• No results found

POSITIVE VOLTAGE REGULATORS L7800SERIES

N/A
N/A
Protected

Academic year: 2022

Share "POSITIVE VOLTAGE REGULATORS L7800SERIES"

Copied!
34
0
0

Loading.... (view fulltext now)

Full text

(1)

OUTPUT CURRENT TO 1.5A

OUTPUT VOLTAGES OF 5; 5.2; 6; 8; 8.5; 9;

10; 12; 15; 18; 24V

THERMAL OVERLOAD PROTECTION

SHORT CIRCUIT PROTECTION

OUTPUT TRANSITION SOA PROTECTION DESCRIPTION

The L7800 series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-220FM, TO-3 and D

2

PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

SERIES

POSITIVE VOLTAGE REGULATORS

Figure 1: Schematic Diagram

TO-220

D2PAK TO-3

TO-220FP TO-220FM

(2)

Table 1: Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Figure 2: Schematic Diagram

Symbol Parameter Value Unit

VI DC Input Voltage for VO= 5 to 18V 35

for VO= 20, 24V 40 V

IO Output Current Internally Limited

Ptot Power Dissipation Internally Limited

Tstg Storage Temperature Range -65 to 150 °C

Top Operating Junction Temperature Range

for L7800 -55 to 150

for L7800C 0 to 150 °C

Symbol Parameter D2PAK TO-220 TO-220FP TO-220FM TO-3 Unit

Rthj-case Thermal Resistance Junction-case Max 3 5 5 5 4 °C/W

Rthj-amb Thermal Resistance Junction-ambient

Max 62.5 50 60 60 35 °C/W

(3)

Figure 3: Connection Diagram (top view)

Table 3: Order Codes

TYPE TO-220 (A Type)

TO-220 (C Type)

TO-220 (E Type)

D2PAK (A Type) (*)

D2PAK (C Type)

(T & R)

TO-220FP TO-220FM TO-3

L7805 L7805T

L7805C L7805CV L7805C-V L7805CV1 L7805CD2T L7805C-D2TR L7805CP L7805CF L7805CT

L7852C L7852CV L7852CD2T L7852CP L7852CF L7852CT

L7806 L7806T

L7806C L7806CV L7806C-V L7806CD2T L7806CP L7806CF L7806CT

L7808 L7808T

L7808C L7808CV L7808C-V L7808CD2T L7808CP L7808CF L7808CT

L7885C L7885CV L7885CD2T L7885CP L7885CF L7885CT

L7809C L7809CV L7809C-V L7809CD2T L7809CP L7809CF L7809CT

L7810C L7810CV L7810CD2T L7810CP

L7812 L7812T

L7812C L7812CV L7812C-V L7812CD2T L7812CP L7812CF L7812CT

L7815 L7815T

L7815C L7815CV L7815C-V L7815CD2T L7815CP L7815CF L7815CT

L7818 L7818T

L7818C L7818CV L7818CD2T L7818CP L7818CF L7818CT

L7820 L7820T

L7820C L7820CV L7820CD2T L7820CP L7820CF L7820CT

TO-220 (Any Type)

TO-3 D

2

PAK (Any Type)

TO-220FP/TO-220FM

(4)

Figure 4: Application Circuits

TEST CIRCUITS

Figure 5: DC Parameter

Figure 6: Load Regulation

(5)

Figure 7: Ripple Rejection

Table 4: Electrical Characteristics Of L7805 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 10V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 4.8 5 5.2 V

VO Output Voltage IO = 5 mA to 1 A PO≤ 15W VI = 8 to 20 V

4.65 5 5.35 V

∆VO(*) Line Regulation VI = 7 to 25 V TJ = 25°C 3 50 mV

VI = 8 to 12 V TJ = 25°C 1 25

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 100 mV

IO = 250 to 750 mA TJ = 25°C 25

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 8 to 25 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 0.6 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 8 to 18 V f = 120Hz 68 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 17 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

(6)

Table 5: Electrical Characteristics Of L7806 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 11V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6: Electrical Characteristics Of L7808 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 14V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 5.75 6 6.25 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 9 to 21 V

5.65 6 6.35 V

∆VO(*) Line Regulation VI = 8 to 25 V TJ = 25°C 60 mV

VI = 9 to 13 V TJ = 25°C 30

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 100 mV

IO = 250 to 750 mA TJ = 25°C 30

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 9 to 25 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 0.7 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 9 to 19 V f = 120Hz 65 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 19 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 7.7 8 8.3 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 11.5 to 23 V

7.6 8 8.4 V

∆VO(*) Line Regulation VI = 10.5 to 25 V TJ = 25°C 80 mV

VI = 11 to 17 V TJ = 25°C 40

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 100 mV

IO = 250 to 750 mA TJ = 25°C 40

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 11.5 to 25 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 11.5 to 21.5 V f = 120Hz 62 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 16 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

(7)

Table 7: Electrical Characteristics Of L7812 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 19V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 8: Electrical Characteristics Of L7815 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 23V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 11.5 12 12.5 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 15.5 to 27 V

11.4 12 12.6 V

∆VO(*) Line Regulation VI = 14.5 to 30 V TJ = 25°C 120 mV

VI = 16 to 22 V TJ = 25°C 60

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 100 mV

IO = 250 to 750 mA TJ = 25°C 60

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 15 to 30 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 1.5 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 15 to 25 V f = 120Hz 61 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 18 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 14.4 15 15.6 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 18.5 to 30 V

14.25 15 15.75 V

∆VO(*) Line Regulation VI = 17.5 to 30 V TJ = 25°C 150 mV

VI = 20 to 26 V TJ = 25°C 75

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 150 mV

IO = 250 to 750 mA TJ = 25°C 75

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 18.5 to 30 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 1.8 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 18.5 to 28.5 V f = 120Hz 60 dB

(8)

Table 9: Electrical Characteristics Of L7818 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 26V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 10: Electrical Characteristics Of L7820 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 28V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 17.3 18 18.7 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 22 to 33 V

17.1 18 18.9 V

∆VO(*) Line Regulation VI = 21 to 33 V TJ = 25°C 180 mV

VI = 24 to 30 V TJ = 25°C 90

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 180 mV

IO = 250 to 750 mA TJ = 25°C 90

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 22 to 33 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 2.3 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 22 to 32 V f = 120Hz 59 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 22 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 19.2 20 20.8 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 24 to 35 V

19 20 21 V

∆VO(*) Line Regulation VI = 22.5 to 35 V TJ = 25°C 200 mV

VI = 26 to 32 V TJ = 25°C 100

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 200 mV

IO = 250 to 750 mA TJ = 25°C 100

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 24 to 35 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 2.5 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 24 to 35 V f = 120Hz 58 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 24 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

(9)

Table 11: Electrical Characteristics Of L7824 (refer to the test circuits, T

J

= -55 to 150°C, V

I

= 33V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 12: Electrical Characteristics Of L7805C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 10V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ= 25°C 23 24 25 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 28 to 38 V

22.8 24 25.2 V

∆VO(*) Line Regulation VI = 27 to 38 V TJ = 25°C 240 mV

VI = 30 to 36 V TJ = 25°C 120

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 240 mV

IO = 250 to 750 mA TJ = 25°C 120

Id Quiescent Current TJ = 25°C 6 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 28 to 38 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA 3 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 28 to 38 V f = 120Hz 56 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 2.5 V

RO Output Resistance f = 1 KHz 28 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 1.2 A

Iscp Short Circuit Peak Current TJ = 25°C 1.3 2.2 3.3 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 4.8 5 5.2 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 7 to 20 V

4.75 5 5.25 V

∆VO(*) Line Regulation VI = 7 to 25 V TJ = 25°C 3 100 mV

VI = 8 to 12 V TJ = 25°C 1 50

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 100 mV

IO = 250 to 750 mA TJ = 25°C 50

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 7 to 25 V 0.8

∆VO/∆T Output Voltage Drift IO = 5 mA -1.1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 40 µV/VO

SVR Supply Voltage Rejection VI = 8 to 18 V f = 120Hz 62 dB

(10)

Table 13: Electrical Characteristics Of L7852C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 10V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 14: Electrical Characteristics Of L7806C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 11V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 5.0 5.2 5.4 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 8 to 20 V

4.95 5.2 5.45 V

∆VO(*) Line Regulation VI = 7 to 25 V TJ = 25°C 3 105 mV

VI = 8 to 12 V TJ = 25°C 1 52

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 105 mV

IO = 250 to 750 mA TJ = 25°C 52

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 7 to 25 V 1.3

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 42 µV/VO

SVR Supply Voltage Rejection VI = 8 to 18 V f = 120Hz 61 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 17 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.75 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 5.75 6 6.25 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 8 to 21 V

5.7 6 6.3 V

∆VO(*) Line Regulation VI = 8 to 25 V TJ = 25°C 120 mV

VI = 9 to 13 V TJ = 25°C 60

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 120 mV

IO = 250 to 750 mA TJ = 25°C 60

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 8 to 25 V 1.3

∆VO/∆T Output Voltage Drift IO = 5 mA -0.8 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 45 µV/VO

SVR Supply Voltage Rejection VI = 9 to 19 V f = 120Hz 59 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 19 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.55 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

(11)

Table 15: Electrical Characteristics Of L7808C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 14V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 16: Electrical Characteristics Of L7885C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 14.5V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 7.7 8 8.3 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 10.5 to 25 V

7.6 8 8.4 V

∆VO(*) Line Regulation VI = 10.5 to 25 V TJ = 25°C 160 mV

VI = 11 to 17 V TJ = 25°C 80

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 160 mV

IO = 250 to 750 mA TJ = 25°C 80

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 10.5 to 25 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -0.8 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 52 µV/VO

SVR Supply Voltage Rejection VI = 11.5 to 21.5 V f = 120Hz 56 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 16 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.45 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 8.2 8.5 8.8 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 11 to 26 V

8.1 8.5 8.9 V

∆VO(*) Line Regulation VI = 11 to 27 V TJ = 25°C 160 mV

VI = 11.5 to 17.5 V TJ = 25°C 80

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 160 mV

IO = 250 to 750 mA TJ = 25°C 80

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 11 to 27 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -0.8 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 55 µV/VO

SVR Supply Voltage Rejection VI = 12 to 22 V f = 120Hz 56 dB

(12)

Table 17: Electrical Characteristics Of L7809C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 15V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18: Electrical Characteristics Of L7810C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 16V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 8.64 9 9.36 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 11.5 to 26 V

8.55 9 9.45 V

∆VO(*) Line Regulation VI = 11.5 to 26 V TJ = 25°C 180 mV

VI = 12 to 18 V TJ = 25°C 90

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 180 mV

IO = 250 to 750 mA TJ = 25°C 90

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 11.5 to 26 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 70 µV/VO

SVR Supply Voltage Rejection VI = 12 to 23 V f = 120Hz 55 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 17 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.40 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 9.6 10 10.4 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 12.5 to 26 V

9.5 10 10.5 V

∆VO(*) Line Regulation VI = 12.5 to 26 V TJ = 25°C 200 mV

VI = 13.5 to 19 V TJ = 25°C 100

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 200 mV

IO = 250 to 750 mA TJ = 25°C 100

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 12.5 to 26 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 70 µV/VO

SVR Supply Voltage Rejection VI = 13 to 23 V f = 120Hz 55 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 17 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.40 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

(13)

Table 19: Electrical Characteristics Of L7812C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 19V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 20: Electrical Characteristics Of L7815C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 23V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 11.5 12 12.5 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 14.5 to 27 V

11.4 12 12.6 V

∆VO(*) Line Regulation VI = 14.5 to 30 V TJ = 25°C 240 mV

VI = 16 to 22 V TJ = 25°C 120

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 240 mV

IO = 250 to 750 mA TJ = 25°C 120

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 14.5 to 30 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 75 µV/VO

SVR Supply Voltage Rejection VI = 15 to 25 V f = 120Hz 55 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 18 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.35 A

Iscp Short Circuit Peak Current TJ = 25°C 2.2 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 14.5 15 15.6 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 17.5 to 30 V

14.25 15 15.75 V

∆VO(*) Line Regulation VI = 17.5 to 30 V TJ = 25°C 300 mV

VI = 20 to 26 V TJ = 25°C 150

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 300 mV

IO = 250 to 750 mA TJ = 25°C 150

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 17.5 to 30 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 90 µV/VO

SVR Supply Voltage Rejection VI = 18.5 to 28.5 V f = 120Hz 54 dB

(14)

Table 21: Electrical Characteristics Of L7818C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 26V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 22: Electrical Characteristics Of L7820C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 28V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 17.3 18 18.7 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 21 to 33 V

17.1 18 18.9 V

∆VO(*) Line Regulation VI = 21 to 33 V TJ = 25°C 360 mV

VI = 24 to 30 V TJ = 25°C 180

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 360 mV

IO = 250 to 750 mA TJ = 25°C 180

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 21 to 33 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 110 µV/VO

SVR Supply Voltage Rejection VI = 22 to 32 V f = 120Hz 53 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 22 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.20 A

Iscp Short Circuit Peak Current TJ = 25°C 2.1 A

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ = 25°C 19.2 20 20.8 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 23 to 35 V

19 20 21 V

∆VO(*) Line Regulation VI = 22.5 to 35 V TJ = 25°C 400 mV

VI = 26 to 32 V TJ = 25°C 200

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 400 mV

IO = 250 to 750 mA TJ = 25°C 200

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 23 to 35 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 150 µV/VO

SVR Supply Voltage Rejection VI = 24 to 35 V f = 120Hz 52 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 24 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.18 A

Iscp Short Circuit Peak Current TJ = 25°C 2.1 A

(15)

Table 23: Electrical Characteristics Of L7824C (refer to the test circuits, T

J

= 0 to 125°C, V

I

= 33V, I

O

= 500 mA, C

I

= 0.33 µF, C

O

= 0.1 µF unless otherwise specified).

(*) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 8: Dropout Voltage vs Junction Temperature

Figure 9: Peak Output Current vs Input/output Differential Voltage

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VO Output Voltage TJ= 25°C 23 24 25 V

VO Output Voltage IO = 5 mA to 1 A PO ≤ 15W VI = 27 to 38 V

22.8 24 25.2 V

∆VO(*) Line Regulation VI = 27 to 38 V TJ = 25°C 480 mV

VI = 30 to 36 V TJ = 25°C 240

∆VO(*) Load Regulation IO = 5 mA to 1.5 A TJ = 25°C 480 mV

IO = 250 to 750 mA TJ = 25°C 240

Id Quiescent Current TJ = 25°C 8 mA

∆Id Quiescent Current Change IO = 5 mA to 1 A 0.5 mA

VI = 27 to 38 V 1

∆VO/∆T Output Voltage Drift IO = 5 mA -1.5 mV/°C

eN Output Noise Voltage B =10Hz to 100KHz TJ = 25°C 170 µV/VO

SVR Supply Voltage Rejection VI = 28 to 38 V f = 120Hz 50 dB

Vd Dropout Voltage IO = 1 A TJ = 25°C 2 V

RO Output Resistance f = 1 KHz 28 mΩ

Isc Short Circuit Current VI = 35 V TJ = 25°C 0.15 A

Iscp Short Circuit Peak Current TJ = 25°C 2.1 A

(16)

Figure 10: Supply Voltage Rejection vs Frequency

Figure 11: Output Voltage vs Junction Temperature

Figure 12: Output Impedance vs Frequency

Figure 13: Quiescent Current vs Junction Temperature

Figure 14: Load Transient Response

Figure 15: Line Transient Response

(17)

Figure 16: Quiescent Current vs Input Voltage

Figure 17: Fixed Output Regulator

NOTE:

1. To specify an output voltage, substitute voltage value for "XX".

2. Although no output capacitor is need for stability, it does improve transient response.

3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 18: Current Regulator

Vxx IO =  + Id

R1

(18)

Figure 19: Circuit for Increasing Output Voltage

Figure 20: Adjustable Output Regulator (7 to 30V)

Figure 21: 0.5 to 10V Regulator

IR1 ≥ 5 Id R2

VO = VXX (1+  ) + Id R2 R1

R4 VO = Vxx 

R1

(19)

Figure 22: High Current Voltage Regulator

Figure 23: High Output Current with Short Circuit Protection

Figure 24: Tracking Voltage Regulator

VBEQ1 R1 =  IQ1

IREQ - βQ1 VBEQ1 IO = IREG + Q1 (IREG)R1

VBEQ2 RSC = 

ISC

(20)

Figure 25: Split Power Supply (± 15V - 1 A)

* Against potential latch-up problems.

Figure 26: Negative Output Voltage Circuit

Figure 27: Switching Regulator

(21)

Figure 28: High Input Voltage Circuit

Figure 29: High Input Voltage Circuit

Figure 30: High Output Voltage Regulator

Figure 31: High Input and Output Voltage

VIN = VI - (VZ + VBE)

VO = VXX + VZ1

(22)

Figure 32: Reducing Power Dissipation with Dropping Resistor

Figure 33: Remote Shutdown

Figure 34: Power AM Modulator (unity voltage gain, I

O

0.5)

NOTE: The circuit performs well up to 100 KHz.

VI(min) - VXX - VDROP(max) R = 

IO(max) + Id(max)

(23)

Figure 35: Adjustable Output Voltage with Temperature Compensation

NOTE: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the temperature. C allows a slow rise time of the VO.

Figure 36: Light Controllers (V

Omin

= V

XX

+ V

BE

)

Figure 37: Protection against Input Short-Circuit with High Capacitance Loads

R2

VO = VXX (1+ ) + VBE R1

VO rises when the light goes up VO falls when the light goes up

(24)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 11.85 0.466

B 0.96 1.05 1.10 0.037 0.041 0.043

C 1.70 0.066

D 8.7 0.342

E 20.0 0.787

G 10.9 0.429

N 16.9 0.665

P 26.2 1.031

R 3.88 4.09 0.152 0.161

U 39.5 1.555

V 30.10 1.185

TO-3 MECHANICAL DATA

P003C/C

EB

R

C D P A

G

N

VU O

(25)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.40 4.60 0.173 0.181

b 0.61 0.88 0.024 0.034

b1 1.15 1.70 0.045 0.067

c 0.49 0.70 0.019 0.027

D 15.25 15.75 0.600 0.620

E 10.0 10.40 0.393 0.409

e 2.4 2.7 0.094 0.106

e1 4.95 5.15 0.194 0.203

F 1.23 1.32 0.048 0.051

H1 6.2 6.6 0.244 0.260

J1 2.40 2.72 0.094 0.107

L 13.0 14.0 0.511 0.551

L1 3.5 3.93 0.137 0.154

L20 16.4 0.645

L30 28.9 1.138

φP 3.75 3.85 0.147 0.151

Q 2.65 2.95 0.104 0.116

TO-220 (A TYPE) MECHANICAL DATA

(26)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.30 4.70 0.169 0.185

b 0.70 0.90 0.028 0.035

b1 1.42 1.62 0.056 0.064

c 0.45 0.60 0.018 0.024

D 15.70 0.618

E 9.80 10.20 0.386 0.402

e 2.54 0.100

e1 5.08 0.200

F 1.25 1.39 0.049 0.055

H1 6.5 0.256

J1 2.20 2.60 0.087 0.202

L 12.88 13.28 0.507 0.523

L1 3 0.118

L20 15.70 16.1 0.618 0.634

L30 28.9 1.138

φP 3.50 3.70 0.138 0.146

Q 2.70 2.90 0.106 0.114

TO-220 (C TYPE) MECHANICAL DATA

0015988/N

(27)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.47 4.67 0.176 0.184

b 0.70 0.91 0.028 0.036

b1 1.17 1.37 0.046 0.054

c 0.31 0.53 0.012 0.021

D 14.60 15.70 0.575 0.618

E 9.96 10.36 0.392 0.408

e 2.54 0.100

e1 5.08 0.200

F 1.17 1.37 0.046 0.054

H1 6.1 6.8 0.240 0.268

J1 2.52 2.82 0.099 0.111

L 12.70 13.80 0.500 0.543

L1 3.20 3.96 0.126 0.156

L20 15.21 16.77 0.599 0.660

φP 3.73 3.94 0.147 0.155

Q 2.59 2.89 0.102 0.114

TO-220 (E TYPE) MECHANICAL DATA

(28)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.40 4.60 0.173 0.181

B 2.5 2.7 0.098 0.106

D 2.5 2.75 0.098 0.108

E 0.45 0.70 0.017 0.027

F 0.75 1 0.030 0.039

F1 1.15 1.50 0.045 0.059

F2 1.15 1.50 0.045 0.059

G 4.95 5.2 0.194 0.204

G1 2.4 2.7 0.094 0.106

H 10.0 10.40 0.393 0.409

L2 16 0.630

L3 28.6 30.6 1.126 1.204

L4 9.8 10.6 0.385 0.417

L5 2.9 3.6 0.114 0.142

L6 15.9 16.4 0.626 0.645

L7 9 9.3 0.354 0.366

DIA. 3 3.2 0.118 0.126

TO-220FP MECHANICAL DATA

7012510A-H

(29)

DIM. mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.50 4.90 0.177 0.193

B 2.34 2.74 0.092 0.108

D 2.56 2.96 0.101 0.117

E 0.45 0.50 0.60 0.018 0.020 0.024

F 0.70 0.90 0.028 0.035

F1 1.47 0.058

G 5.08 0.200

G1 2.34 2.54 2.74 0.092 0.100 0.108

H 9.96 10.36 0.392 0.408

L2 15.8 0.622

L4 9.45 10.05 0.372 0.396

L6 15.67 16.07 0.617 0.633

L7 8.99 9.39 0.354 0.370

L8 3.30 0.130

DIA. 3.08 3.28 0.121 0.129

TO-220FM MECHANICAL DATA

(30)

DIM.

mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.4 4.6 0.173 0.181

A1 0.03 0.23 0.001 0.009

b 0.7 0.93 0.027 0.036

b2 1.14 1.7 0.044 0.067

c 0.45 0.6 0.017 0.023

c2 1.23 1.36 0.048 0.053

D 8.95 9.35 0.352 0.368

D1 8 0.315

E 10 10.4 0.393 0.409

E1 8.5 0.335

e 2.54 0.100

e1 4.88 5.28 0.192 0.208

H 15 15.85 0.590 0.624

J1 2.49 2.69 0.098 0.106

L 2.29 2.79 0.090 0.110

L1 1.27 1.4 0.050 0.055

L2 1.3 1.75 0.051 0.069

R 0.4 0.016

V2 0° 8° 0° 8°

D 2 PAK (A TYPE) MECHANICAL DATA

0079457/J

(31)

DIM.

mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 4.3 4.7 0.169 0.185

A1 0 0.20 0.000 0.008

b 0.70 0.90 0.028 0.035

b2 1.17 1.37 0.046 0.054

c 0.45 0.50 0.6 0.018 0.020 0.024

c2 1.25 1.30 1.40 0.049 0.051 0.055

D 9.0 9.2 9.4 0.354 0.362 0.370

D1 7.5 0.295

E 9.8 10.2 0.386 0.402

E1 7.5 0.295

e 2.54 0.100

e1 5.08 0.200

H 15 15.30 15.60 0.591 0.602 0.614

J1 2.20 2.60 0.087 0.102

L 1.79 2.79 0.070 0.110

L1 1.0 1.4 0.039 0.055

L2 1.2 1.6 0.047 0.063

R 0.3 0.012

V2 0° 3° 0° 3°

D 2 PAK (C TYPE) MECHANICAL DATA

(32)

DIM.

mm. inch

MIN. TYP MAX. MIN. TYP. MAX.

A 180 7.086

C 12.8 13.0 13.2 0.504 0.512 0.519

D 20.2 0.795

N 60 2.362

T 14.4 0.567

Ao 10.50 10.6 10.70 0.413 0.417 0.421

Bo 15.70 15.80 15.90 0.618 0.622 0.626

Ko 4.80 4.90 5.00 0.189 0.193 0.197

Po 3.9 4.0 4.1 0.153 0.157 0.161

P 11.9 12.0 12.1 0.468 0.472 0.476

Tape & Reel D 2 PAK-P 2 PAK-D 2 PAK/A-P 2 PAK/A MECHANICAL DATA

(33)

Table 24: Revision History

Date Revision Description of Changes

09-Nov-2004 12 Add New Part Number.

(34)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

References

Related documents

(2.12) describes the dynamics of a particle with mass proportional to C and position ϕ in a washboard potential, under the effect of a viscous drag force proportional to R −1. The

Thereafter the potential implications of the securitization of asylum seekers and refugees and the impact on human security of the resident population of Sweden will be explored

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING

Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible and thermal effects must be taken into account

First of all, the chart shows that the ”thermal” resonance frequencies are not exactly the same as the ”mechanical” resonance frequencies: the mechanical response reveals

Hade Ingleharts index använts istället för den operationalisering som valdes i detta fall som tar hänsyn till båda dimensionerna (ökade självförverkligande värden och minskade

Tables 1, 2, 3, and 4 presents the words used by the subjects for motivating their choice of a sound effect and groups the words to form different themes of motivation.. Figure

The Court of Justice of the European Union has progressively revised the rule of purely internal situations to ensure a wider scope of application of the economic freedoms as well as