• No results found

jute fibers with treated incorporated chemically pulverizednano/micro Modeling of the and creep analysis behavior of jute/green epoxycomposites Industrial Crops and Products

N/A
N/A
Protected

Academic year: 2022

Share "jute fibers with treated incorporated chemically pulverizednano/micro Modeling of the and creep analysis behavior of jute/green epoxycomposites Industrial Crops and Products"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

IndustrialCropsandProducts84(2016)230–240

Contents lists available atScienceDirect

Industrial Crops and Products

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers

Abdul Jabbar

a

, Jiˇrí Militk ´y

a,∗

, Bandu Madhukar Kale

a

, Samson Rwawiire

a

, Yasir Nawab

b

, Vijay Baheti

a

aDepartmentofMaterialEngineering,TechnicalUniversityofLiberec,Studentská2,46117Liberec,CzechRepublic

bDepartmentofFabricManufacturing,NationalTextileUniversity,Faisalabad37610Pakistan

a r t i c l e i n f o

Articlehistory:

Received7November2015

Receivedinrevisedform7December2015 Accepted19December2015

Keywords:

Jutefiber

Polymercomposites Creep

Greenepoxy Compressionmolding Pulverization

a b s t r a c t

Thispaperreportsthecreepbehaviorofalkalitreatedjute/greenepoxycompositesincorporatedwith variousloadings(1,5and10wt%)ofchemicallytreatedpulverizedjutefibers(PJF)atdifferentenvi- ronmenttemperatures.Compositeswerepreparedbyhandlayupmethodandcompressionmolding technique.Thecreepanddynamicmechanicaltestswereperformedinthree-pointbendingmodeby dynamicmechanicalanalyzer(DMA).TheincorporationofPJFisfoundtosignificantlyimprovethecreep resistanceandstrainrateofcomposites.Threecreepmodelsi.e.Burger’smodel,Findley’spowerlaw modelandasimplertwo-parameterpowerlawmodelwereusedtomodelthecreepbehaviorinthis study.Thetimetemperaturesuperpositionprinciple(TTSP)wasappliedtopredictthelong-termcreep performance.TheFindley’spowerlawmodelwasfoundtobesatisfactoryinpredictingthelong-term creepbehavior.Dynamicmechanicalthermalanalysis(DMTA)resultsrevealedtheincreaseinstorage modulus,glasstransitiontemperatureandreductioninthetangentdeltapeakheightofcompositeswith higherloadingofPJF.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Naturalfiberpolymercomposites(NFPC)areincreasinglyused nowadaysinindustrialapplicationsasasubstituteofpolymercom- positesmadewithmostlyusedsyntheticfiberssuchasglassand carbonetc.duetotheirenvironmentalandeconomicbenefits.Nat- uralfibersarerenewable,biodegradable,costeffective,safetouse, availableinhugequantities,lowfossil-fuelenergyrequirements andthemostimportantlytheirhighspecificstrength toweight ratio(JohnandAnandjiwala,2009;Mishraetal.,2003).Thisisof distinctiveimportanceespeciallyininteriortransportationappli- cationsasitleadstoreductionofvehicleweightforhigherfuel efficiencyandenergy saving.Polymercompositesusedinengi- neeringapplicationsareoftensubjectedtostressforalongtime andathightemperatures.Creep(aprogressivedeformationofa materialatconstantstress)isveryimportantend-usepropertyfor materialapplicationsrequiringlongtermdurabilityandreliabil- ity(KremplandKhan,2003).Considerablestudiescanbefoundin

∗ Correspondingauthor.

E-mailaddress:jiri.militky@tul.cz(J.Militk ´y).

literatureonthecreepbehaviorofnaturalfiberpolymercompos- ites.Differentmathematicalmodelingtechniqueshavealsobeen appliedtoanalyzethecreepbehaviorofcompositematerials(Acha etal.,2007;BledzkiandFaruk,2004;Haoetal.,2014;Jiaetal., 2011;MarcovichandVillar,2003;Xuetal.,2010).Researchershave alsotriedtostudythecreepbehaviorofpolymercompositesby additionofdifferentkinds offillersinmatrices(Jiaetal.,2011;

Shenetal.,2004;Siengchin,2013;SiengchinandKarger-Kocsis, 2009;Yangetal.,2006a,b).Additionofnano/microfillerstopoly- mershasshownimprovementsinthestrengthandstiffnessofthe resultingcomposites,however,researchshowsthatthesefillers tendtoplasticizethecomposites.Totheauthor’sbestknowledge, thereisnostudyavailableinopenliteratureonthecreepbehavior ofalkalitreatedjutereinforcedgreenepoxycompositesincorpo- ratedwithchemicallytreatedpulverizedjutefibersasreinforcing fillers.Amongallthenaturalreinforcingmaterials,juteappearsto beapromisingfiberduetoitshightoughnessandaspectratioin comparisonwithothernaturalreinforcements(Achaetal.,2007) andoccupiesthesecondplaceintermsofworldproductionlevels ofcellulosicfibers(Caietal.,2000).Theobjectiveofthepresent studyistoinvestigatetheincorporationofpulverizednano/micro jutefiberspreparedfromwastejuteonthecreepbehaviorunder

http://dx.doi.org/10.1016/j.indcrop.2015.12.052 0926-6690/©2015ElsevierB.V.Allrightsreserved.

(2)

theconditionsofdifferenttemperaturesanddynamic mechani- calbehaviorofalkalitreatedwovenjute/greenepoxycomposites.

Themodelingofexperimentalcreepdataissatisfactorilyconducted usingdifferentcreepmodels.Furthermore,thetime-temperature superpositionprinciple(TTSP)isemployedinordertopredictthe long-termcreepbehavior ofcompositesbased onexperimental data.

2. Materialsandmethods

2.1. Materials

Jutewovenfabricproduced fromtossa jute(Corchorusolito- rius)fibershavinganarealdensityof600gm−2with5-endsatin weavedesignwasproducedonashuttleloom.Warpandweftden- sitiesofthefabricwere6.3threadspercmand7.9threadspercm respectively.Wastejutefibers,sourcedfromajutemill,wereused forpulverization.GreenepoxyresinCHS-EpoxyG520andhard- enerTELALIT0600weresuppliedbySpolchemie,CzechRepublic.

Sodiumhydroxide(NaOH)wassuppliedbyLach-Ner,CzechRepub- lic.Sodiumsulfate(Na2SO4)andsodiumhypochlorite(NaOCl)were suppliedbySigma–Aldrich,CzechRepublic.

2.2. Chemicalpretreatment

Theuntreated fabric wasfirst washed with2wt% non-ionic detergentsolutionat70Cfor1.0hpriortosurfacetreatmentsto removeanydirtandimpuritiesstickingtothesurface.Thejutefab- ricandwastejutefiberswerethenimmersedseparatelyin2%NaOH solutionfor1hat80Cmaintainingaliquorratioof15:1.Alkali treatedwastejutefiberswerefurthertreatedwith7g/lNaOClsolu- tionatroomtemperaturefor2hunderpH10–11andsubsequently antichloredwith0.1%Na2SO4at50Cfor20min.Bothfabricand wastefibers,afterchemicalpretreatment,werethenwashedwith freshwaterseveraltimesuntilthefinalpHwasmaintainedat7.0 andthenallowedtodryatroomtemperaturefor48handat100C inanovenfor2h.

2.3. Pulverizationofjutefibers

Pulverizationofchemicallytreatedwastejutefiberswascarried outusingahigh-energyplanetaryballmillofFritschpulverisette7.

Pulverizationprocessreliesontheprincipleofenergyreleaseatthe pointofimpactbetweenballsaswellasonthehighgrindingaction createdbyfrictionofballsonthewall(BahetiandMilitky,2013).

Thesinteredcorundumcontainerof80mlcapacityandzirconium ballsof10mmdiameterwerechosenfor1hofpulverization.The balltomaterialratio(BMR)waskeptat10:1andthespeedwas keptat850rpm.

2.4. Preparationofcomposites

Thecompositeswerepreparedbyhandlayupmethod.Theresin andhardenerweremixedinaratioof100:32(byweight)according tomanufacturerrecommendationsandthenweighedamountsof pulverizedjutefibers(PJF)under1,5and10wt%weremechanically mixedwithepoxyresinatroomtemperatureuntilahomogeneous mixturewasobtained.Thepreparedresin/PJFmixturewaspoured onfabriclayersandspreadoutbyahandroller.Thegentlerolling actionofhandrollerconfirmedthewettingofjute fabrics.Each compositelaminatecomprised3layersofjutefabricwithorienta- tionofeachlayerinthesamedirection.Thecompositelayupalong withTeflonsheetsweresandwichedbetweenapairofsteelplates andcuredat120Cfor1.0hinamechanicalconvectionovenwith predeterminedweightonittomaintainuniformpressureofabout 50kPa(Mishraetal.,2014).Thefibervolumefraction(Vf)ofall

compositeswasintherangeof0.25–0.27.Thepreparedcomposite samplesweredesignatedasU(untreated),A-0%(alkalitreatedjute fabricwith0wt%ofPJF),1%,5%and10%(alkalitreatedjutefabric with1,5,10wt%ofPJF)respectively.

2.5. Characterizationandtesting

2.5.1. Characterizationofpulverizedjutefibers

Theuntreatedandtreatedjutefabricandfiberswereanalyzed byFTIRspectroscopy.AThermoFisherFTIRspectrometer,model NicoletiN10,wasusedinthisstudy.Thespectrometerwasusedin theabsorptionmodewitharesolutionof4cm−1.Particlesizedistri- butionofpulverizedjuteparticleswasstudiedonMalvernZetasizer nanoseriesbasedondynamiclightscatteringprincipleofBrown- ianmotionofparticles.Deionizedwaterwasusedasdispersion mediumanditwasultrasonicatedfor5minwithBANDELINultra- sonicprobeSONOPLUSbeforecharacterization.Refractiveindexof 1.52wasusedtocalculateparticlesizeofpulverizedjute.Inaddi- tion,morphologiesofpulverizedjutefiberswereobservedwith Vega-TescanTS5130ScanningElectronMicroscopeat30KVaccel- eratingvoltage.ThesurfaceoffiberswasgoldcoatedpriortoSEM inspection.

2.5.2. Characterizationofcomposites

Short-termcreeptestswereperformedinthreepointbending modeattemperatures40C,70Cand100CusingQ800Dynamic mechanicalthermalanalysis(DMTA)instrumentofTAinstruments (NewCastleDL,USA)for30min.Thestaticstressof2.0MPawas appliedat thecenter point of long sideof the samplethrough thesamplethicknessfor30minafterequilibratingatthedesired temperatureandcreepstrainwasmeasuredasafunctionoftime.

Thestaticstresswasselectedafterperformingastrainsweeptest, wherethelinearviscoelasticregionwasdefinedforeach ofthe compositesensuringthatthecreeptestswereconductedinthe linearviscoelasticregion.TheTTSP wasselectedfor short-term creeptestsperformedatvarioustemperaturesforjute/greenepoxy compositesincorporatedwithvariouscontentsofPJF. Thetem- peraturerange was40–100C,in5Csteps,andtheisothermal testswererunonthesamespecimeninthetemperaturerange.

The2.0MPastresswasappliedfor10minateachtemperature.In everymeasurement,thespecimenwasequilibratedfor5minat eachtemperature,inordertoevenlyadjustforthecorrecttem- peratureofthespecimen.Thedynamicmechanicalpropertiesof composites weremeasuredin 3-pointbendingmodeusing the abovesameinstrument.Thetestingconditionswerecontrolledin thetemperaturerangeof35–200C,withaheatingrateof3C/min, fixedfrequencyof1Hz,preloadof0.1N,amplitudeof20␮m,and forcetrackof125%.Thesampleshavingathicknessof4.5–5mm, widthof12mmandspanlengthof50mmwereusedforbothcreep andDMTAtesting.Tworeplicatesamplesweretestedforeachtest conditionandaveragevaluesarereported.

2.6. Creepmodeling

Thenon-linearcurvefitfunctionoftheOriginPro9.0software wasusedformodelingthecreepcurvesandfittingthemodelsto theexperimentaldata.Theminimumsumofsquareddeviationof experimentaldatafromthecreepmodelsandcorrelationcoeffi- cient(R2)wereselectedascriterion(MelounandMilitky,2011).The correlationcoefficientvalueR2isdefinedasmodelsumofsquares dividedbytotalsumofsquares.Abettergoodness-to-fitisobtained whenR2iscloserto1.

(3)

232 A.Jabbaretal./IndustrialCropsandProducts84(2016)230–240

Fig.1. FTIRspectraofjutefibers.

3. Resultsanddiscussion

3.1. Characterizationofjutefibers

FTIRanalysiswascarriedouttoconfirmsomeremovalofnon- cellulosiccontents(e.g.hemicellulosesandlignin)fromthesurface ofjutefibersafterpretreatments.TheFTIRspectraofuntreatedand treatedjute areshownin Fig.1.Themajordifferenceobserved betweenthespectrais thedisappearance/reductionof peaksat

∼1730cm−1 and∼1240cm−1.Thepeakat∼1730cm−1 isdueto stretchvibrationofC Obondsincarboxylicacidandestercom- ponentsofcelluloseandhemicellulose(Morshedetal.,2010)and alsoachemicalgroupoflignin(Haqueetal.,2009;Tserkietal., 2005). The peak at ∼1240cm−1 is due to C O C asymmetric stretchingoftheacetylgroupoflignin(Liuetal.,2004).Thereduc- tion/disappearanceofthesepeaksconfirmthepartialremovalof hemicelluloseandopeningupoftheligninstructureinthejute fibersafterpretreatments.

Thejutefiberswerepulverizedtoparticleswithanaveragesize of1480nminwiderparticlesizedistributionasshowninFig.2a.

Fig.2bshowstheshapeandsurfacemorphologyofpulverizedjute fibers.ThePJFcanbeseeninirregularshapeandsizewithcertain aspectratioaswell.

3.2. Creepbehavior

3.2.1. Creepmodels

Fourparameters(ortheBurger’s)modelisoneofthemostly usedphysicalmodelstogivetherelationshipbetweenthemor- phologyofpolymercompositesandtheircreepbehavior(Findley et al.,1989; Ward and Sweeney, 2012). It is based ona series combinationofaMaxwellelementwithaKelvin–Voigtelement.

Thetotalcreepstrainisdividedintothreeseparateparts:εMthe instantaneouselasticdeformation(Maxwellspring),εKviscoelas- ticdeformation(Kelvinunit)andεviscousdeformation(Maxwell dash-pot).Thus,totalstrainasafunctionoftimecanberepresented bythefollowingequations:

ε (t)=εMK (1)

ε (t)= 0 EM+0

EK(1−eEKt

K)+ 0

Mt (2)

Whereε(t)isthecreepstrain,0isthestress,tisthetime,EMand EKaretheelasticmoduliofMaxwellandKelvinsprings,andM andKaretheviscositiesofMaxwellandKelvindashpots.K/EK

isusuallydenotedas,theretardationtimerequiredtogenerate 63.2%deformationintheKelvinunit(Yangetal.,2006b).εMisa constantvalueanddoesnotchangewithtime.εKrepresentsthe earlieststageofcreepandattainsasaturationvalueinshorttime andεrepresentsthetrendinthecreepstrainatsufficientlylong time,andappearssimilartothedeformationofaviscousliquid obeyingNewton’slawofviscosity.ThefourparametersEM,EK,M,

KcanbeobtainedbyfittingtheEq.(2)totheexperimentaldata andcanbeusedtodescribethecreepbehaviorofcomposites.The creeprateofviscoelasticmaterialscanbeobtainedbytakingthe derivativeofEq.(2).

dε (t) dt =0

EK(eEKt

K)+ 0

M (3)

TheFindley’spowerlawmodelisanempiricalmathematical modelusedtosimulatethecreepbehaviorofpolymercomposites.

ThemodelcanberepresentedbythefollowingEq.(4)(Findleyetal., 1989);

ε (t)=atb0 (4)

Where,aandbarethematerialconstantsandε0istheinstanta- neousstrain.TheabilityofFindley’spowerlawmodeltosimulate thecreepdatahasbeenfoundtobesatisfactoryinseveralstud- ies(Jiaetal.,2011;PlaseiedandFatemi,2008;Yangetal.,2006b).

However,thismodelisnotabletoexplainthecreepmechanism ofmaterial.Atwoparameterempiricalpowerlawmodelhasalso beenusedinsomestudies(Tajvidietal.,2005;Xuetal.,2010)to simulatethecreepdate.Ithastheform;

ε (t)=atb (5)

Where,aandbarethematerialconstantsandε0istheinstanta- neousstrain.

Thelongtermcreepisanimportantparametertoevaluatethe end-useperformanceofnaturalfiberpolymercompositesbutit

(4)

Fig.2. (a)Particlesizedistributionand(b)SEMimageofjutefibersafterpulverization.

isoftenimpracticaltoperformacreeptestforanextremelylong period oftime. Time-temperaturesuperposition (TTS)isone of thecommonestimationtechniquestopredictthelongtermcreep behaviorbyshiftingthecurves fromtestsatdifferenttempera- tureshorizontallyalongthelogarithmictimeaxistogeneratea singlecurveknownasmastercurve(WardandSweeney,2012).

Theshiftingdistanceiscalledshiftfactor.

3.2.2. Shorttermcreep

Fig.3showsthecreepstrainsforjutecompositesasafunction oftimewith0,1,5,10wt%ofPJFcontentatthreedifferenttem- peratureconditions.Itisvisiblyapparentthatthecompositeshave lowinstantaneousdeformationεMandcreepstrainat40Cdue tohigherstiffnessofcompositesbutthisdeformationincreasesat highertemperaturesduetodecreaseincompositesstiffness.The creepstrainofallcompositesalsoincreasedathighertempera- turesbuttheuntreatedjutecompositeswasaffectedmorethan

theothers. The creepstrain of alkalitreated with0% PJF com- positeislessthanuntreatedone.Thismaybeexplaineddue to increaseinsurfaceroughnessofjutefabricafteralkalitreatment and decrease infrictional slippageof matrixpolymer chainsat thefiber/matrixinterfaceresultinginlesscreepdeformationthan untreatedcomposite.Theleastcreepstrainisshownbycompos- iteincorporatedwith10%PJFatalltemperaturesfollowedby5%

and 1%PJF incorporatedcomposites. At100C,5% and 10%PJF compositeshavealmostsameinstantaneouselasticdeformation but10%composite haslessviscousdeformationovertime. This maybeattributedtogreaterinhibitionofslippageandreorienta- tionofpolymerchainwithincreasingcontentsofPJF.TheBurger’s modelcurvesshowasatisfactoryagreementwiththeexperimen- taldata(Fig.3).ThefourparametersEM,EK,M,K of Burger’s model,usedtofittheEq.(2)totheexperimentaldata,aresum- marizedinTable1.Allfourparameterswerefoundtodecreasefor allcompositesastemperatureincreased(Table1).EMcorresponds

(5)

234 A.Jabbaretal./IndustrialCropsandProducts84(2016)230–240

Fig.3.CreepcurvesofcompositesincorporatedwithdifferentloadingsofPJFatdifferenttemperatures.

(6)

Fig.3.Continued.

Table1

SimulatedfourparametersinBurger’smodelforshorttermcreepofthecomposites.

Temperature Parameters Compositetypes

Untreated Alkali-0% 1% 5% 10%

40C EM(MPa) 2477.24±78.3 3259.41±138.0 3492.53±133.8 3810.53±133.6 3774.75±149.1 EK(MPa) 23876.27±10854.5 38244.62±19726.9 42496.38±21110.6 44220.12±21281.1 40549.80±19016.6

M(Pas) 2.72E7±1.33E7 3.54E7±1.22E7 4.77E7±2.04E7 4.54E7±1.97E7 5.11E7±2.47E7

K(Pas) 2.11E6±2.38E6 1.37E6±2.09E6 1.73E6±2.5E6 2.53E6±3.49E6 1.90E6±2.62E6

SS* 2.65033E-9 1.29037E-9 1.04302E-9 9.92292E-10 1.08146E-9

Adj.R2 0.97524 0.97061 0.96424 0.96929 0.96304

70C EM(MPa) 1985.89±91.9 2403.61±102.7 2921.19±118.5 3116.67±118.6 3323.10±131.9 EK(MPa) 7790.84±2752.5 11972.90±4497.3 14228.47±5360.3 16946.57±6037.4 15615.45±5726.5

M(Pas) 9.48E6±3.81E6 1.32E7±5.14E6 1.98E7±9.71E6 2.33E7±1.08E7 2.27E7±1.13E7

K(Pas) 956179.43±6.90E5 1.32E6±1.09E6 1.71E6±1.34E6 1.81E6±1.45E6 1.94E6±1.44E6

SS* 1.08937E-8 5.93037E-9 3.81543E-9 2.74811E-9 2.87718E-9

Adj.R2 0.98881 0.98689 0.9851 0.9847 0.98596

100C EM(MPa) 1380.05±294.3 1743.43±306.1 2417.83±218.3 2653.56±183.6 2616.45±123.7 EK(MPa) 665.35±117.7 865.63±121.6 3543.54±958.0 6087.72±1783.7 8457.41±2683.5

M(Pas) −4.13E20±0.0 −6.00E32±0.0 7.44E6±3.92E6 1.08E7±5.26E6 1.31E7±5.97E6

K(Pas) 219089.75±1.03E5 255733.51±9.91E4 457813.67±2.43E5 705184.01±4.39E5 1.11E6±6.84E5

SS* 8.30033E-7 3.37586E-7 2.87859E-8 1.31777E-8 6.79893E-9

Adj.R2 0.97565 0.98358 0.99023 0.98826 0.98971

SS*:Sumofsquareddeviations.

totheelasticityofthecrystallizedzonesinasemicrystallizedpoly- mer.Comparedtotheamorphousregions,thecrystallizedzones aresubjectedtoimmediatestressduetotheirhigherstiffness.The instantaneouselasticmodulusisrecoveredimmediatelyoncethe stressis removed.EKisalsocoupledwiththestiffnessofmate- rial.ThedecreaseinparametersEM,EKresultedfromtheincrease intheinstantaneousandtheviscoelasticdeformationsastemper- atureincreased.TheviscosityMcorrespondstodamageinthe crystallizedzonesandirreversibledeformationintheamorphous regionsandtheviscosityKisassociatedwiththeviscosityofthe amorphousregionsinthesemicrystallizedpolymer(Militk ´yand Jabbar,2015).The decreaseinviscosityparametersM,Kpro- poseanimprovementinthemobilityofmolecularchainsathigher

temperature.Theparametersforuntreatedandalkalitreatedwith 0%PJFcompositeshaveundergonealargestdecrease,resultingin highercreepstrain.ThecompositesincorporatedwithPJF,espe- cially5and10%,havecomparativelybettervaluesofparameters particularlyMwhichisrelatedtothelongtermcreepstrainand validateslesstemperaturedependenceofthesecomposites(Fig.3).

TheviscosityMincreaseswiththeincreaseinPJF%andpermanent deformationdecreases.Fig.4aandbcomparesthecreepstrainand strainrateofuntreatedand10%PJFcompositesatvarioustem- peratures.Comparatively,temperaturehadmoreinfluenceonthe creepdeformationofuntreatedjutecompositethanthatof10%PJF composite.

(7)

236 A.Jabbaretal./IndustrialCropsandProducts84(2016)230–240

Fig.4.Creepstrain(a)andstrainrate(b)ofuntreatedand10%PJFcompositesatdifferenttemperatures.

3.2.3. Time-temperaturesuperposition(TTS)

Thecreepcurvescorrespondingtodifferenttemperaturelev- els were shifted along the logarithmic time axis according to time–temperaturesuperpositionprinciple usingTAInstruments ThermalAdvantageTMsoftwaretogenerateamastercurveataref- erencetemperatureof40C.Theshiftingprocedureofthiscurve

obeystheWilliams–Landel–Ferry(WLF)equation.TheWLFequa- tionisgivenbyEq.(6);

log˛T= −C1(T−T0)

C2+ (T−T0) (6)

Where␣T isthehorizontal(ortime)shiftfactor,C1 and C2 are constants,T0 isthe referencetemperature(K) andT is thetest

(8)

Fig.5.TTSmastercurvesforcreepofthecompositesincorporatedwithdifferentloadingsofPJFatareferencetemperatureof40C.

temperature(K).Themastercurves,whichgiveanindicationof long-termcreepperformanceofcomposites,areplottedinlog–log scaleandpresentedinFig.5.Themastercurvesshowbettercreep resistanceofcompositeswithincreasingcontentofPJF.Itisobvi- ousthatthebestlongtermperformanceisshownbycomposites incorporatedwith5and10%PJFindicatingtheirgoodreinforcing effectiveness.Itisalsointerestingtonotethatabovelog-time4.0s, thecreepdeformationofuntreated,0and1%compositesshowa fastertendencyofincreasecompared to5and10%PJFcompos- ites.Thesefindingsshowthatunderthesmallstress,thematerials enteredintoaviscoelasticstateoveranextremelylongperiodof time,andinviscoelasticstatetheroleof1%incorporationofPJFin thereinforcementeffectivenessislessthanthatof5and10%PJF.

Fig.6showsthatthepredictionabilityoftheBurger’smodel, Findley’smodelandtwo parameterpowerlawmodel(Eqs. (2), (4)and(5))forthelog-termcreepbehaviorofcompositesatthe referencetemperatureof40C.TheincorporationofPJFincom- positesdecreasedthelongtermcreepstraincompareduntreated and0%filledalkalitreatedcomposites.Itcanbeclearlyseenthat Findley’smodel is good to predictthe long-termcreep perfor- mance. However, this model provides the adequate prediction abilitywithinthesteady statecreepandgiven time intervalas revealed by some researchers (Siengchin, 2013; Siengchin and Karger-Kocsis,2009)whileforlongertimedurationthecalculated datamayshowconsiderabledeviationfromtheexperimentaldata.

ThepredictionoftheBurger’smodelshowssomedeviationand thatoftwoparameterpowerlawmodel,showsalittlelargedevi- ationfromtheexperimentaldata.Similarfindingswerereported byotherresearchers(Haoetal.,2014;Jiaetal.,2011).Thesim- ulatedparametersofBurger,Findleyandtwoparameterspower

lawmodelsaresummarizedinTable2.TheparametersofBurger model,resultedfromfittingcreepcurves,areverydifferentfrom thoseoftheshorttermcreeptests.It canbeseenfromTable2 thatalltheBurgermodelparametersincreasewiththeincrease inloadingofPJF%.TheM,whichdetermineslong-termcreep,is lowestforuntreatedcompositeandhighestfor10%PJFcomposite.

Therefore,theuntreatedcompositeshowsthehighestand10%PJF compositeshowsthelowestcreepdeformation.Itisalsoobvious forFindleymodelthattheparametera(reflectingshort-termcreep) increasedandparametersε0 (reflectingtheinstantaneousinitial creepstrain)andb(reflectinglog-termcreep)decreasedwiththe increasingcontentofPJFwhichindicatesanenhancedlong-term creepperformancewithPJF loading.Similarly, fortwo parame- terpowerlawmodel,parametera(reflectingshort-termcreep) increasedandparameterb(reflectinglog-termcreep)decreased withtheincreasingcontentofPJF.

3.3. Dynamicmechanicalthermalproperties

Dynamicmechanicalthermalanalysiscancharacterizethevis- coelasticpropertiesofthematerialsanddeterminetheinformation ofstoragemodulus,lossmodulus(theenergydissipationassoci- atedwiththemotionofpolymerchains)andlossfactor(tandelta) ofpolymer compositeswithinthemeasuredtemperaturerange (Wangetal.,2015).Thevariationofstoragemodulus(E)ofcom- positesincorporatedwithdifferentcontentofPJFasafunctionof temperatureatfrequencyof1HzisshowninFig.7.Itcanbeseen fromFig.7athatthereisagradualfallinthestoragemoduliwith temperature,whichshouldberelatedwithanenergydissipation phenomenoninvolvingcooperativemotionsofthepolymerchains

(9)

238 A.Jabbaretal./IndustrialCropsandProducts84(2016)230–240

Fig.6. Long-termcreeppredictionofcompositesby(a)Burger’smodel,(b)Findleymodeland(c)twoparameterpowerlawmodelat40C.

Table2

SimulatedparametersofBurger’smodel,Findley’spowerlawmodelandtwoparameterspowerlawmodelforlongtermcreeppredictionofthecompositesat40C.

Temperature Parameters Compositetypes

Untreated Alkali-0% 1% 5% 10%

Burger’s model

EM(MPa) 2713.76±193.6 3002.45±184.0 2904.39±179.0 3478.01±191.0 3517.07±125.5 EK(MPa) 4781.98±2005.8 5470.29±2194.5 6271.53±2337.0 15949.06±7113.4 31490.67±16174.2

M(Pas) 2.64E9±1.29E9 2.94E9±1.29E9 4.01E9±2.19E9 9.44E9±6.93E9 2.10E10±2.04E10

K(Pas) 1.0227E8±8.73E7 1.35E8±1.05E8 9.24E7±7.83E7 6.76E7±9.00E7 9.49E7±1.53E8

SS* 4.86566E-7 3.00571E-7 2.96188E-7 1.2249E-7 4.56987E-8

Adj.R2 0.9696 0.97551 0.9658 0.92279 0.88442

Findley’s model

a 1.05E-5±4.83E-06 6.49E-6±3.69E-06 1.79E-5±1.14E-05 3.49E-5±3.45E-05 3.35E-5±5.92E-04 b 0.34341±3.39E-02 0.3699±4.22E-02 0.28033±4.63E-02 0.17143±6.61E-02 0.1284±2.27E+00 ε0 6.70E-4±2.68E-05 6.17E-4±2.58E-05 6.13E-4±3.82E-05 5.00E-4±5.74E-05 5.11E-4±9.03E-03

SS* 3.83097E-8 4.27255E-8 4.37949E-8 1.91548E-8 1.30874E-8

Adj.R2 0.99761 0.99653 0.99496 0.98797 0.96701

Two parameter powerlaw model

a 4.63E-4±1.41E-04 4.24E-4±1.39E-04 4.82E-4±1.00E-04 4.85E-4±3.61E-05 5.22E-4±2.08E-05 b 0.08443±3.37E-02 0.08145±3.64E-02 0.06828±2.37E-02 0.03723±9.03E-03 0.01951±5.01E-03

SS* 2.4937E-6 2.31209E-6 1.0253E-6 9.22041E-8 2.50976E-8

Adj.R2 0.8452 0.8128 0.88238 0.94226 0.93694

SS*:sumofsquareddeviations.

withtemperature(Fengetal.,2011).Theincreaseinstoragemodu- lusoverthewholetemperaturerangewasobservedforcomposites incorporatedwithdifferentloadingsofPJF,forexample,additionof 1,5and10%PJFcausesasignificantincreaseof∼18%,22%and43%

inthestoragemodulusrespectivelyat35C.Moreover,thestorage moduluscurvesofcompositeshavebeenshiftedtohighertemper- aturesafteradditionofthePJF,particularly5and10%loading.This significantimprovementinstoragemodulusisduetobetterrein- forcingeffectofPJFleadingtoincreasedstiffnessandthemobility restrictionofpolymerchains(Jiaetal.,2011).Thechangeinloss

factor(tanı,theratiooflossmodulustocorrespondingstorage modulus)ofcompositeswithdifferentloadingofPJFasafunction oftemperatureisshowninFig.7c.Untreatedcompositedisplayed ahighertanıpeakvaluethanothers.Thismaybeattributedto moreenergydissipationduetofrictionaldampingattheweaker untreatedfiber/matrixinterface.Thetemperatureatwhichtan␦ attainsamaximumvaluecanbereferredtoastheglasstransition temperature(Tg)(ShanmugamandThiruchitrambalam,2013).A positiveshiftinTgcanbeobservedforallcompositesincorporated withPJFcomparedtountreatedcompositeThelowertan␦peak

(10)

Fig.7.DynamicmechanicalpropertiescompositesincorporatedwithdifferentloadingsofPJF;(a)storagemodulus,(b)lossmodulus,(c)tandelta.

Table3

TgvaluesobtainedfromEcurves.

Composites TgfromEmaxcurve(C)

Untreated 110.10

Alkali-0% 110.60

1% 114

5% 123

10% 137

heightisshownbycompositeincorporatedwith10%PJFfollowed by5%and1%PJFcomposites,exhibitingastrongfiber/matrixinter- facialinteractionswhichcanrestrictthesegmentalmovementof thepolymerchainsleadingtotheincreasedTg.

IthasbeenreportedthatTgvaluesobtainedfromlossmodulus (E)curvepeakaremorerealisticascomparedtothoseobtained fromlossfactor(tanı)(Akay,1993).ApositiveshiftinTgtohigher temperatureforallcompositesincorporatedwithPJFisobserved, i.e.Tgincreasedfrom110.1Cforuntreatedto∼110.6,114,123and 137Cforcompositesincorporatedwith0,1,5and10%PJFrespec- tivelyaspresentedinTable3andFig.7b.Thismaybeduetoreduced mobilityofmatrixpolymerchainsandbetterreinforcementeffect ofPJF.Ithasbeenreportedthatsystemscontainingmorerestric- tionsandahigherdegreeofreinforcementtendtoexhibithigher Tg(Almeidaetal.,2012).

4. Conclusion

Creepbehaviorofalkalitreatedwovenjute/greenepoxycom- positesincorporatedwithdifferentloadingsofchemicallytreated pulverizedjutefibers(PJF)waspresentedatvariousenvironment temperatures.Thecreepdeformationwasfoundtoincreasewith

temperature. The creep resistanceof composites was found to improvesignificantlywiththeincorporationofPJF.Themodeling ofcreepdatawassatisfactorilyconductedbyusingBurger’smodel, Findley’spowerlawmodelandasimplertwo-parameterpowerlaw model.TheBurger’smodelfittedwelltheshort-termcreepdata.

However,theFindley’spowerlawmodelwassatisfactoryforpre- dictingthelong-termcreepperformanceofcompositescompared toBurgerandtwoparametermodel.Themastercurves,generated byTTSprinciple,indicatedthepredictionofthelong-termperfor- manceofcomposites.Dynamicmechanicaltest resultsrevealed theincreaseinstoragemodulus,glasstransitiontemperatureand reduction in the tangent delta peak heightof PJF incorporated composites.Basedontheanalysisofresults,theimprovedcreep resistanceofthecompositeswerelikely attributedtotheinhib- itedmobilityofpolymermatrixmolecularchainsinitiatedbylarge interfacialcontactareaofPJFaswellastheirinterfacialinteraction withthepolymermatrix.

Acknowledgements

Thisworkwassupportedunderthestudentgrantscheme(SGS- 21085)byTechnicalUniversityofLiberec,CzechRepublic.Oneof theauthorsisthankful toDr.Ing.Antonín Potˇeˇsiland Ing.Petr HornikforprovidingDMAtestingfacilities.

References

Acha,B.A.,Reboredo,M.M.,Marcovich,N.E.,2007.Creepanddynamicmechanical behaviorofPP–jutecomposites:Effectoftheinterfacialadhesion.Compos.

PartAAppl.Sci.Manuf.38,1507–1516.

Akay,M.,1993.Aspectsofdynamicmechanicalanalysisinpolymericcomposites.

Compos.Sci.Technol.47,419–423.

(11)

240 A.Jabbaretal./IndustrialCropsandProducts84(2016)230–240

AlmeidaJr.,J.H.S.,OrnaghiJr.,H.L.,Amico,S.C.,Amado,F.D.R.,2012.Studyofhybrid intralaminatecuraua/glasscomposites.Mater.Des.42,111–117.

Baheti,V.,Militky,J.,2013.Reinforcementofwetmilledjutenano/microparticles inpolyvinylalcoholfilms.FibersPolym.14,133–137.

Bledzki,A.K.,Faruk,O.,2004.Creepandimpactpropertiesofwood fibre–polypropylenecomposites:influenceoftemperatureandmoisture content.Compos.Sci.Technol.64,693–700.

Cai,Y.,David,S.,Pailthorpe,M.,2000.Dyeingofjuteandjute/cottonblendfabrics with2:1pre-metalliseddyes.DyePigm.45,161–168.

Feng,Q.-P.,Shen,X.-J.,Yang,J.-P.,Fu,S.-Y.,Mai,Y.-W.,Friedrich,K.,2011.Synthesis ofepoxycompositeswithhighcarbonnanotubeloadingandeffectsoftubular andwavymorphologyoncompositestrengthandmodulus.Polymers52, 6037–6045.

Findley,W.N.,Davis,F.A.,Onaran,K.,1989.CreepandRelaxationofNonlinear ViscoelasticMaterials:WithanIntroductiontoLinearViscoelasticity.Dover Publications,Inc.,NewYork.

Hao,A.,Chen,Y.,Chen,J.Y.,2014.Creepandrecoverybehaviorof kenaf/polypropylenenonwovencomposites.J.Appl.Polym.Sci.131.

Haque,M.M.,Hasan,M.,Islam,M.S.,Ali,M.E.,2009.Physico-mechanicalproperties ofchemicallytreatedpalmandcoirfiberreinforcedpolypropylene

composites.Biores.Technol.100,4903–4906.

Jia,Y.,Peng,K.,Gong,X.-l.,Zhang,Z.,2011.Creepandrecoveryof

polypropylene/carbonnanotubecomposites.Int.J.Plast.27,1239–1251.

John,M.J.,Anandjiwala,R.D.,2009.Chemicalmodificationofflaxreinforced polypropylenecomposites.Compos.PartAAppl.Sci.Manuf.40,442–448.

Krempl,E.,Khan,F.,2003.Rate(time)-dependentdeformationbehavior:an overviewofsomepropertiesofmetalsandsolidpolymers.Int.J.Plast.19, 1069–1095.

Liu,W.,Mohanty,A.,Drzal,L.,Askel,P.,Misra,M.,2004.Effectsofalkalitreatment onthestructure,morphologyandthermalpropertiesofnativegrassfibersas reinforcementsforpolymermatrixcomposites.J.Mater.Sci.39,1051–1054.

Marcovich,N.E.,Villar,M.A.,2003.Thermalandmechanicalcharacterizationof linearlow-densitypolyethylene/woodflourcomposites.J.Appl.Polym.Sci.90, 2775–2784.

Meloun,M.,Militky,J.,2011.StatisticalDataAnalysis:APracticalGuide.

WoodheadPublishing,Limited.

Militk ´y,J.,Jabbar,A.,2015.Comparativeevaluationoffibertreatmentsonthecreep behaviorofjute/greenepoxycomposites.Compos.PartBEng.80,361–368.

Mishra,S.,Mohanty,A.K.,Drzal,L.,Misra,M.,Parija,S.,Nayak,S.K.,Tripathy,S.S., 2003.Studiesonmechanicalperformanceofbiofibre/glassreinforced polyesterhybridcomposites.Compos.Sci.Technol.63,1377–1385.

Mishra,R.,Baheti,V.,Behera,B.,Militky,J.,2014.Noveltiesof3-Dwoven compositesandnanocomposites.J.Text.Inst.105,84–92.

Morshed,M.,Alam,M.,Daniels,S.,2010.Plasmatreatmentofnaturaljutefibreby RIE80plusplasmatool.Plas.Sci.Technol.12,325.

Plaseied,A.,Fatemi,A.,2008.Tensilecreepanddeformationmodelingofvinyl esterpolymeranditsnanocomposite.J.Reinf.Plast.Compos.28,1775–1788.

Shanmugam,D.,Thiruchitrambalam,M.,2013.Staticanddynamicmechanical propertiesofalkalitreatedunidirectionalcontinuouspalmyrapalmleafstalk fiber/jutefiberreinforcedhybridpolyestercomposites.Mater.Des.50, 533–542.

Shen,L.,Phang,I.Y.,Chen,L.,Liu,T.,Zeng,K.,2004.Nanoindentationand morphologicalstudiesonnylon66nanocomposites.I.Effectofclayloading.

Polymers45,3341–3349.

Siengchin,S.,2013.Dynamicmechanicandcreepbehaviorsof polyoxymethylene/boehmitealuminananocompositesproducedby water-mediatedcompoundingEffectofparticlesize.J.Thermo.Compos.

Mater.26,863–877.

Siengchin,S.,Karger-Kocsis,J.,2009.Structureandcreepresponseoftoughened andnanoreinforcedpolyamidesproducedviathelatexroute:effectof nanofillertype.Compos.Sci.Technol.69,677–683.

Tajvidi,M.,Falk,R.H.,Hermanson,J.C.,2005.Time–temperaturesuperposition principleappliedtoakenaf-fiber/high-densitypolyethylenecomposite.J.

Appl.Polm.Sci.97,1995–2004.

Tserki,V.,Zafeiropoulos,N.,Simon,F.,Panayiotou,C.,2005.Astudyoftheeffectof acetylationandpropionylationsurfacetreatmentsonnaturalfibres.Compos.

PartAAppl.Sci.Manuf.36,1110–1118.

Wang,X.,Gong,L.-X.,Tang,L.-C.,Peng,K.,Pei,Y.-B.,Zhao,L.,Wu,L.-B.,Jiang,J.-X., 2015.Temperaturedependenceofcreepandrecoverybehaviorsofpolymer compositesfilledwithchemicallyreducedgrapheneoxide.Compos.PartA Appl.Sci.Manuf.69,288–298.

Ward,I.M.,Sweeney,J.,2012.MechanicalPropertiesofSolidPolymers.JohnWiley

&Sons.

Xu,Y.,Wu,Q.,Lei,Y.,Yao,F.,2010.Creepbehaviorofbagassefiberreinforced polymercomposites.Biores.Technol.101,3280–3286.

Yang,J.-L.,Zhang,Z.,Schlarb,A.K.,Friedrich,K.,2006a.Onthecharacterizationof tensilecreepresistanceofpolyamide66nanocomposites.PartI.Experimental resultsandgeneraldiscussions.Polymers47,2791–2801.

Yang,J.-L.,Zhang,Z.,Schlarb,A.K.,Friedrich,K.,2006b.Onthecharacterizationof tensilecreepresistanceofpolyamide66nanocomposites.PartII:modeling andpredictionoflong-termperformance.Polymers47,6745–6758.

References

Related documents

neonatal asphyxia and pain, the experience of cold pain, mechanisms behind cold induced pain, the overall effect of hypothermia on PK or PD and effect of hypothermia on drugs used

Cross-sectional OM micrographs of polished, bulk Ti 2 AlC sample after LiF treatment for 2 h at 900 °C in air, (a) low magnification, showing reaction layer and sharp

The intercepts of the power function regression in Figure 4.7 and Figure 4.8 are plotted with the corresponding strain in Figure 4.9. Polynomial functions are used to determine

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

The thesis deals with jute fibres and their treatment for production of cellulose fibres and micro crystals.. Many various techniques were investigated for jute fibres

The group that received pharmacological treatment for ADHD exhibited fewer substance abuse relapses, received more frequently voluntary treatments in accordance with a

ISBN 978-91-8009-126-8 (PRINT) ISBN 978-91-8009-127-5 (PDF) Printed by Stema Specialtryck AB, Borås.

Av 50 deltagare var det endast 5 (10%) som svarade att de använder kreativa aktiviteter i sitt arbete med äldre patienter (fråga 9) och de arbetar på vård- och omsorgsboende för