theworkdescribed inthispaperwe willassumethatthevisu- alizationrepresentingtheprocesshasnoself-references,thatis, thediagonalofmatrixiscomposedbyzeros.Ifavisualization withselfreferencesistobeanalyzed,theuserhastofirstmakean operationwhichhidestheself-referencesandstillpreservesthe physicalstructureoftheplant.Thedetailsforsuchanoperation arediscussedin[16].

2.2. Hidingarbitrarynodes

Differentlevelsofhierarchyareusuallypresentwhenrepre- sentingandanalyzinglargescaleinterconnectedsystems,andthe hidingof nodesallowstodisregardthevariables whicharenot presentlyimportantwhilepreservingthephysicalstructureofthe plant.

Considerthepartitioningoftheinterconnectedsystem(,) as

x1 x2



=

11 12

21 22



x1 x2



+

1

2



u

where x2=[0m×(m−n)| Im]·x represents the last m of the total n nodes. Assuming that x=22x+u is well-posed, then the

(3)

visualizationofthesystemwhenthelastmnodesarehidden,and whichpreservesthesystemstructureis[16]:

x1= ˆx1+ ˆu with

 =ˆ 11+12(I22)−121 ,  =ˆ 1+12(I22)−12

WhichcanbeexpressedasafunctionF of,,andIm,beingm thenumberofnodestobehidden.

[ ˆ ˆ]=[1 11]+12(122)−1[2 12]=F([ ],Im) TohideanarbitrarysubsetNofnodes,letusdefinethepermutation matrixTT=[ET ET]suchthatx1=Exisnowavectorcontainingthe nodestoberetainedandx2=Excontainsnowthenodestobehid- den.TheoperationHNofhidinganarbitrarysetofnodes,isthen:

HN[ ]=F(T[ ·TT],Im)

3. Scalingindependentrepresentation

Scalingisanimportantissueinmanyapplications.Themeth- odsusedinthispaperarebasedoncomparingthesignalpower(or energy)thatcanbetransferredthroughtheprocessinterconnec- tions.Thispowertransferisquantifiedassignalpowertransfer,and thereforeitdependsonthescalesusedtorepresenttheanalyzed signals.

Usualmethodsforscalingsignalsinvolvedividingeachvariable byitsmaximumexpectedorallowedchange[17].

LetQ=(,)beavisualizationofasystemH.Whentheinput vectoruandtheoutputvectorxarescaledbythediagonalscaling matricesDu andDxrespectively,thenthenewinputandoutput vectorsareu=D−1u ·uandx=D−1x ·x.ThescaledvisualizationQ= (,)isthen:

 =D−1x Dx; =D−1x Du

andthescaledinput–outputmatrixis:

=D−1x Du

Itcanbetedioustofindanappropriatescalingforeachofthe processvariables.Therefore,wepresentarepresentationoflinear processesbasedonavisualization,whichis independentofthe selectedscaling.Forobtainingsucharepresentation,anestimation ofthestandarddeviationofthesignalsrepresentedbytheprocess variablesisneeded.

Letu,u,xandxbediagonalmatricescollectingthestandard deviationofeachoftheinputoroutputsignalsandoftheirscaled version.Then,u=uD−1u andx=xD−1x .

Lemma1. Thepair(−1x ␴x,−1x ␴u)isscalinginvariant.

Proof.

−1x ␴x=−1x D−1x DxD−1x Dxx=−1x ␴x

−1x ␴u=−1x D−1x DxD−1u Duu=−1x ␴u



GiventhevisualizationQ=(,)ofalinearmultivariablesystem H,thepair ˜Q=(−1x x,−1x ␴u)willbenamedscalinginvariant representationofH.

Remark 1. The matrix ˜ =(I−1x ␴x)−1−1x ␴u=−1x ␴u

relatedtothescalinginvariantrepresentation ˜Q,is alsoscaling invariant.Thisfollowsfrom:

−1x ␴u=−1x D−1x DxD−1u Duu=−1x u (2)

Remark2. Thepremultiplicationofmatrix or by−1x makes it invariantto outputscaling,and thepostmultiplicationby u

makesitinvarianttoinputscaling.Matrix isindependentofthe selectedinputscaling,andthepremultiplicationby−1x withthe postmultiplicationbyxmakesitindependenttooutputscaling.

Therefore,applyinganyofthestructuralorfunctionalmethodsto thescalinginvariantrepresentation ˜Q =(−1x ␴x,−1x ␴u)with input–outputmatrix ˜ =−1x ␴u, alwaysgivethesameresult independentlyofthechosenscaling.

Remark3. ThegramianbasedIMsaresensitivetothescalingof theprocessvariables[7,6,18].Thescalinginvariantrepresentation isalsousefulforcomputingascalinginvariantversionofanyof theseIMs,byapplyingthecorrespondingmethodtothematrix

˜ =−1x ␴u.

The following section presents the quadruple tank process, and introduces an example of how to create a scaling inde- pendentrepresentationoftheprocess.Later,thisrepresentation will be used to apply the discussed structural and functional methods.

4. Thequadrupletankprocess

Thequadrupletankprocesshasbeenintroducedin[19],and is a well-known interactingprocess which hasbeen usedby a largenumberofauthorsasabenchmarktotestseveralcontroland analysismethods.TheprocessisdepictedinFig.1.Twoprocess disturbanceshavebeenaddedtotheprocessandmodeledasflow disturbancesintheuppertanks.Thedifferentialequationsofthis modificationweredescribedin[20].Theprocesslinearmodelcan beformulatedasavisualizationasfollows:

h1

h2

h3

h4

=

0 0 A3

A1T3(s+1/T1) 0

0 0 0 A4

A2T4(s+1/T2)

0 0 0 0

0 0 0 0



h1

h2

h3

h4

+

1k1

A1(s+1/T1) 0 0 0

0 2k2

A2(s+1/T2) 0 0

0 (12)k2

A3(s+1/T3) 1 A3(s+ 1

T3

) 0

(11)k1

A4(s+1/T4) 0 0 1

A4(s+1/T4)



u1

u2

d1

d2

(3)

whereTiarethetimeconstantsofthetanks

Ti= Ai ai

2hoi

g , i={1,2,3,4}

ThevaluesoftheconstructionparametersaregiveninTable1.

The variables uj are associated with the two actuators and expressthespeedsettingofthetwopumpsin%.Themeasured

(4)

Fig.1.Interactingsystemwithwatertanks.Eachofthearrowsrepresentsadynamicmodelconnectingtwoprocessvariables.ProMoVisscreenshot.

Table1

Constructionparametersofthequadrupletankprocess.

Parameter

A1,A2,A3,A4 a1 a2 a3 a4 g k1 k2 1,2

Value 730cm2 2.05cm2 2.26cm2 2.37cm2 2.07cm2 981cm/s2 7.45cm3/(sV) 7.30cm3/(sV) 0.3

Table2

Selectedworkingpointforthequadrupletankprocess.

Variable

u1 u2 d1 d2 h1 h2 h3 h4

Value 50 50 15.5 15.5 14.77 12.36 5.11 7

Range 0–100 0–100 0–31 0–31 0–20 0–20 0–20 0–20

Units % % cm3/s cm3/s cm cm cm cm

variableshiarethelevelofthetanksexpressedin cm.Thetwo processdisturbancesd1 andd2 areflowperturbationsinthetop tanks,andareexpressedincm3/s.Therangeofvalueswhichthese variablescantakeissummarizedinTable2.

Theinput–outputrelationshipisgivenby:

h1

h2

h3

h4

=

1k1

A1(s+1/T1)

(12)k2

A1T3(s+1/T1)(s+1/T3) 1

A1T3(s+1/T1)(s+1/T3) 0 (11)k1

A2T4(s+1/T2)(s+1/T4)

2k2

A2(s+1/T2) 0 1

A2T4(s+1/T2)(s+1/T4)

0 (12)k2

A3(s+1/T3) 1

A3(s+1/T3) 0

(11)k1

A4(s+1/T4) 0 0 1

A4(s+1/T4)

=(I−)−1

u1

u2

d1

d2

(4)

Theworkingpointselectedfortheanalysiscorrespondstoan openingof50%onbothpumps,andtheprocessdisturbancesare assumedtobeathalfoftheirpossiblemaximumvalue.Thevalues fortheworkingpointaresummarizedinTable2.

References

Related documents

- combine both theories in order to obtain methods for the analysis of industrial processes which show up causal and functional relationships describing the propagation of energy in

Birk, New methods for interaction analysis of complex processes using weighted graphs, Journal of Process Control, Volume 22, Issue 1,. [2]

A CCD camera is attached to the microscope and the digital images obtained (Fig. 5) are then analyzed with certain scripts by using Matlab. The magnification is 20x. Two types

When selecting Define control structure layer, everything in the model gets faded at grey, excepting the components and lines defined in the layer (and the controller block), like it

4.5.9 Forking/joining node: single incoming and outgoing flows Forking and joining nodes are supposed to fork into or join multiple flow streams in BPMN and workflow graphs alike1.

A new laboratory creping method was developed to determine the adhesion between paper and metal, and the force needed to scrape off the paper with a doctor blade was measured.

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av