• No results found

Impact and optimum transmission of waves: some theoretical and experimental studies

N/A
N/A
Protected

Academic year: 2022

Share "Impact and optimum transmission of waves: some theoretical and experimental studies"

Copied!
89
0
0

Loading.... (view fulltext now)

Full text

(1)

Högsko!an i Luleå Biblioteket

DOCTORAL THESIS

1 9 7 9 : 0 5 D

I M P A C T A N D O P T I M U M T R A N S M I S S I O N O F W A V E S

SOME T H E O R E T I C A L AND E X P E R I M E N T A L STUDIES

B Y

R A M GUPTA

DIVISION O F S O L I D M E C H A N I C S

UNIVERSITY OF LULEA

(2)

I M P A C T A N D O P T I M U M T R A N S M I S S I O N O F W A V E S

SOME T H E O R E T I C A L AND E X P E R I M E N T A L STUDIES

B Y

R A M GUPTA

AKADEMISK AVHANDLING

som med vederbörligt tillstånd av Tekniska Fakultetsnämnden vid Hög- skolan i Luleå för avläggande av teknisk doktorsexamen kommer att offentligen försvaras å Högskolans Aula i Centrumhuset onsdagen den 27 februari 1980, kl 10.00.

(3)

DOCTORAL THESIS

1 9 7 9 : 0 5 D

I M P A C T A N D O P T I M U M T R A N S M I S S I O N O F W A V E S

SOME T H E O R E T I C A L AND E X P E R I M E N T A L STUDIES

B Y

R A M GUPTA

DIVISION O F S O L I D M E C H A N I C S

UNIVERSITY OF LULEÅ

(4)

T h i s d o c t o r a l t h e s i s i n c l u d e s t h e f o l l o w i n g p a p e r s :

A Elastic impact between a finite conical rod and a long cylindrical rod, t o g e t h e r w i t h L. N i l s s o n ,

J o u r n a l o f S o u n d a n d V i b r a t i o n BO ( 4 ) , 5 5 5 - 5 6 3 , ( 1 9 7 8 ) . A l s o p r e s e n t e d a t E u r o m e c h 81 C o l l o q u i u m , L i b l i c e C a s t l e , C z e c h o s l o v a k i a , S e p t . 1 3 - 1 7 , 1 9 7 6 , a n d a t S v e n s k a M e k a n i k d a g a r , L i n k ö p i n g , S w e d e n , D e t . 2 8 - 2 9 , 1 9 7 7 .

B Propagation of elastic waves in rods with variable cross-section, a c c e p t e d f o r p u b l i c a t i o n i n ASME J o u r n a l o f A p p l i e d M e c h a n i c s .

C Optimum transmission of an elastic wave through joints, t o g e t h e r w i t h B. L u n d b e r g a n d L r E . A n d e r s s o n ,

Wave M o t i o n 1_ ( 3 ) , 1 9 3 - 2 0 0 , ( 1 9 7 9 ) . A l s o p r e s e n t e d a t 2 0 t h P o l i s h S o l i d M e c h a n i c s C o n f e r e n c e , P o r a b k a - K o z u b n i k , P o l a n d , S e p t . 3-11, 1978.

D Optimization of wave transmitting joints, U n i v e r s i t y o f L u l e å , T e c h n i c a l R e p o r t No. 1 9 7 9 : 8 0 T . A l s o

p r e s e n t e d a t S v e n s k a M e k a n i k d a g a r , G ö t e b o r g , S w e d e n , May 1 1 - 1 2 , 1 9 7 9 .

E Experiments on optimum wave transmitting joints, U n i v e r s i t y o f L u l e å , T e c h n i c a l R e p o r t No. 19 7 9 : 8 1 7 .

The c o n t e n t s o f p a p e r s • a n d E a r e t o be p u b l i s h e d i n a c o n d e n s e d f o r m .

(5)

CONTENTS

I m p a c t a n d o p t i m u m t r a n s m i s s i o n o t w a v e s

I n t r o d u c t i o n

Summary o f a p p e n d e d p a p e r s A c k n o w l e d g e m e n t s

R e f e r e n c e s

P a p e r A: E l a s t i c i m p a c t b e t w e e n a f i n i t e c o n i c a l r o d a n d a l o n g c y l i n d r i c a l r o d

P a p e r B: P r o p a g a t i o n o f e l a s t i c w a v e s I n r o d s w i t h v a r i a b l e c r o s s - s e c t i on

P a p e r C: O p t i m u m t r a n s m i s s i o n o f e l a s t i c w a v e s t h r o u g h j o i n t s

P a p e r 0: O p t i m i z a t i o n o f w a v e t r a n s m i t t i n g j o i n t s . .

P a p e r E: E x p e r i m e n t s on o p t i m u m wave t r a n s m i t t i n g i o i n t s

KEY-WORDS

I m p a c t , o p t i m i z a t i o n , e l a s t i c , w a v e , e n e r g y , t r a n s m i s s i o n , i m p e d a n c e , j o i n t .

(6)

1

IMPACT AND OPTIMUM TRANSMISSION OF WAVES

INTRODUCTION

I m p a c t i s s a i d t o o c c u r when t w o b o d i e s c o l l i d e . I n s t a n c e s o f u n d e s i r e d c o l l i s i o n s a r e n u m e r o u s and w e l l k n o w n . I n many e n g i n e e r i n g a p p l i c a t i o n s , h o w e v e r , i m p a c t I s i n t e n d e d and u s e d t o a d v a n t a g e . C e n t r a l l o n g i t u d i n a l i m p a c t o f s l e n d e r b o d i e s has a n u m b e r o f i m p o r t a n t t e c h n i c a l a p p l i c a t i o n s due t o ( i ) t h e l a r g e f o r c e s g e n e r a t e d t h r o u g h I m p a c t and [ i i ) t r a n s f o r m a t i o n o f t h e m e c h a n i c a l e n e r g y p r o d u c e d by t h e i m p a c t . Some e x a m p l e s a r e p i l e d r i v i n g , r i v e t i n g and p e r c u s s i v e r o c k d r i l l i n g .

The c l a s s i c a l t h e o r y o f i m p a c t o f r i g i d m a s s e s i s i n s u f f i c i e n t f o r e x p l a i n i n g t h e v a r i o u s p r o c e s s e s o o c u r i n g i n t h e s e ' a p p l i - c a t i o n s . An I m p r o v e d t h e o r y [ a t r a v e l l i n g w a v e t h e o r y o r p u l s e

t h e o r y ) w h i c h t a k e s i n t o a c c o u n t t h e e l a s t i c i t y o f t h e c o l l i d i n g b o d i e s was g i v e n a b o u t a c e n t u r y ago by Neumann [ 1 ] and de S a i n t - V e n a n t [ 2 , 3 ] . S i n c e t h e n t h e s u b j e c t has b e e n t r e a t e d by a l a r g e n u m b e r o f a u t h e r s , s e e , e . g . , [ 4 - 6 ] . F u r t h e r i m p r o v e - m e n t s h a v e b e e n made w h e r e t h e v a r i o u s t h r e e - d i m e n s i o n a l e f f e c t s a r e t a k e n i n t o a c c o u n t [ 7 , 8 ] . I n s n g i n e e r i n g a p p l i c a t i o n s o f t h e p u l s e t h e o r y , h o w e v e r , t h e a n a l y s e s a r e o f t e n r e s t r i c t e d t o t h e s i m p l e s t c a s e s o f o n e - d i m e n s i o n a l I m p a c t s i t u a t i o n s . The c r o s s - s e c t i o n a l p r o p e r t i e s o f t h e i m p a c t i n g r o d s a r e a s s u m e d t o be e i t h e r c o n s t a n t o r v a r y i n g i n s t e p s a l o n g t h e r o d l e n g t h s as i n [ 9 , 1 0 ] . T h i s i s b e c a u s e o f t h e d i f f i c u l t i e s i n v o l v e d i n t h e a n a l y t i c a l t r e a t m e n t o f t h e c a s e o f a r b i t r a r i l y v a r y i n g c r o s s - s e c t i o n s [ 1 1 ] . The c a s e o f a f i n i t e c o n i c a l r o d has b e e n

(7)

2

s t u d i e d i n some d e t a i l i n p a p e r A. F o r d i f f e r e n t d e g r e e s o f c o n i c a l n e s s , c o m p a r i s o n s a r e made b e t w e e n t h e o n e - d i m e n s i on a 1 a n a l y t i c a l , e x p e r i m e n t a l a n d t h r e e - d i m e n s i o n a l f i n i t e e l e m e n t r e s u l t s . The r e s u l t s p r o v i d e i n s i g h t s a b o u t t h e r a n g e o f v a l i d i t y o f t h e o n e - d i m e n s i o n a l m o d e l a n d a b o u t t h e u s e f u l n e s s o f t h e f i n i t e e l e m e n t m e t h o d f o r t r e a t i n g i m p a c t p r o b l e m s .

A s u b s t a n t i a l a m o u n t o f w o r k i s c u r r e n t l y b e i n g u n d e r t a k e n i n t h e f i e l d o f o p t i m i z e d s t r u c t u r a l d e s i g n . T h i s i s e v i d e n t f r o m t h e r e c e n t l i t e r a t u r e . S e e , e . g . , [ 1 2 , 1 3 ] f o r a r e v i e w o f t h e f i e l d . M o r e s p e c i f i c a l l y , i n t h e a r e a o f c o n t i n u o u s e l a s t i c v i b r a t i n g s y s t e m s t w o k i n d s o f p r o b l e m s h a v e r e c e i v e d c o n s i d e - r a b l e a t t e n t i o n , [ i ] M a x i m i z i n g t h e l o w e s t c h a r a c t e r i s t i c v a l u e ( e i g e n v a l u e ) [ 1 4 - 1 6 ] , a n d ( i i ) m i n i m i z i n g t h e d y n a m i c r e s p o n s e f o r v a r i o u s a p p l i e d l o a d i n g s [ 1 7 , 1 8 ] .

Some a p p l i c a t i o n s o f l o n g i t u d i n a l l y v i b r a t i n g r o d s h a v e b e e n m e n t i o n e d e a r l i e r . I n v i e w o f s u c h a p p l i c a t i o n s a n o t h e r p r o b l e m o f i n t e r e s t i s t o m a x i m i z e t h e e f f i c i e n c y o f e n e r g y t r a n s m i s s i o n , i n o t h e r w o r d s t o m i n i m i z e t h e l o s s e s o f e n e r g y d u e t o r e f l e c t i o n s f r o m i n h o m o g e n e i t i e s i n t h e v i b r a t i n g r o d s . T h i s i s t h e s u b j e c t o f p a p e r s C, D a n d E. I n t h e s e p a p e r s t h e t r a n s m i s s i o n o f e l a s t i c w a v e e n e r g y t h r o u g h a j o i n t b e t w e e n t w o u n i f o r m r o d s i s s t u d i e d . The e f f i c i e n c y o f e n e r g y t r a n s m i s s i o n ( d e f i n e d as t h e r a t i o o f t r a n s m i t t e d t o i n c i d e n t w a v e e n e r g y ) i s m a x i m i z e d . The i n t e r e s t i n t h e s e p r o b l e m s i s m a i n l y d u e t o t h e i r a p p l i c a t i o n i n p e r c u s s i v e d r i l l i n g . H o w e v e r , t h e r e s u l t s c a n be d i r e c t l y i n t e r p r e t e d t o some o t h e r f i e l d s l i k e e l e c t r o m a g n e t i c w a v e s i n t r a n s m i s s i o n l i n e s a n d s h a l l o w w a t e r w a v e s . The c o n c e p t o f c h a r a c t e r i s t i c i m p e d a n c e , r e c a p i t u l a t e d i n p a p e r B f a c i l i t a t e s s u c h i n t e r p r e t a - t i o n s .

(8)

L i k e t h e i m p a c t p r o b l e m t r e a t e d i n p a p e r A, t h e o p t i m i z a t i o n p r o b l e m s t r e a t e d i n p a p e r s C t o E a l s o c o n c e r n t h e p r o p a g a t i o n o f l o n g i t u d i n a l e l a s t i c w a v e s i n r o d s w i t h v a r i a b l e c r o s s - s e c t i o n s . The m o t i o n o f s u c h r o d s i s g o v e r n e d by t h e W e b s t e r h o r n e q u a t i o n w h i c h i s t h o r o u g h l y d i s c u s s e d i n [ 1 9 ] .

I n p e r c u s s i v e d r i l l i n g [ 2 0 ] , t h e k i n e t i c e n e r g y o f a hammer i s t r a n s f o r m e d t h r o u g h i m p a c t i n t o e l a s t i c s t r e s s wave e n e r g y .

Hammers a n d d r i l l r o d s o f c y l i n d r i c a l s h a p e s a r e c o m m o n l y e m p l o y e d i n m o d e r n d r i l l i n g m a c h i n e s . T h e r e f o r e , a r e c t a n g u l a r s t r e s s p u l s e i s g e n e r a t e d by t h e i m p a c t - . T h i s s t r e s s p u l s e p r o p a g a t e s a l o n g t h e d r i l l r o d s w h i c h a r e o f t e n c o n n e c t e d by

( c y l i n d r i c a l ) j o i n t s . L o s s e s i n t h e e n e r g y t r a n s m i s s i o n o c c u r due t o r e f l e c t i o n s a t t h e r o d - j o i n t i n t e r f a c e s . One way o f m i n i m i z i n g t h e s e l o s s e s i s t o o p t i m i z e t h e s h a p e o f t h e i n c i - d e n t p u l s e f o r a g i v e n j o i n t . S u c h o p t i m u m s h a p e s h a v e b e e n

o b t a i n e d i n p a p e r C, f o r p u l s e s w i t h a f i x e d d u r a t i o n . The e f f i c i e n c i e s o f e n e r g y t r a n s m i s s i o n a r e e v a l u a t e d f o r t h e o p t i m a l l y s h a p e d p u l s e s as w e l l as f o r t h e c o r r e s p o n d i n g r e c t a n g u l a r p u l s e s . The i m p r o v e m e n t s i n t h e e f f i c i e n c y t u r n o u t t o be g e n e r a l l y s m a l l . M o r e o v e r , i t may n o t be p o s s i b l e t o r e a l i z e s u c h p u l s e s t h r o u g h i m p a c t [ 2 1 ] .

A n o t h e r way o f i m p r o v i n g t h e e f f i c i e n c y i s t o o p t i m i z e t h e s h a p e o f t h e j o i n t f o r a f i x e d ( s a y r e c t a n g u l a r ) i n c i d e n t p u l s e . T h i s i s t h e s u b j e c t o f p a p e r • w h e r e o p t i m u m s h a p e s

( o r i m p e d a n c e d i s t r i b u t i o n s ) a r e o b t a i n e d f o r a j o i n t w i t h a f i x e d mass and l e n g t h . The e f f i c i e n c i e s f o r t h e o p t i m a l l y s h a p e d j o i n t s a r e c o m p a r e d w i t h t h o s e f o r t h e c o r r e s p o n d i n g c y l i n d r i c a l j o i n t s . S i g n i f i c a n t i m p r o v e m e n t s i n t h e e f f i c i e n c y t u r n o u t t o be p o s s i b l e t h r o u g h j o i n t o p t i m i z a t i o n . F o r a c a s e s t u d i e d i n d e t a i l i m p r o v e m e n t s o f up t o 30 p e r c e n t a r e o b t a i n e d ,

(9)

4

The o p t i m u m j o i n t s h a p e s t u r n o u t t o i n c l u d e l a r g e a n d a b r u p t c h a n g e s i n i m p e d a n c e o v e r t h e j o i n t l e n g t h . I m p e d a n c e r a t i o s o f up t o 90 a r e e n c o u n t e r e d f o r t h e c a s e m e n t i o n e d a b o v e . F o r s u c h j o i n t s h a p e s t h e t h r e e - d i m e n s i on a 1 e f f e c t s may become i m p o r t a n t a n d h e n c e t h e r e may be d o u b t s a b o u t t h e v a l i d i t y o f t h e o n e - d i mens i on a 1 m o d e l e m p l o y e d . T h e r e f o r e , e x p e r i m e n t s w e r e p e r f o r m e d on some o p t i m a l l y s h a p e d j o i n t s as w e l l as on c y l i n d r i - c a l j o i n t s . R e s u l t s o f t h e s e e x p e r i m e n t s a r e r e p o r t e d i n p a p e r E. T h e r e s u l t s s u p p o r t t h e v a l i d i t y o f t h e t h e o r e t i c a l m o d e l u s e d I n p a p e r s C a n d D. U s e f u l n e s s o f t h e o n e - d i m e n s i ona 1 m o d e l i s c l e a r l y d e m o n s t r a t e d e v e n i n c a s e s w h e r e r e l a t i v e l y l a r g e a n d a b r u p t c h a n g e s o c c u r i n t h e i m p e d a n c e o f a wave t r a n s m i t t i n g r o d .

N e x t f o l l o w s t h e d e t a i l e d s u m m a r i e s o f p a p e r s A t o E.

SUMMARY OF APPENOED PAPERS

P a p e r A: L o n g i t u d i n a l e l a s t i c i m p a c t b e t w e e n a f i n i t e c o n i c a l r o d a n d a l o n g c y l i n d r i c a l r o d i s s t u d i e d ( i l e x p e r i m e n t a l l y ,

( i i ) a n a l y t i c a l l y , by u s i n g o n e - d i m e n s i on a 1 w a v e t h e o r y t o o b t a i n a c l o s e d - f o r m s o l u t i o n , a n d ( i i i ) n u m e r i c a l l y , by u s i n g a t h r e e - d i m e n s i o n a l a x i s y m m e t r i o f i n i t e e l e m e n t m o d e l . The r e s u l t s f r o m ( i ) - ( i i i ) a r e c o m p a r e d f o r f o u r c o n i c a l r o d s . To o b t a i n i n c r e a s i n g l y t h r e e - d i m e n s i o n a l b e h a v i o u r , c o n i c a l r o d s w i t h h a l f a p e x - a n g l e s o f 5 ° , 1 0 ° , 15° a n d 2 5 ° a r e i n v e s t i g a t e d . The o n e - d i m e n s i on a 1 m o d e l a c c u r a t e l y p r e d i c t s t h e r e s p o n s e f o r t h e 5 ° - c o n e . The d i s c r e p a n c i e s b e t w e e n o n e - d i m e n s i o n a l a n a l y t i c a l r e s u l t s a n d e x p e r i m e n t a l o r f i n i t e e l e m e n t r e s u l t s i n c r e a s e f o r i n c r e a s i n g c o n e a n g l e s . T h e a g r e e m e n t b e t w e e n t h e e x p e r i m e n t a l a n d t h e f i n i t e l e m e n t

(10)

r e s u l t s i s q u i t e g o o d i n g e n e r a l . The e f f e c t o f c o n t a c t

c o n d i t i o n s b e t w e e n t h e i m p a c t i n g s u r f a c e s i s a l s o i n v e s t i g a t e d . F r i c t i o n b e t w e e n t h e I m p a c t i n g s u r f a c e s i s f o u n d t o h a v e

n e g l i g i b l e e f f e c t s on t h e s t r a i n r e s p o n s e . D e t a i l s r e g a r d i n g t h e o n e - d i m e n s i o n a l a n a l y t i c a l r e s u l t s a r e g i v e n i n [ 2 2 ] .

P a p e r B: The p u r p o s e o f t h i s b r i e f n o t e i s t o p o i n t o u t a f r e q u e n t l y o v e r l o o k e d r o l e o f t h e c o n c e p t o f i m p e d a n c e i n o n e - d i m e n s i ona 1 w a v e p r o p a g a t i o n p r o b l e m s . F o r t h e c a s e o f l o n g i t u d i n a l w a v e s i n r o d s , i t i s e m p h a s i z e d t h a t t h e i n f l u e n c e o f v a r i a t i o n s i n t h e c r o s s - s e c t i o n a l a r e a A, Y o u n g ' s m o d u l u s E, a n d d e n s i t y p can be c o m b i n e d i n a s i n g l e p a r a m e t e r c a l l e d t h e i m p e d a n c e Z = Ape = AE/c, w h e r e c = ( E / p ) ^ ^ i s t h e w a v e s p e e d . T h u s , any c o m b i n a t i o n s o f A, p a n d E

w h i c h c o r r e s p o n d t o t h e same Z s h o u l d y i e l d t h e same r e s u l t s . T h i s means t h a t i n p a p e r A t h e r e s u l t s on c o n e s a r e a l s o v a l i d f o r o t h e r c o m b i n a t i o n s o f A, p a n d E w h i c h y i e l d a q u a d r a t i c v a r i a t i o n o f t h e i m p e d a n c e (.same as t h a t o f t h e c r o s s - s e c t i on a 1 a r e a s o f t h e c o n e s ) .

P a p e r C: The p r o b l e m t r e a t e d i n t h i s p a p e r c o n c e r n s t h e o p t i m i z a t i o n o f t h e s h a p e o f an i n c i d e n t p u l s e o f g i v e n d u r a t i o n s u c h t h a t t h e e n e r g y t r a n s m i t t e d t h r o u g h a g i v e n r o d - j o i n t s y s t e m i s m a x i m i z e d . The i n t e r e s t i n t h e p r o b l e m i s m a i n l y due t o i t s a p p l i c a t i o n s i n p e r c u s s i v e d r i l l i n g . H o w e v e r , by m a k i n g use o f t h e c o n c e p t o f i m p e d a n c e d i s c u s s e d i n p a p e r B, t h e r e s u l t s c a n be d i r e c t l y i n t e r p r e t e d i n o t h e r f i e l d s l i k e e l e c t r o m a g n e t i c w a v e s i n t r a n s m i s s i o n l i n e s a n d s h a l l o w w a t e r w a v e s .

(11)

6

The o p t i m i z a t i o n p r o b l e m i s f o r m u l a t e d i n g e n e r a l t e r m s a p p l i c a b l e t o a l l s u c h f i e l d s . The o p t i m u m w a v e s h a p e s a r e o b t a i n e d f o r t w o s p e c i a l c a s e s : ( i ) a j o i n t w i t h c o n s t a n t i m p e d a n c e and ( i i ) a j o i n t w i t h c o n c e n t r a t e d m a s s , ( i ) l e a d s t o a m a t r i x e i g e n v a l u e p r o b l e m and a n o n - u n i q u e s o l u t i o n , w h e r e a s , ( i i ) l e a d s t o an e i g e n v a l u e p r o b l e m f o r an i n t e g r a l e q u a t i o n and a u n i q u e s o l u t i o n . I n b o t h c a s e s t h e e f f i c i e n c i e s o f e n e r g y t r a n s m i s s i o n f o r t h e o p t i m u m w a v e s h a p e s a r e - c o m p a r e d w i t h t h o s e f o r t h e

c o r r e s p o n d i n g r e c t a n g u l a r w a v e s ( a s t h e l a t t e r a r e c o m m o n l y e m p l o y e d i n m o d e r n p e r c u s s i v e d r i l l i n g m a c h i n e s ) [ 2 3 ] . The g a i n s i n t h e e f f i c i e n c y t h r o u g h s u c h an o p t i m i z a t i o n g e n e r a l l y t u r n o u t t o be s m a l l ( a f e w p e r c e n t ) . H o w e v e r

t h e r e s u l t s c l a r i f y how much t h e e f f i c i e n c i e s c a n be i m p r o v e d by o p t i m i z i n g t h e wave s h a p e .

P a p e r D: An a l t e r n a t i v e way o f I m p r o v i n g t h e e f f i c i e n c y o f e n e r g y t r a n s m i s s i o n f o r t h e r o d - j o i n t p r o b l e m t r e a t e d i n p a p e r C

i s t o o p t i m i z e t h e s h a p e o f t h e j o i n t r a t h e r t h a n t h e s h a p e o f t h e i n c i d e n t p u l s e . T h i s i s t h e s u b j e c t o f p a p e r D. The I n c i d e n t p u l s e i s a s s u m e d t o be o f r e c t a n g u l a r s h a p e w i t h a g i v e n d u r a t i o n . O p t i m u m s h a p e ( s ) ( i . e . i m p e d a n c e d i s t r i b u 1 1 o n i s ) J a r e d e t e r m i n e d f o r a j o i n t h a v i n g a g i v e n mass and l e n g t h . The m e t h o d e m p l o y e d i s as f o l l o w s . By d i v i d i n g t h e j o i n t l e n g t h i n t o N s e g m e n t s , t h e j o i n t i m p e d a n c e f u n c t i o n i s

*. • A • 4- M 4- 4- • A , ( 1) , C 2 ) 7 CN)

d i s c r e t i z e d i n t o N c o n s t a n t i m p e d a n c e s Z Q , Zg , Z ^ U s i n g t h e t h e o r y d e v e l o p e d i n p a p e r C, t h e e f f i c i e n c y o f

e n e r g y t r a n s m i s s i o n n i s e x p r e s s e d as a n o n - l i n e a r f u n c t i o n o f t h e N v a r i a b l e s , i . e . ,

(12)

7

f7( 1) 7( 2 J 71 IM) , f, .

The c o n s t a n t mass c o n s t r a i n t i m p l i e s a l i n e a r r e l a t i o n b e t w e e n t h e N v a r i a b l e s

Z Q +Zg + 0 = c o n s t a n t . IZI

A l s o s i n c e t h e i m p e d a n c e s m u s t be p o s i t i v e we h a v e

Z j1] > 0, Z j2] > 0 Z ^ > D. ( 3 )

Thus t h e p r o b l e m i s t o m a x i m i z e t h e f u n c t i o n n g i v e n by 11) a n d s u b j e c t e d t o t h e c o n s t r a i n t s C2J a n d [ 3 ) . T h i s n o n - l i n e a r p r o g r a m m i n g p r o b l e m w i t h l i n e a r c o n s t r a i n t s i s t h e n s o l v e d n u m e r i c a l l y u s i n g t h e r e d u c e d g r a d i e n t m e t h o d w h i c h i s a s l i g h t l y m o d i f i e d f o r m o f t h e m e t h o d o f s t e e p e s t d e s c e n t s .

The r e s u l t s show t h a t q u i t e s i g n i f i c a n t i m p r o v e m e n t s i n t h e e f f i c i e n c y c a n Oe a c h i e v e d by o p t i m i z i n g t h e j o i n t i m p e d a n c e d i s t r i b u t i o n s . F o r a c a s e s t u d i e d i n d e t a i l t h e i m p r o v e m e n t i s a b o u t 30 p e r c e n t . H o w e v e r , t h e o p t i m a l l y s h a p e d j o i n t s t u r n o u t t o i n c l u d e l a r g e and a b r u p t c h a n g e s i n t h e j o i n t i m p e d a n c e s o v e r t h e i r l e n g t h s , i m p e d a n c e r a t i o s o f a b o u t 30 t o 90 a r e e n c o u n t e r e d f o r t h e c a s e s t u d i e d i n d e t a i l .

P a p e r F: O c c u r r e n c e o f l a r g e and a b r u p t c h a n g e s o f i m p e d a n c e i n t h e o p t i m u m j o i n t s o f p a p e r 0 r a i s e s t h e q u e s t i o n o f v a l i d i t y o f t h e o n e - d i m e n s i ona 1 m o d e l e m p l o y e d . T h u s

e x p e r i m e n t a l i n v e s t i g a t i o n s w e r e n e e d e d . T h i s p a p e r p r e s e n t s r e s u l t s o f s u c h e x p e r i m e n t s .

(13)

8

T e s t s w e r e p e r f o r m e d on t h e o p t i m u m j o i n t s c o r r e s p o n d i n g t o N = "I , 3 a n d 5 i n p a p e r •. I n c i d e n t s t r e s s p u l s e s w e r e p r o d u c e d t h r o u g h l o n g i t u d i n a l I m p a c t b e t w e e n a hammer a n d a r o d , e m p l o y i n g a c o m p r e s s e d a i r g u n . U s i n g s t r a i n g a u g e s a t c o n v e n i e n t l o c a t i o n s , t h e i n c i d e n t , r e f l e c t e d a n d t r a n s m i t t e d w a v e s w e r e r e c o r d e d o n a t r a n s i e n t r e c o r d e r . T h e e x p e r i m e n t a l v a l u e s o f t h e e f f i c i e n c y c o u l d t h u s be o b t a i n e d . C o m p a r i s o n s w i t h t h e t h e o r e t i c a l v a l u e s show a d i f f e r e n c e o f l e s s t h a n

5 p e r c e n t i n a l l c a s e s . A l s o t h e c o m p l e t e f o r m s o f t h e e x p e r i m e n t a l l y o b t a i n e d i n c i d e n t , r e f l e c t e d a n d t r a n s m i t t e d w a v e s w e r e c o m p a r e d w i t h t h e c o r r e s p o n d i n g c u r v e s a c c o r d i n g

t o t h e o n e - d i m e n s i o n a l m o d e l . The a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t c l e a r l y s u p p o r t s t h e v a l i d i t y o f t h e o n e -

d i m e n s i o n a l m o d e l a n d c o n f i r m s t h e r e s u l t s o b t a i n e d i n p a p e r D.

ACKNOWLEDGEMENTS

The r e s e a r c h w o r k p r e s e n t e d i n t h i s t h e s i s h a s b e e n c a r r i e d

o u t d u r i n g t h e y e a r s 1 9 7 6 - 1 3 7 9 a t t h e D i v i s i o n o f S o l i d M e c h a n i c s , U n i v e r s i t y o f Luleå, Luleå.

I w i s h t o e x p r e s s my s i n c e r e g r a t i t u d e t o P r o f e s s o r B e n g t L u n d b e r g f o r p r o p o s i n g t h e s u b j e c t a n d f o r g u i d a n c e d u r i n g t h e c o u r s e o f t h i s w o r k .

The a s s i s t a n c e r e c e i v e d f r o m Mr. B r u n o N i l s s o n f o r t h e e x p e r i m e n t a l p a r t s i n p a p e r s A a n d E was i n v a l u a b l e a n d i s h i g h l y a p p r e c i a t e d . I a l s o t h a n k my c o l l e a g u e s a t t h e D i v i s i o n o f S o l i d M e c h a n i c s f o r t h e i r i n t e r e s t , a n d my w i f e N a r e s h f o r h e r s u p p o r t d u r i n g t h e c o u r s e o f t h i s s t u d y .

(14)

g

The f i n a n c i a l s u p p o r t g i v e n by T e c h n i c a l D e v e l o p m e n t ( S T U ) a n d p a p e r s D a n d E i s h i g h l y a p p r e c

t h e N a t i o n a l S w e d i s h B o a r d f o r S a n d v i k AB f o r w o r k i n t h e i a t e d .

REFERENCES

1 . T. P ö s o h l a n d D e r S t o s s , Handbuch der Physik, Band B, B e r l i n , ( 1 9 2 8 ) , p . 5 0 1 .

2. B. de Sa i n t - V e n a n t , J o u r n a l de M a t h e r n a t i q u e s , 2e s e r i e 1 2 , 2 3 7 - 3 7 6 , ( 1 8 6 7 ) .

3. B. de S a i n t - V e n a n t , C o m p t e s R e n d u s , 6 6 , ( 1 8 B 8 ) , p . 6 5 0 - 6 5 3 .

4. L. H. D o n n e i l , " L o n g i t u d i n a l w a v e t r a n s m i s s i o n a n d i m p a c t " , T r a n s a c t i o n s o f t h e ASME, 5>2, 1 5 3 - 1 67 , ( 1 9 3 0 ) .

5. W. G o l d s m i t h , Impact, E d w a r d A r n o l d , L o n d o n , ( 1 9 6 0 ) .

6. H. C. F i s c h e r , On Longitudinal Impact 1-V1, T h e Hague M a r t i n u s N i j h o f f , ( 1 9 6 0 ) .

7. R. D. M i n d l i n a n d G. H e r r m a n n , " A o n e - d i m e n s i o n a l t h e o r y o f c o m p r e s s i o n a l w a v e s i n an e l a s t i c r o d ", P r o c . 1 s t . U.S.

N a t . C o n g r e s s A p p l . M e c h . , C h i c a g o , 1 8 7 - 1 9 1 , ( 1 9 5 1 ) .

8. L. P o c h h a m m e r , " U e b e r F o r t p 1 a n z u n g s g e s c h w i n d i g k e i t e n k l e i n e r S c h w i n g u n g e n i n e i n e m u n b e g r e n z t e n i s o t r o p e n K r e i s z y l i n d e r " , J . f . r e i n e u. a n g e w . M a t h . C r e l l e , 8 1 , ( 1 8 7 6 ) .

9. P. K. D u t t a , " The d e t e r m i n a t i o n o f s t r e s s w a v e f o r m s p r o d u c e d by p e r c u s s i v e d r i l l p i s t o n s o f v a r i o u s g e o m e t r i c a l d e s i g n s " , I n t . J . R o c k Mech. M i n . S e i . , 5, 5 0 1 - 5 1 8 , ( 1 9 6 8 ) .

1 0 . T. H a y a s h i , Y. F u z i m a r a a n d K. M o r i s a w a , " I m p a c t s t r e s s w a v e s i n c o m p o s i t e s t r u c t u r e s " , P r o c e e d i n g s o f t h e F i r s t I n t e r n a t i o n a l C o n f e r e n c e on S t r u c t u r a l M e c h a n i c s i n R e a c t o r T e c h n o l o g y , B e r l i n , S e p t . 2 0 - 2 4 , ( 1 9 7 1 ) .

(15)

1 o

K. T a n a k a a n d T. K u r o k a w a , " S t r e s s w a v e p r o p a g a t i o n i n a

b a r o f v a r i a b l e c r o s s - s e c t i o n " , B u l l e t i n o f t h e JSME J_6 ( 9 3 ) , 4 8 5 - 4 9 1 , ( 1 9 7 3 ) .

Z. W a s i u t y n s k i a n d A. B r a n d t , " The p r e s e n t s t a t e o f k n o w l e d g e i n t h e f i e l d s o f o p t i m u m d e s i g n o f s t r u c t u r e s " , A p p l i e d M e c h a n i c s R e v i e w s , j J 3 , 3 4 4 - 3 5 0 , ( 1 9 6 3 ) .

F. I . N i o r d s o n a n d P. P e d e r s e n , " A r e v i e w o f o p t i m a l

s t r u c t u r a l d e s i g n " , P r o c . 1 3 t h . I n t . C o n g r . T h . A p p l . M e c h . , Moscow, 2 6 4 - 2 7 8 , ( 1 9 7 3 ) .

F. I . N i o r d s o n , " A m e t h o d f o r s o l v i n g i n v e r s e e i g e n v a l u e p r o b l e m s " , Recent Progress in Applied Mechanics, The Folke Odquist Volume, W i l e y , New y o r k , ( 1 9 6 8 ) .

W. P r ä g e r a n d J . E. T a y l o r , " P r o b l e m s o f o p t i m a l s t r u c t u r a l d e s i g n " , ASME W i n t e r A n n u a l M e e t i n g , P a p e r 67-WA/APM-29, P i t t s b u r g h , P a . , N o v . ( 1 9 6 7 ) .

J . E. T a y l o r , " M i n i m u m mass b a r f o r a x i a l v i b r a t i o n a t s p e c i f i n a t u r a l f r e q u e n c y " , AIAA J . 5 ( 1 0 ) , 1 9 1 1 - 1 9 1 3 , ( 1 9 6 7 ) .

L. 3. I c e r m a n , " O p t i m a l s t r u c t u r a l d e s i g n f o r g i v e n d y n a m i c c o m p l i a n c e " , M. S. t h e s i s , U n i v . C a l i f o r n i a , San D i e g o , ( 1 9 6 8 )

R. M. B r a c h , " M i n i m u m d y n a m i c r e s p o n s e f o r a c l a s s o f s i m p l y s u p p o r t e d beam s h a p e s " , I n t . 3. Mech. S e i . 1 0 , 4 2 9 - 4 3 9 , ( 1 9 6 7 )

E. E i s n e r , " C o m p l e t e s o l u t i o n s o f t h e W e b s t e r h o r n e q u a t i o n "

The J o u r n a l o f A c o u s t i c a l S o c i e t y o f A m e r i c a , 4j2_ ( 4 ) , 1 1 2 6 - 1 1 4 6 , ( 1 9 6 7 ) .

B. L u n d b e r g , " Some b a s i c p r o b l e m s i n p e r c u s s i v e r o o k

d e s t r u c t i o n " , D o c t o r a l t h e s i s a t C h a l m e r s U n i v . o f T e c h n o l o g y , G ö t e b e r g , ( 1 9 7 1 ) .

(16)

11

B. L u n d b e r g a n d M. L e s s e r , " Gn imp a c t o r s y n t h e s i s " , J . Soun V i b . 56 ( 1 h 5 - 1 4 , [ 1 9 7 8 ) .

R. G u p t a , " E l a s t i c i m p a c t b e t w e e n a f i n i t e c o n i c a l r o d and a l o n g c y l i n d r i c a l o n e : A t h e o r e t i c a l s t u d y " , U n i v e r s i t y o f L u l e å , T e c h n i c a l R e p o r t 1 9 7 9 : 0 3 T.

R. G u p t a , " T r a n s m i s s i o n o f a r e c t a n g u l a r e l a s t i c wave t h r o u g h a d r i l l r o d j o i n t " , U n i v e r s i t y o f L u l e å , T e c h n i c a l R e p o r t 1 9 7 9 : 0 2 T.

(17)

Journal of Sound and Vibration (1978) 60(4), 555-563

ELASTIC I M P A C T B E T W E E N A F I N I T E C O N I C A L R O D A N D A L O N G C Y L I N D R I C A L R O D

R . B . G U P T A

Department of Mechanical Engineering, University of Luleå, Luleå, Sweden

A N D

L . N I L S S O N

Department of Structural Mechanics, Chalmers University of Technology, Gothenburg, Sweden

(Received 13 February 1978, and in revised form 27 May 1978)

(18)

Journal of Sound and Vibration (1978) 60(4), 555-563

ELASTIC I M P A C T B E T W E E N A F I N I T E C O N I C A L R O D A N D A L O N G C Y L I N D R I C A L R O D

R . B . G U P T A

Department of Mechanical Engineering, University of Luleå, Luleå, Sweden

A N D

L . N I L S S O N

Department of Structural Mechanics, Chalmers University of Technology, Gothenburg, Sweden

(Received 13 February 1978, and in revised form 21 May 1978)

Elastic impact between a truncated finite conical r o d and a long cylindrical r o d is studied (i) experimentally, ( i i ) analytically, by using one-dimensional wave theory t o o b t a i n a closed-form solution, and ( i i i ) numerically, by using a three-dimensional axisymmetric finite element model. The results are compared f o r cones o f different lengths but w i t h the same end diameters. The agreement between the results f r o m studies (i) and ( i i i ) is very good i n general. As expected, the deviation o f the results o f study (Li) f r o m those o f studies (i) and (iii) becomes increasingly apparent as the slenderness o f the cones decreases.

1. I N T R O D U C T I O N

T h e s t u d y o f w a v e p r o p a g a t i o n i n c o n i c a l rods is o f interest since this g e o m e t r i c a l f o r m is o f t e n m e t i n t e c h n o l o g y . A considerable n u m b e r o f results have been p u b l i s h e d f r o m t h e o r e t i - c a l as w e l l as e x p e r i m e n t a l i n v e s t i g a t i o n s o f elastic waves i n c y l i n d r i c a l r o d s w i t h c i r c u l a r cross-section. T h e s tudy o f waves i n c o n i c a l r o d s , h o w e v e r , has l a r g e l y been r e s t r i c t e d t o o n e - d i m e n s i o n a l t h e o r e t i c a l investigations. T h i s is a consequence o f the d i f f i c u l t i e s i n v o l v e d i n t h e a n a l y t i c a l t r e a t m e n t o f the general t h r e e - d i m e n s i o n a l case.

L a n d o n a n d Q u i n n e y [1] o b t a i n e d a t r a v e l l i n g wave s o l u t i o n f o r a n i n f i n i t e cone, nearly fifty years ago. T h e y also e m p l o y e d the H o p k i n s o n b a r m e t h o d f o r o b s e r v a t i o n o f the pulse.

K e n n e r a n d G o l d s m i t h [2] have also c a r r i e d o u t e x p e r i m e n t a l a n d o n e - d i m e n s i o n a l a n a l y t i c a l i n v e s t i g a t i o n s . N o paper has been f o u n d c o n c e r n i n g t h r e e - d i m e n s i o n a l a x i s y m m e t r i c finite element s o l u t i o n o f the p r o b l e m o f i m p a c t between c o n i c a l rods a n d c y l i n d r i c a l rods.

G o u d r e a u [ 3 ] , h o w e v e r , used the finite element m e t h o d ( F E M ) i n a s t u d y o f stress wave p r o p a g a t i o n i n s h o r t c y l i n d r i c a l rods w h i c h i m p a c t o n a r i g i d surface. H u g h e s et al. [4] give a finite element f o r m u l a t i o n o f general i m p a c t p r o b l e m s . A m o n g o t h e r p r o b l e m s , one- d i m e n s i o n a l i m p a c t o f rods was s t u d i e d . Recently R a m a m u r t i a n d R a m a n a m u r t i [5] have p r o p o s e d a finite element m e t h o d f o r s t u d y i n g i m p a c t o n s h o r t l e n g t h bars.

T h e present i n v e s t i g a t i o n consists o f ( i ) e x p e r i m e n t a l , ( i i ) o n e - d i m e n s i o n a l a n a l y t i c a l , a n d ( i i i ) t h r e e - d i m e n s i o n a l n u m e r i c a l ( F E M ) studies o f the p r o b l e m o f i m p a c t b e t w e e n a c y l i n d r i - cal r o d a n d a finite t r u n c a t e d c o n i c a l r o d . Results o f the three p a r t s are c o m p a r e d . A x i a l s t r a i n at a l o c a t i o n close t o t h e i m p a c t e n d o f the c y l i n d r i c a l r o d is used as a basis f o r the c o m p a r i s o n . T o o b t a i n increasingly t h r e e - d i m e n s i o n a l b e h a v i o u r , c o n i c a l r o d s w i t h h a l f apex-angles o f 5 ° , 1 0 ° , 15° a n d 2 5 ° were investigated.

555

0O22^60X/78/200555 + 09 S02.00/0 © 1978 Academic Press Inc. (London) Limited

(19)

A2

556 R . B . G U P T A A N D L . N I L S S O N

F o r increased c o n i c i t y o f the r o d , a n increased need f o r e m p l o y i n g a t h r e e - d i m e n s i o n a l m o d e l is d e m o n s t r a t e d . A x i s y m m e t r i c finite element analysis results show excellent agreement w i t h those o f the e x p e r i m e n t . A s expected, o n e - d i m e n s i o n a l analysis leads t o accurate results o n l y f o r slender cones.

2. E X P E R I M E N T

F i g u r e 1 shows a schematic d i a g r a m o f the e x p e r i m e n t a l set-up e m p l o y e d f o r m e a s u r i n g the a x i a l surface s t r a i n e at a p o s i t i o n P, 40 m m a w a y f r o m t h e i m p a c t e n d o f the c y l i n d r i c a l r o d . T h e c y l i n d r i c a l r o d was d r o p p e d v e r t i c a l l y d o w n t o i m p a c t against a cone w h i c h was resting u p o n a s o f t a n d s p o n g y m a t e r i a l A x i a l s t r a i n £ was measured b y u s i n g a p a i r o f s t r a i n gauges ( G , G ' ) m o u n t e d d i a m e t r i c a l l y o p p o s i t e o n the r o d . T h e gauges ( G , G ' ) were connected t o o p p o s i t e branches o f the W h e a t s t o n e b r i d g e W B , such t h a t c o n t r i b u t i o n f r o m b e n d i n g was cancelled (the s u m o f t h e t w o strains was r e c o r d e d ) . T w o m o r e pairs o f s t r a i n gauges ( G , , G | ) a n d ( G „ , Gn) were e m p l o y e d at p o s i t i o n Q (see F i g u r e 1) i n o r d e r t o m o n i t o r the m a x i m u m b e n d i n g s t r a i n eb. ( G | , G | ) f o r m e d n e i g h b o u r i n g branches o f the W h e a t s t o n e b r i d g e W B I , i n o r d e r t o measure the b e n d i n g s t r a i n et f r o m ( G „ G j ) . S i m i l a r l y b r i d g e W B I I measures b e n d i n g s t r a i n s „ f r o m ( G „ , G'u). T h e m a x i m u m b e n d i n g s t r a i n at Q is t h e n sb = (sj + eu)L'2. T h e r a t i o o f eb a n d e p r o v i d e s a measure o f the q u a l i t y o f the i m p a c t . G o o d i m p a c t was achieved b y r e q u i r i n g | ee/e J 1.

I n order t o o b t a i n i n c r e a s i n g l y t h r e e - d i m e n s i o n a l b e h a v i o u r , f o u r cones w i t h h a l f apex- angles 0 o f 5 ° , 10°, 15°, 2 5 ° were chosen. T h e t w o end diameters d= 8 m m (same as t h e c y l i n d r i c a l r o d d i a m e t e r ) a n d D = 32 m m were e q u a l f o r a l l o f the cones. T h e cones a n d the

Figure 1. Schematic diagram of the experimental set-up for measuring the strains e and ab.

(20)

I M P A C T B E T W E E N C O N E A N D C Y L I N D E R 557

c y l i n d r i c a l r o d were m a d e o f steel w i t h Y o u n g ' s m o d u l u s 208 G P a , Poisson's r a t i o 0'3 a n d w a v e speed (c = \ / E / p ) 5080 m/s. L i n e a r l y elastic b e h a v i o u r a n d s m a l l d e f o r m a t i o n s were g u a r a n t e e d t h r o u g h s m a l l i m p a c t velocities. T h e d r o p h e i g h t h was 51 m m w h i c h c o r r e s p o n d s t o a n i m p a c t v e l o c i t y V = yjlgh o f 1 -00 m / s . T h e i m p a c t i n g faces o f a l l the r o d s were s l i g h t l y r o u n d e d near the edges i n o r d e r t o m a k e a d j u s t m e n t s less c r i t i c a l . T h e c y l i n d r i c a l r o d used w a s 2 m l o n g a n d was g u i d e d b y 3 n y l o n bearings p o s i t i o n e d at respectively 150, 750 a n d 1350 m m f r o m the i m p a c t end.

3. T H E O R Y 3 . 1 . O N E - D I M E N S I O N A L M O D E L

A t t h e m o m e n t o f i m p a c t , t = 0, the i m p a c t s i t u a t i o n is as s h o w n i n F i g u r e 2. T h e c o n i c a l i m p a c t o r i m p a c t s w i t h a v e l o c i t y V against t h e s t a t i o n a r y s e m i - i n f i n i t e c y l i n d r i c a l r o d . T h i s i m p a c t s i t u a t i o n is o p p o s i t e t o the e x p e r i m e n t a l s i t u a t i o n described p r e v i o u s l y ( w h e r e the

o — 0 t

d-

Figure 2. The impact situation at the moment of contact / = 0.

cones are k e p t s t a t i o n a r y ) , b u t o n l y the r e l a t i v e i m p a c t v e l o c i t y V influences the results. T h e c o - o r d i n a t e x is chosen w i t h o r i g i n 0 at the i m a g i n e d apex o f the cone. T h e o n e - d i m e n s i o n a l w a v e e q u a t i o n g o v e r n i n g the m o t i o n o f the c o n e - r o d system is

A(x)d2 u/dt2 = c2 S/dx[A(x)du/dx], (1)

w h e r e u = u(x, t) is the displacement a l o n g the x - a x i s , t is t i m e a n d c is the elastic wave speed.

T h e area f u n c t i o n A(x) represents the v a r i a t i o n o f cross-sectional area o f t h e r o d s a l o n g the x - a x i s ,

(

Al, — c c < x < x A [ ( x / x , )2, x , < x < x2 A(x)--

A x i a l s t r a i n e(x, t ) a n d p a r t i c l e v e l o c i t y v(x, t ) are related t o the a x i a l d i s p l a c e m e n t uix, t) b y t h e e q u a t i o n s

e(x, t) = du/dx, v(x,t) = du/dr. (2)

A t a s e c t i o n x0, the s t r a i n e ( x0, t) c a n be d e t e r m i n e d f r o m d ' A l e m b e r t ' s s o l u t i o n o f e q u a t i o n s (1) a n d (2) a l o n g w i t h the i n i t i a l c o n d i t i o n s

e ( x , 0 ) = 0

K ( X , 0 )

x < x2, fO, x < x ,

\ - V , x , < x < x2

a n d t h e b o u n d a r y c o n d i t i o n s at t h e t r a c t i o n f r e e e n d x = x2 e ( x2, / ) = 0, ' > 0 .

(21)

A4

558 R . B . G U P T A A N D L . N I L S S O N

C l o s e d f o r m s o l u t i o n s f o r 0 < t < 6(x2 - x , ) / c are p l o t t e d together w i t h t h e n u m e r i c a l a n d e x p e r i m e n t a l results i n F i g u r e s 5 a n d 6 o f section 4. T h e d i s c o n t i n u i t i e s i n the o n e - d i m e n s i o n a l s o l u t i o n are due t o the a b r u p t a r r i v a l s o f r e f l e c t i o n s f r o m the free e n d o f the cone.

3.2. T H R E E - D I M E N S I O N A L ( A X I S Y M M E T R I C ) F I N I T E E L E M E N T M O D E L

C l o s e d f o r m s o l u t i o n s are i n general n o t a v a i l a b l e f o r t h r e e - d i m e n s i o n a l e l a s t o - d y n a m i c p r o b l e m s . T h e r e f o r e , t h e present i m p a c t p r o b l e m is solved n u m e r i c a l l y b y u s i n g t h e finite element m e t h o d ( F E M ) .

A s t a n d a r d d i s p l a c e m e n t f o r m u l a t i o n o f the finite element m e t h o d is used. O n l y a b r i e f o u t l i n e o f t h e d e r i v a t i o n o f the finite element e q u a t i o n s o f m o t i o n is g i v e n here. M o r e details can be f o u n d i n t e x t b o o k s o n the subject (e.g., t h a t o f Z i e n k i e w i c z [ 6 ] ) .

T h u s , t h e p i s t o n - r o d system is m o d e l l e d b y a n assembly o f f o u r - n o d e q u a d r i l a t e r a l r i n g elements. W i t h i n each element, t h e displacements are i n t e r p o l a t e d f r o m t h e i r values a t t h e n o d a l p o i n t s o f the element. B i l i n e a r p o l y n o m i a l s i n the n a t u r a l c o - o r d i n a t e s o f the element are used f o r t h i s i n t e r p o l a t i o n .

F u l l c o n t i n u i t y at c o m m o n n o d a l p o i n t s o f n e i g h b o u r i n g elements requires t h a t the associated element n o d a l displacements are e q u a l : i.e., t h e y are i d e n t i f i e d w i t h i d e n t i c a l c o m p o n e n t s i n the g l o b a l n o d a l displacement v e c t o r u „ ( r ) . T o a l l o w f o r a f r i c t i o n l e s s i n t e r - face, t h i s c o n t i n u i t y r e q u i r e m e n t can be relaxed f o r the t a n g e n t i a l c o m p o n e n t s o f t h e n o d a l displacements. I n the present a p p l i c a t i o n , c o n t a c t between the p i s t o n a n d r o d is m a i n t a i n e d f r o m the t i m e o f i m p a c t . T h e r e f o r e , i t is n a t u r a l t o consider the p i s t o n - r o d system as one s t r u c t u r a l u n i t , a n d thus the n o d a l c o n t i n u i t y r e q u i r e m e n t s m u s t h o l d also f o r t h e c o n t a c t i n g nodes.

A f t e r e s t a b l i s h i n g k i n e m a t i c a l a n d c o n s t i t u t i v e r e l a t i o n s , a p p l i c a t i o n o f t h e p r i n c i p l e o f v i r t u a l w o r k yields the discrete equations o f m o t i o n o f t h e f i n i t e element system:

[M]d2Urt/dt2 + [S]uN = 0. (3)

Since a l l b o u n d a r i e s are f r e e f r o m t r a c t i o n s the r e s u l t a n t s t r u c t u r a l n o d a l l o a d v e c t o r is a zero v e c t o r . T h e s t r u c t u r a l consistent mass m a t r i x [M] a n d the s t r u c t u r a l stiffness m a t r i x [S] consist o f c o n t r i b u t i o n s f r o m element masses a n d stiffnesses. F o r the s o l u t i o n o f the e q u a t i o n s o f m o t i o n (3), i n i t i a l c o n d i t i o n s are needed. T h e y are ( w i t h k = 1, 2, . . . , TV)

«*(0) = 0, ( 4 ) f— V i n the a x i a l d i r e c t i o n o f p i s t o n n o d a l p o i n t s )

* j o otherwise

T h r o u g h t h e i m p a c t a steep stress wave is created. S m a l l element sizes are r e q u i r e d t o a v o i d s m o o t h i n g effects o n the stress f r o n t . F u r t h e r m o r e , the d i s c r e t i z a t i o n i n t i m e m u s t be m a d e w i t h c o n s i d e r a t i o n t o t h e h i g h f r e q u e n c y c o n t e n t o f the excited modes. T h i s calls f o r s m a l l t i m e steps i n the t i m e i n t e g r a t i o n p r o c e d u r e .

Based o n the p r e v i o u s requirements, a v e l o c i t y f o r m u l a t e d c e n t r a l d i f f e r e n c e i n t e g r a t i o n o f e q u a t i o n (3) is c h o s e n :

Bu%+"2/dt = 3 u ; - "2/ a r - At [M]-' [S]u"N, (5)

u "N + 1 = u ; + Atdutfi,2/dt. (6)

T h e subscripts i n d i c a t e discrete times. I f the c e n t r a l d i f f e r e n c e scheme is used i n c o n j u n c t i o n w i t h a d i a g o n a l ( l u m p e d ) mass m a t r i x , the i n v e r s i o n o f [M] is t r i v i a l . F u r t h e r m o r e , the p r o d u c t [ S ] u " c a n be o b t a i n e d as a n assembly o f element c o n t r i b u t i o n s , i n w h i c h case n o s t r u c t u r a l stiffness m a t r i x has t o be established. W i t h i m p l e m e n t a t i o n o f these p r o c e d u r e s .

(22)

I M P A C T B E T W E E N C O N E A N D C Y L I N D E R 559 the d e m a n d f o r c o m p u t e r storage is m i n i m i z e d . I n t h e present study, t h e mass l u m p i n g scheme p r o p o s e d b y H i n t o n et al. [7] is used. T h u s , the « t h d i a g o n a l t e r m is o b t a i n e d f r o m

Mn = Mn„ » 7 ( 2 M„„), (7)

jv

w h e r e M„„ is the n t h d i a g o n a l t e r m o f the consistent mass m a t r i x , a n d W is t w i c e t h e t o t a l w e i g h t o f t h e system.

T h e c e n t r a l d i f f e r e n c e scheme is o n l y c o n d i t i o n a l l y s t a b l e: i.e., the a c t u a l t i m e step A t m u s t be less t h a n a c r i t i c a l value AtCT. T h i s c r i t i c a l t i m e step c a n be estimated as

At„ = yAx"""/cp, (8)

where Ax™1" is the smallest distance between t w o a d j a c e n t n o d a l p o i n t s , c„ is the speed o f t h e d i l a t a t i o n wave, a n d y is a p o s i t i v e f a c t o r less t h a n u n i t y ( c f . t h e paper b y B e l y t s c h k o et al.

[8]). I n the present a p p l i c a t i o n t h e c r i t i c a l t i m e step does n o t y i e l d a severe r e s t r i c t i o n , since the h i g h f r e q u e n c y c o n t e n t o f the response i n itself d e m a n d s s m a l l t i m e steps. U s u a l l y , a c o n s t a n t t i m e step c o r r e s p o n d i n g t o y = 0-8 is chosen ( c f . T a b l e 1).

T A B L E 1

Data for element meshes and time steps

Cone N o . o f

half-apex elements in

angle, 0 N o . o f piston N o . o f rod radial Time-step Contact

(degrees) elements, N2 elements, TV] direction, N3 (ja) c o n d i t i o n

5 36 18 1 0-238 Point contact

10 IS 84 1 0-238 Point contact

15 18 88 1 0 1 6 Point contact

25 18 100 3 0 0 9 1 element

frictionless

25 18 100 3 0-09 1 element

f u l l f r i c t i o n

25 18 100 3 0 0 9 2 element

f r i c t i o n less

25 18 100 3 0-09 2 element

f u l l f r i c t i o n

25 18 86 1 0 0 9 point contact

E q u a t i o n (6) yields a step-by-step s o l u t i o n f o r t h e n o d a l displacements as f u n c t i o n s o f t i m e . W i t h these displacements, the strains are o b t a i n e d t h r o u g h the k i n e m a t i c a l r e l a t i o n s . Since t h e displacements a n d strains are s o l u t i o n s o f t h e discrete e q u a t i o n s o f m o t i o n (3) a n d n o t o f the c o n t i n u u m p r o b l e m , they w i l l c o n t a i n s p u r i o u s o s c i l l a t i o n s a n d d i s p e r s i o n effects.

T h e frequencies o f the s p u r i o u s o s c i l l a t i o n s are inversely p r o p o r t i o n a l t o t h e element sizes.

T h u s , i f the element sizes are increased these frequencies decrease. I f a u n i f o r m element mesh is used, the s p u r i o u s o s c i l l a t i o n f r e q u e n c y corresponds t o t h e highest f r e q u e n c y o f the system.

I t has been c u s t o m a r y t o compensate f o r the spurious o s c i l l a t i o n b y e m p l o y i n g some f o r m o f d a m p i n g . A n ideal d a m p i n g s h o u l d o n l y a f f e c t the s p u r i o u s o s c i l l a t i o n s . I n r e a l i t y , n o such i d e a l d a m p i n g exists, a n d t h e r e f o r e also l o w e r frequencies are a f f e c t e d . T h e r e f o r e , n o a t t e m p t is m a d e i n t h i s s t u d y t o exclude the s p u r i o u s o s c i l l a t i o n s . T h e d i s p e r s i o n effect, o n t h e o t h e r h a n d , w i l l m a n i f e s t itself as a d i f f e r e n c e i n phase velocities o f d i f f e r e n t modes o f the

(23)

AB

560 R . B . G U P T A A N D L . N I L S S O N

response. T h u s , w i t h increasing m o d e f r e q u e n c y the associated phase v e l o c i t y w i l l decrease.

T h e d i s p e r s i o n effect is a n i n h e r e n t p r o p e r t y o f the f i n i t e elements, a n d i t c a n o n l y be reduced b y t h e use o f h i g h f r e q u e n c y d a m p i n g o r f i l t e r i n g techniques. A g a i n , these techniques also a f f e c t l o w e r modes o f the response, a n d are n o t used i n the present s t u d y .

F i g u r e 3 shows a l a y o u t f o r the finite element mesh o f the p i s t o n - r o d system. A l s o d e f i n e d i n t h e figure are the n u m b e r o f elements i n the a x i a l d i r e c t i o n A/, ( c y l i n d e r ) a n d N2 (cone) a n d the n u m b e r o f elements i n the r a d i a l d i r e c t i o n N3. T a b l e 1 shows the e l e m e n t meshes a n d t i m e steps f o r the v a r i o u s finite element m o d e l s .

Figure 3. Elements for the finite element model.

( a ) ( b ) ( c ) Figure 4. Various contact conditions, (a) Point contact; (b) one element contact; (c) two element contact.

I t s h o u l d be emphasized t h a t no convergence study is made i n t h e s p a t i a l o r t e m p o r a l d o m a i n s . T h e s t a b i l i t y r e s t r i c t i o n o f s m a l l t i m e steps ensures d i m i n i s h i n g t r u n c a t i o n errors i n the t i m e i n t e g r a t i o n .

I n o r d e r t o m i n i m i z e the c o m p u t e r e f f o r t , linear c o n d i t i o n s between the p i s t o n a n d the r o d have been assumed. T h e r e f o r e , the a c t u a l c o n t a c t areas have t o be p r e d e t e r m i n e d . W i t h one r a d i a l element the t w o possibilities o f p o i n t c o n t a c t o r f u l l c o n t a c t exist. W i t h three r a d i a l elements also the possibilities o f one a n d t w o element c o n t a c t m u s t be a d d e d . T h e i m p a c t faces o f the pistons were s l i g h t l y r o u n d e d , a n d the a c t u a l c o n t a c t areas i n the e x p e r i m e n t a l s t u d y are believed t o be closer t o p o i n t c o n t a c t t h a n t o f u l l c o n t a c t . T h e p o s s i b i l i t y o f f u l l c o n t a c t has t h e r e f o r e been e x c l u d e d i n the n u m e r i c a l s t u d y . T h u s p o i n t c o n t a c t has been assumed f o r the m o d e l s w i t h one element i n the r a d i a l d i r e c t i o n . F o r t h e m o d e l s c o n s i s t i n g o f three elements i n the r a d i a l d i r e c t i o n the p o s s i b i l i t y o f a f r i c t i o n l e s s c o n t a c t was also i n v e s t i g a t e d . T o m a i n t a i n the l i n e a r i t y o f the p r o b l e m o n l y the t w o extreme possibilities o f f u l l f r i c t i o n ( n o s l i d i n g ) o r n o f r i c t i o n ( f r e e s l i d i n g ) exist. T h e f u l l f r i c t i o n case is m o d e l l e d t h r o u g h f u l l n o d a l c o n t i n u i t y , w h i l e t h e c o n t i n u i t y r e q u i r e m e n t is relaxed f o r t a n g e n t i a l displacements i n the case o f f r i c t i o n l e s s c o n t a c t . T a b l e 1 shows the d i f f e r e n t c o n t a c t c o n d i t i o n s w h i c h have been used. T h e c o r r e s p o n d i n g c o n t a c t meshes, i n the case o f three r a d i a l elements, are s h o w n i n F i g u r e 4.

(24)

I M P A C T B E T W E E N C O N E A N D C Y L I N D E R 561

4. R E S U L T S A N D D I S C U S S I O N

T h e a x i a l s t r a i n s i n the r o d 40 m m f r o m the c o n t a c t surface ( F i g u r e 3) was chosen f o r the c o m p a r i s o n o f the t h e o r e t i c a l a n d e x p e r i m e n t a l results. A l l results are g i v e n i n n o n - d i m e n - sional f o r m s . T h u s , the n o r m a l s t r a i n £ has been n o r m a l i z e d against V/c w h i c h c o r r e s p o n d s t o t w i c e the m a x i m u m s t r a i n o b t a i n e d f o r apex angle 0 ° . T h e t i m e t has been n o r m a l i z e d against the d o u b l e t r a n s i t t i m e 2L/c t h r o u g h the a c t u a l p i s t o n o f length L. F o r t h i s p u r p o s e , t h e speed o f p r o p a g a t i o n c is i n accordance w i t h o n e - d i m e n s i o n a l t h e o r y (c = \ / E / p ) .

D u e t o p r a c t i c a l d i f f i c u l t i e s , the t i m e f o r i n i t i a l c o n t a c t c o u l d n o t be recorded i n the e x p e r i - m e n t s . T h e r e f o r e , this t i m e was estimated i n such a w a y t h a t the t i m e f o r m a x i m u m s t r a i n c o r r e s p o n d s t o the p r e d i c t i o n o f the o n e - d i m e n s i o n a l t h e o r y .

1

-

-

A

l-D closed form solution _

\ \\

f N i ^ ^ ^ Ä ^ " expe r i ment

/ 3-D FEM solution a ) ^ ^ 5 ^

,

-0-20

-O40

-O 60

-0-80

-1-00

1 1 111

l-D closed form solution

\ / \ y ^ ~ ^ e x p e r i r n e n t / ^ ^ ^ ^ 3 - D FEM solution ( b )

l-D closed form solution

( c ) ^ ^ ^ ^ ^ ^

\ y ^ f ^ -

3 - D F E M solution

Figure 5, (c) 9 = 15°.

Non-dimensional strain vs. non-dimensional time, (a) Cone half apex angle 6=5"; (b) 6= 10:

F i n i t e element results a n d e x p e r i m e n t a l results are i n g o o d agreement f o r pistons w i t h h a l f apex angles 5 ° , 1 0 ° , a n d 1 5 ° (see F i g u r e s 5(a), 5(b) a n d 5(c)). T h e h i g h f r e q u e n c y responses i n the finite element s o l u t i o n s are p a r t l y due t o s p u r i o u s o s c i l l a t i o n s . H o w e v e r , c o n t r i b u t i o n s t o these o s c i l l a t i o n s also o r i g i n a t e f r o m r a d i a l i n e r t i a a n d Poisson effects. T h e scatter i n t h e e x p e r i m e n t a l results was less s i g n i f i c a n t t h a n these effects. F o r the p i s t o n w i t h h a l f apex angle 5 ° , the o n e - d i m e n s i o n a l m o d e l accurately predicts the s t r a i n response (see F i g u r e 5(a)).

A s expected, the discrepancies between o n e - d i m e n s i o n a l results a n d e x p e r i m e n t a l as w e l l as finite e l e m e n t results increase w i t h the apex angle.

I n o r d e r t o o b t a i n s a t i s f a c t o r y results f o r the 2 5 ° cone, m o r e t h a n one element is r e q u i r e d i n the r a d i a l d i r e c t i o n (see T a b l e 1). F u r t h e r m o r e , i t is f o u n d t h a t a p p r o p r i a t e c o n t a c t c o n - d i t i o n s i n the finite element models are essential. A s can be seen f r o m Figures 6(a) t o 6 ( d ) , the area o f c o n t a c t is the m o s t i m p o r t a n t f a c t o r . T h u s the element d i v i s i o n s c o r r e s p o n d i n g t o a one element c o n t a c t c o n d i t i o n give results i n best agreement w i t h the e x p e r i m e n t a l results (see F i g u r e s 6(a) a n d 6 ( b ) ) . A n increase i n c o n t a c t areas gives rise t o discrepancy b e t w e e n

(25)

A3

f i n i t e element results a n d e x p e r i m e n t a l results (see F i g u r e s 6(c) a n d 6 ( d ) ) . T h e a m o u n t o f f r i c t i o n i n t h e c o n t a c t zone is f o u n d t o have a n e g l i g i b l e effect o n the a c t u a l s t r a i n (see F i g u r e s 6(a) a n d 6 ( b ) , o r 6(c) a n d 6 ( d ) ) .

A C K N O W L E D G M E N T

T h e a u t h o r s w i s h to t h a n k M r B r u n o N i l s s o n f o r his assistance i n t h e e x p e r i m e n t a l i n v e s t i - g a t i o n a n d Professor Bengt L u n d b e r g f o r suggesting the p r o b l e m a n d f o r several h e l p f u l discussions.

R E F E R E N C E S

1 . J . W . L A N D O N and H . Q U I N N E Y 1 9 2 3 Proceedings of the Royal Society London, A103, 6 2 2 - 6 4 3 . Experiments w i t h the H o p k i n s o n pressure bar.

2 . V . H . K E N N E R and W . G O L D S M I T H 1 9 6 8 Experimental Mechanics 8, 4 4 2 - 4 4 9 . Elastic waves i n truncated cones.

3. G . L . G O U D R E A U 1 9 7 0 Ph.D. Thesis University of California, Berkley. Evaluation o f discrete methods f o r the linear dynamic response o f elastic and viscoelastic solids.

(26)

I M P A C T B E T W E E N C O N E A N D C Y L I N D E R 563 4 . T . J . R . H U G H E S , R . L . T A Y L O R , J . L . S A C K M A N , A . C U R N I E R and W . K A N O K N U K U L C H A I 1 9 7 6

Computer Methods in Applied Mechanics and Engineering 8 , 2 4 9 - 2 7 6 . A finite element method f o r a class o f contact-impact problems.

5. V . R A M A M U R T I and P . V . R A M A N A M U R T I 1 9 7 7 Journal of Sound and Vibration 53, 5 2 9 - 5 4 3 . Impact o n short length bars.

6. O. C. Z I E N K I E W I C Z 1 9 7 1 The Finite Element Method in Engineering Science. L o n d o n : M c G r a w - H i l l .

7 . E. H I N T O N , T . R O C K and O. C . Z I E N K I E W I C Z 1 9 7 6 Earthquake Engineering and Structural Dynamics 4, 2 4 5 - 2 4 9 . A note o n mass l u m p i n g and related processes i n the finite element method.

8. T . BELYTSCHKO, N . H O L M E S and R . M U L L E N 1 9 7 5 The American Society of Mechanical Engineers 14, 1 - 2 1 . Explicit integration—stability, solution properties, cost.

(27)

PROPAGATION OF E L A S T I C WAVES IN RODS WITH V A R I A B L E CROSS-SECTION

BY R. G u p t a

D e p a r t m e n t o f M e c h a n i c a l E n g i n e e r i n g U n i v e r s i t y o f Luleå

L u l e å , S w e d e n .

A c c e p t e d f o r p u b l i c a t i o n i n ASME J o u r n a l o f A p p l i e d M e c h a n i c s .

(28)

E l a s t i c w a v e p r o p a g a t i o n i n i n h o m o g e n e o u s r o d s has a t t r a c t e d t h e a t t e n t i o n o f many r e s e a r c h e r s . F o r t h e c a s e o f l o n g i t u - d i n a l w a v e s i n a r o d w i t h v a r y i n g a r e a o f c r o s s - s e c t i o n A ( x ) t h e i n h o m o g e n e i t i e s ( i . e . v a r i a t i o n o f m a t e r i a l p r o p e r t i e s w i t h p o s i t i o n x ) a r e c h a r a c t e r i z e d by t h e d e n s i t y p ( x ) and t h e e l a s t i c m o d u l u s E ( x ) . The l o n g i t u d i n a l d i s p l a c e m e n t u ( x , t ) f o r s u c h a r o d o b e y s t h e e q u a t i o n

_3_

3x a e | ^ 3 X

pA^ ( 1

3t<

S e v e r a l i n v e s t i g a t i o n s h a v e a p p e a r e d i n t h e l i t e r a t u r e w h e r e t h e i n f l u e n c e s o f A ( x ) , p ( x ) and E ( x ) a r e s t u d i e d s e p a r a t e l y ( o r s i m u l t a n e o u s l y ) by a s s u m i n g p a r t i c u l a r f o r m s f o r t h e s e t h r e e f u n c t i o n s . F o r e x a m p l e , i n a r e c e n t p a p e r V a s u d e v a and B h a s k a r a [ 1 ] assume A,p,E t o be o f t h e f o r m

AC; A0C 1 x •

"kL' pCx)

V 1 + k T:

E( x l

V 1

. J L i

k L ' ( 2 )

w h e r e A^ i s c r o s s - se c t i o n a1 a r e a , p ^ i s d e n s i t y , a n d E^

i s Y o u n g ' s m o d u l u s a t t h e end x = 0; L i s t h e l e n g t h o f t h e r o d ; a n d k i s a d i m e n s i o n l e s s c o n s t a n t . H a v i n g s o l v e d t h e p r o b l e m a t h a n d ( i . e . , e q u a t i o n ( 1 ) w i t h a p p r o p r i a t e i n i t i a l and b o u n d a r y c o n d i t i o n s ) t h e y p r o c e e d t o c o n s i d e r t h e e f f e c t s o f v a r i o u s s p e c i a l c o m b i n a t i o n s o f t h e e x p o n e n t s

1, m and n.

(29)

I t i s n o n u n c h a r a

t o be p o i n t e d i f o r m r o d s t h e c t e r i z e d t h r o u

o u t t h a t f o r w a v e s i n i n h o m o g e n e o u s , p a r a m e t e r s a t a c r o s s - s e c t i o n x a r e gh t h e c h a r a c t e r i s t i c i m p e d a n c e

Z ( x ) = A [ x ) E ( x ) / c ( x )

w h e r e

c ( x ) = [ E ( x ) / p ( x ) ] 1/2

i s t h e [ v a r i a b l e ) wave s p e e d . Hence A, p, a n d E c a n o n l y i n f l u e n c e t h e r e s u l t s i n t h e c o m b i n a t i o n d i c t a t e d by e q u a t i o n s ( 3 ) a n d [ 4 ) .

I n f a c t by i n t r o d u c i n g a new i n d e p e n d e n t v a r i a b l e y t h r o u t h e t r a n s f o r m a t i o n [ 2 ]

a n d m a k i n g u s e o f t h e n o t a t i o n s u ( y , t ] = u [ x ( y ) , t ) , E ( y ) E ( x [ y ) ) , A ( y ) = A ( x ( y ) ) e t c . , e q u a t i o n ( 1 ) i s r e d u c e d t o t h e f o r m

w h i c h c l e a r l y s h o w s t h a t t h e i n f l u e n c e o f A, p , a n d E i s c o n t a i n e d i n a s i n g l e p a r a m e t e r Z = Äpc = Ä É / c .

x d x ' y y C x J = J

0 c ( x ' )

3_

3y

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

where r i,t − r f ,t is the excess return of the each firm’s stock return over the risk-free inter- est rate, ( r m,t − r f ,t ) is the excess return of the market portfolio, SMB i,t

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

This is the concluding international report of IPREG (The Innovative Policy Research for Economic Growth) The IPREG, project deals with two main issues: first the estimation of

All the offshore deployment experiments conducted by UU took place at the LRS, except the WESA project which took place in Åland, Finland. Most of them were described to the author

It was shown that the solutions consisted in regular geometrical configu- rations, and were independent from the number of WECs in the array. The general trend is that the devices

Swedenergy would like to underline the need of technology neutral methods for calculating the amount of renewable energy used for cooling and district cooling and to achieve an

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating