Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Search
for
an
isospin
I
=
3 dibaryon
The
WASA-at-COSY
Collaboration
P. Adlarson
a,1,
W. Augustyniak
b,
W. Bardan
c,
M. Bashkanov
d,∗
,
F.S. Bergmann
e,
M. Berłowski
f,
H. Bhatt
g,
A. Bondar
h,i,
M. Büscher
l,2,3,
H. Calén
a,
I. Ciepał
c,
H. Clement
j,k,
E. Czerwi ´nski
c,
K. Demmich
e,
R. Engels
l,
A. Erven
m,
W. Erven
m,
W. Eyrich
n,
P. Fedorets
l,o,
K. Föhl
p,
K. Fransson
a,
F. Goldenbaum
l,
A. Goswami
l,q,
K. Grigoryev
l,r,4,
C.-O. Gullström
a,
L. Heijkenskjöld
a,
V. Hejny
l,1,
N. Hüsken
e,
L. Jarczyk
c,
T. Johansson
a,
B. Kamys
c,
G. Kemmerling
m,5,
F.A. Khan
l,
G. Khatri
c,
A. Khoukaz
e,
O. Khreptak
c,
D.A. Kirillov
s,
S. Kistryn
c,
H. Kleines
m,5,
B. Kłos
t,
W. Krzemie ´n
c,
P. Kulessa
u,
A. Kup´s ´c
a,f,
A. Kuzmin
h,i,
K. Lalwani
v,
D. Lersch
l,
B. Lorentz
l,
A. Magiera
c,
R. Maier
l,w,x,
P. Marciniewski
a,
B. Maria ´nski
b,
H.-P. Morsch
b,
P. Moskal
c,
H. Ohm
l,
E. Perez del Rio
j,k,6,
N.M. Piskunov
s,
D. Prasuhn
l,
D. Pszczel
a,f,
K. Pysz
u,
A. Pyszniak
a,c,
J. Ritman
l,w,x,y,
A. Roy
q,
Z. Rudy
c,
O. Rundel
c,
S. Sawant
g,l,
S. Schadmand
l,
I. Schätti-Ozerianska
c,
T. Sefzick
l,
V. Serdyuk
l,
B. Shwartz
h,i,
K. Sitterberg
e,
T. Skorodko
j,k,z,
M. Skurzok
c,
J. Smyrski
c,
V. Sopov
o,
R. Stassen
l,
J. Stepaniak
f,
E. Stephan
t,
G. Sterzenbach
l,
H. Stockhorst
l,
H. Ströher
l,w,x,
A. Szczurek
u,
A. Trzci ´nski
b,
R. Varma
g,
M. Wolke
a,
A. Wro ´nska
c,
P. Wüstner
m,
A. Yamamoto
aa,
J. Zabierowski
ab,
M.J. Zieli ´nski
c,
A. Zink
n,
J. Złoma ´nczuk
a,
P. ˙Zupra ´nski
b,
M. ˙Zurek
l aDivision of Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden bDepartment of Nuclear Physics, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw, PolandcInstitute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland
dSchool of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom eInstitut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
fHigh Energy Physics Department, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw, Poland gDepartment of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India hBudker Institute of Nuclear Physics of SB RAS, 11 akademika Lavrentieva prospect, Novosibirsk, 630090, Russia iNovosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
jPhysikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
kKepler Center for Astro and Particle Physics, Eberhard Karls University Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany lInstitut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
mZentralinstitut für Engineering, Elektronik und Analytik, Forschungszentrum Jülich, 52425 Jülich, Germany
nPhysikalisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
oInstitute for Theoretical and Experimental Physics, State Scientific Center of the Russian Federation, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia pII. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
qDepartment of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, Madhya Pradesh, India rHigh Energy Physics Division, Petersburg Nuclear Physics Institute, Orlova Rosha 2, Gatchina, Leningrad district 188300, Russia
sVeksler and Baldin Laboratory of High Energiy Physics, Joint Institute for Nuclear Physics, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia tAugust Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland
uThe Henryk Niewodnicza´nski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego St, 31-342 Kraków, Poland
*
Correspondingauthor.E-mail address:[email protected](M. Bashkanov).
1 Presentaddress:InstitutfürKernphysik,JohannesGutenberg-UniversitätMainz,Johann-Joachim-BecherWeg 45,55128Mainz,Germany. 2 Presentaddress:PeterGrünbergInstitut,PGI-6ElektronischeEigenschaften,ForschungszentrumJülich,52425Jülich,Germany.
3 Presentaddress:InstitutfürLaser- undPlasmaphysik,Heinrich-HeineUniversitätDüsseldorf,Universitätsstr. 1,40225Düsseldorf,Germany. 4 Presentaddress:III. PhysikalischesInstitut B,Physikzentrum,RWTHAachen,52056Aachen,Germany.
5 Presentaddress:JülichCentreforNeutronScienceJCNS,ForschungszentrumJülich,52425Jülich,Germany. 6 Presentaddress:INFN,LaboratoriNazionalidiFrascati,ViaE. Fermi,40,00044Frascati(Roma),Italy.
http://dx.doi.org/10.1016/j.physletb.2016.09.051
0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
Accepted26September2016 Availableonline5October2016 Editor:V.Metag
Keywords: Dibaryons Four-pionproduction
N N-decoupledstateindataonthepp→pp
π
+π
+π
−π
−reaction.Sincenoclear-cutevidencehasbeen found, wegive upper limits for the productioncross sectionof sucharesonance in the massrange 2280–2500MeV.©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Recently, exclusive and kinematically complete measurements ofthe reactions pn
→
dπ
0π
0 and pn→
dπ
+π
− revealeda nar-rowresonance-likestructure in thetotal cross section [1–3] atamassm
≈
2380 MeV with a width of≈
70 MeV and quantumnumbersI
(
JP)
=
0(
3+)
.Additionalevidenceforithadbeentraced subsequentlyinthetwo-pionproductionreactions pn→
ppπ
0π
− [4], pn→
pnπ
0π
0 [5]and pn→
pnπ
+π
− [6–8]. Finally, analyz-ing power measurements ofnp elastic scatteringestablished this structuretorepresentatrues-channelresonance,whichproduces apoleinthe3D3 partialwave –denotedsincethen byd∗
(
2380)
[9–12].Such a dibaryon resonance, which asymptotically resembles a deeplybound
system, waspredictedfirst–andastonishingly precise asit turns out now –by Dyson and Xuong [13] in 1964 basedon SU
(
6)
symmetrybreaking.Later-on,Goldmanetal.[14]
called this state the “inevitable dibaryon” pointing out that due toitsparticularquantumnumbersanditsassociatedspecial sym-metries,such a state mustbe predictedin anytheoreticalmodel basedonconfinement andone-gluon exchange. Indeed,thereare now quite a number of QCD-based model calculations available, whichfindd∗
(
2380)
ataboutthecorrectmass[15–22]
.Also, rel-ativisticFaddeev-type calculationsbased on hadronicinteractions find this state at the observed mass [23,24]. The observed rela-tively narrow widthof about70 MeV is obviously moredifficult tounderstandtheoretically.Untilrecently,GalandGarcilazocame closestwithabout100MeV[24]
.Dongetal.[18]
succeededin re-producingtheexperimentalwidthby accountingforhiddencolor effects–ashadbeenspeculatedalreadyinRef.[25].Part of the theoretical calculations, which successfully obtain the d∗
(
2380)
state, predicts also a dibaryon state with mirrored quantumnumbers I(
JP)
=
3(
0+)
ata similar mass[13,15,16,24]
.Intendency,thisstate, whichisexpectedto beagaina
con-figurationasymptotically,appearstobesomewhatlessboundthan
d∗
(
2380)
,butstillbelowthethresholdof2m.Thepredicted
widthvariesfromabout90MeV
[24]
toabout180MeV[15]
.Only thecalculationoftheNijmegengroup[22]
predictsthisstatetobe farabovethethreshold.
2. Experiment
Inordertoinvestigatethisissueexperimentally,wefollowthe suggestionofDyson andXuong (whocalledthestate inquestion
the D30,wherethefirstindexdenotestheisospinandthesecond
one the spin) and consider the four-pion production in proton-protoncollisions,inparticularthe pp
→
ppπ
+π
+π
−π
−reaction. Becauseofitsisospin I=
3 suchastateisisospin-decoupledfrom the nucleon–nucleon(N N) system. Therefore,inorder tobe able toreachsucha stateby N N collisions,itsproductioninthe colli-sionprocessneedstobeassociatedbythegenerationofparticles, which takeaway two unitsofisospin.Thisappearsto be accom-plished mosteasily by the productionoftwo extra pions.So the processweaimatreadsaspp→
D30π
−π
−→
++++
π
−π
−→
ppπ
+π
+π
−π
−.Due to I=
3 the++
++ configuration is the mostpreferred
combination,whereD30decaysinto–seenext
section.
The measurementsofthisreactionhavebeencarriedoutwith theWASAdetectorincludingahydrogenpellettarget
[26,27]
atthe cooler synchrotronCOSY (ForschungszentrumJülich) usingproton beams with energies of Tp=
2.
063 and 2.541 GeV. Thesecor-respond to center-of-mass energies of
√
s=
2.
72 and 2.88 GeV, respectively.ThelatterdenotesthehighestenergyusedwithWASA atCOSY.Thetriggerwassettotwo(andmore)chargedhitsbothinthe forwardandinthecentraldetector.Sincethemaingoalsofthese runs,whichcomprise3weeksofbeam-time,wasnotthefour-pion production,but
ω
andη
production,alsoa missingmasstrigger was activeduringthemeasurementsat2.541GeV.Itrequiredthe deposited energyofeach ofthe two protonsdetected in the for-warddetectortobelargerthan150MeV–acondition,whichdid notaffectthefour-pionproductionevents.The four-momenta ofthe two emitted protons were detected
in the Forward Detector, whereas the four-momenta of the four chargedpionswererecordedintheCentralDetector,wherea
mag-netic field allowed for charge identification and momentum
de-termination. That way, the reaction was measured kinematically complete withfouroverconstraints,which allowed a correspond-ingkinematicfitoftheevents.Finally,atotalof136(1017)events atTp
=
2.
063 (2.541)GeVpassedtheχ
2criterionofthekinematicfit, whichisa cut ofthe probabilityfunction at10%. Despitethe kinematicfitcondition,MonteCarlo(MC)simulationssuggestthat thefinalsampleatTp
=
2.
063 GeV iscontaminatedwithabout50eventsoriginatingfromthree-pionproduction,wherethephotons from
π
0decayhaveundergoneconversionorDalitzdecay.Thedis-tributionofthoseeventsisnotnoticeablydifferentfromtheother events.The acceptanceofthe WASAdetectorfor pp
π
+π
+π
−π
−Fig. 1. (Coloronline.) Measured spectrumofthe pp →ppπ+π0π− reaction at Tp=2.063 (top)and2.541GeV(bottom).Thefilledcirclesrepresentthedatafrom
thiswork.Dottedanddashedlinesgivethefittedηandωcontributions,whereas theshadedareainthetoppanelshowsthepurephase-spacedistribution.The dash-dottedlineinthebottompanelisapolynomialfitofdirectthree-pionproduction. Thesolidlineisthesumofη,ωanddirectthree-pionproduction.
withan uncertaintyof less than 1%. The detection efficiencyfor
pp
π
+π
+π
−π
−eventshasbeen0.1%atTp=
2.
063 GeV and0.5%atTp
=
2.
541 GeV,alsoevaluated viacomprehensive MCsimula-tionsofthedetectorperformance.
Theabsolutenormalizationofthefour-pionproductiondatahas
been done via the simultaneous measurement of the three-pion
production(
π
+π
−π
0 withπ
0 decayintotwophotons)includingη
andω
productioninthischannel.Thespectraofthethree-pion invariantmass Mπ+π0π− at Tp=
2.
063 GeV and Tp=
2.
541 GeVare shown in Fig. 1. Since the cross section for three-pion pro-ductionistwoorders ofmagnitudelarger thanthat forfour-pion production, it was sufficient to use only a small sample of the availablethree-pionproductiondataforthisprocedure.
AtTp
=
2.
063 GeV,thedataforthethree-pionproduction(in-cluding
η
andω
production)havebeennormalizedtothevalueof 220μbobtainedinRefs.[28,29]forthisreactionatTp=
2 GeV.Asaresult,thefittedcontributionsfrom
η
andω
production(dotted and dashed lines in Fig. 1) correspond to production cross sec-tionsof111±
20 μb and5.
6±
1.
0 μb,respectively.Thefirstvalue agreesreasonablywellwiththevalueof142±
22 μb obtainedatTp
=
2.
2 GeV bytheHADES Collaboration[30]
.The second valueisingoodagreementwiththevalueof5.7μbobtainedinRef.[31]. AtTp
=
2.
541 GeV,whereω
productionprovidesalreadyasub-stantialcontributiontothree-pionproduction,thedatahavebeen normalizedtothisprocessusingforthe
ω
productioncrosssection thevalue35μbinterpolatedfromthevaluesgiveninRefs.[32,33]. As a result of this normalization procedure, we obtain total four-pioncrosssectionsof0.
7±
0.
3 and5.
2±
1.
0 μb atTp=
2.
063and2.541 GeV, respectively, which are two orders ofmagnitude smallerthanthethree-pionproductioncrosssectionsatthese en-ergies.
Thequoteduncertaintiesoriginatepredominantlyfrom system-aticuncertaintiesinthedeterminationofbackgroundbeneaththe
Fig. 2. (Coloronline.)Energydependenceofthetotalcrosssectionforthe
pp
→ ppπ+π+π−π−reaction.Thefilledcirclesarefromthis work,theopensymbols from Refs.[34–38].Thedrawn linegivesthe energydependence ofpure phase spacenormalizedtothedatapointatT
p=2.541 GeV.η
andω
peaks,thedeterminationoftheWASAacceptanceand ef-ficiencyandtheextrapolationofcrosssectionstofullphasespace, whichhasbeendonebyMCsimulationsassumingphase-spaceor modeldistributions–seenextsection.Due to the small statistics for the four-pion production reac-tion, all systematical effects hadto be evaluated by Monte Carlo simulations only. However, some of thesesystematic effects,like influenceofmissing-masstriggercouldbecross-checkedwiththe
pp
→
ppπ
+π
0π
− reaction due to much higher statistics, same multiplicity(π
0 decaysintotwophotons,hencetherearealsosixparticles detected in the final state)and verysimilar kinematics. Thereforesystematical errorsrelatedtotriggering,errors parame-terization, kinematicalfitting, etc. were evaluated basedon large samplesofthree-pion productiondata.
Thewidthsofabout30MeVforthe
η
andω
linesinthe three-pionspectrumgive ameasure ofthe massresolutionachievedin thisdataanalysis.3. Resultsanddiscussion
Theenergydependenceofthetotalcrosssectionforthe pp
→
ppπ
+π
+π
−π
− reaction isdisplayed inFig. 2
,whereour results arecomparedto earlierpublished data[34–38]
obtainedahigher energies.Thesolidlinerepresentstheenergydependenceofpure phasespace. It accountsatleastqualitativelyforthetrend ofthe data.Havingmeasured thefour-pionproductionkinematically com-plete,weareabletoconstructallkindsofdifferentialdistributions. Of relevance in the search for the I
=
3 dibaryon D30 are thespectra of the pp
π π
-invariant masses Mppπ+π+, Mppπ−π− and Mppπ+π−.Forthelatterthestatisticsquadruplesduetocombina-torics.Thesespectraaredisplayedin
Fig. 3
forbothincident ener-gies. TheyareshownwithinWASAacceptance,i.e. notacceptance corrected,inordertoavoidanymodeldependenceintroducedby thecorrespondingcorrectionprocedure.Thespectrain
Fig. 3
showverysmoothmassdistributionsand donotexhibit anyunusualstructures.However, theydeviate sys-tematically from pure six-body phase-space distributions, whichare shown (again within WASA acceptance) by the shaded
his-togramsin
Fig. 3
.Thisisnot surprising,since alreadysingle- and two-pionproductionsareknowntobedominatedbybaryon exci-tationsstartingrightfromthreshold[39–45]
.The lowest-lying baryon resonance,which decaysby emission of two pions, is the Roper resonance N∗
(
1440)
with itstwo-pion decay routes N∗
→
Nσ
→
Nπ π
and N∗→
π
→
Nπ π
.It is known to dominate the two-pion production for energies
ex-Fig. 3. (Coloronline.) DistributionsofinvariantmassesMppπ+π+ (top),
M
ppπ+π−(middle)and Mppπ−π− (bottom)for √s=2.72 GeV (left)and 2.88 GeV(right) withinWASAacceptance.Soliddotsdenotethedatafromthiswork,theshaded histogramsrepresentphase-spacedistributions, whereasthecalculated
t-channel
N∗(1440)N∗(1440)distributionisshownbythesolidlines.Thedottedcurvesshow theeffectofanI
=3 resonancewithmassm
=2380 MeV andwidth=70 MeV scaledarbitrarilyinheighttoa5%contributionofthetotalcrosssection.changestartstodominateatenergiesabove1 GeV.Sincethelatter configuration can produce only two pions in its decay, the only resonance process eligible for four-pion production is the dou-ble N∗
(
1440)
excitation, i.e. the N∗(
1440)
N∗(
1440)
excitation byt-channel meson exchange betweenthe colliding incident nucle-ons. Also, the nominal mass of 2mN∗(1440) for this configuration
fitsverywelltothecenter-of-massenergiesofthemeasurements discussedhere.Amodelcalculationbasedonanextendedversion ofthe modified Valenciamodel
[44,42]
reproduces themeasured totalcrosssectionswithin30%.Thesolidlinesin
Fig. 3
show acalculationofthe N∗(
1440)
N∗(
1440)
processadjustedinheighttothedata.Forthelowerenergy,√
s
=
2.
72 GeV,thiscalculationgives alreadyapractically perfect descriptionofallthreeinvariant-massspectrawithinuncertainties. Forthehigherenergythisdescriptionisnotquiteasgood,since it misses strength at low ppπ
+π
+ and high ppπ
−π
− invariant masses.Thesituationcouldpossiblybeimproved,ifwewouldfita contributionfromthenexthigher-lying N∗ excitation(providingaN∗
(
1520)
N∗(
1440)
configurationintheintermediatestate)tothe data. But we refrain here from a fine tuning of the background descriptionduetothemuchincreasedcomplexityofthe theoret-ical description, which necessarily introduces new uncertainties. We justnote that the behavior of the shapesgiven by the solidFig. 4. (Coloronline.)DistributionofMC-simulatedeventsplottedintheplaneof Mppπ−π− versus
M
ppπ+π+ foranI
=3 resonancewithmassm
=2380 MeV and width=70 MeV.Thetoppanelexhibitsthesituationat√s=2.72 GeV,the bot-tompanelthatat√s=2.88 GeV.lines ischaracteristicforadominanceofthe
++
++ excitation insofarastheMppπ+π+ spectrumisnarrowerthanthepure
phase-spacespectrum andpeakingaround 2m,whereas the Mppπ−π−
spectrumexhibitingdominantlythereflectionofthe
++
++ ex-citationpeaksatsubstantiallowermass.
Next,we investigate, how an I
=
3 resonance would showup inthesespectra.Fromisospincouplingarguments,wededucethe relative crosssections,withwhichsuch aresonanceshouldshow upinthevariousinvariant-massspectra,namely:σ
ppπ+π+:
σ
ppπ+π−:
σ
ppπ−π−=
1:
2 225:
1
225
.
(1)I.e., such a resonancecontributespractically only to the spec-trumwiththehighestcharge inadirectway.However, sincethe three invariant-mass spectra are interrelated, reflections of such a resonance also appear in the Mppπ+π− and Mppπ−π− spectra – as illustrated in Fig. 4, where MC generated events are plot-tedintheplane Mppπ−π− versus Mppπ+π+.Itdisplaystheresults
of a simulation of an I
=
3 resonance with m=
2380 MeV and=
70 MeV.The simulated resonance is shownin Fig. 3 by the dashed curves scaled in height corresponding to a 5% contribu-tion of the resonance to the total cross section. Whereas in theMppπ+π− spectrumthereflectioncausesabroadphase-spacelike continuum, itproducesapeak-likestructure inthe Mppπ−π−
dis-tribution,thoughsomewhat broaderthantheoriginalpeakinthe
Mppπ+π+ spectrum and located in the complementary region of
thekinematicalmassrange.
Knowing now the kinematic behavior of such an I
=
3reso-nance, we further inspect the data shown in Fig. 3. We observe no obvious narrow structures, which fulfill the kinematical con-ditions for apossible I
=
3 resonance. However, we immediately also notice that a contribution of a dibaryon resonance asillus-Fig. 5. (Coloronline.)Upperlimits(C.L.95%)inpercentageofthetotalcrosssection fromthesearchforan I=3 resonancestructureconductedontheinvariantmass spectraofFig. 3at√s=2.72 GeV (top)and2.88GeV(bottom)assumingthe con-ventionalprocessestobehavelikethe
N
∗(1440)N∗(1440)distributions.Thesolid, dottedanddashedlinesrefertoafitsearchwithalinewidthof=50,100and 150MeV,respectively.trated by the dashed lines in Fig. 3 wouldcertainly give an im-proveddescription ofthe data.Thoughthisis certainly a model-dependent statement, it demonstrates the difficulty of excluding a dibaryon resonance contribution of smaller than 5% of the to-talcrosssection –inparticular fordibaryon massessmallerthan 2380 MeV.
Inanidealcasethepeak tobesearched forisexpectedto sit upon a flat orsmoothly rising orfalling background witha cur-vature, which is small compared to the peak width. This is far frombeingthecasehere. Ontheoreticalgrounds wecan not ex-pectthe dibaryon resonanceto havea width muchsmaller than
50 MeV, more likely is a width in the region of 100 MeV or
even above, if this resonance happens to be close to the
threshold. The background due to conventional processes is not flat or smoothly rising/falling in the range of interest as we see from the distributions displayed in Fig. 3. Moreover shape and strength ofthe background can not be calculated sufficiently re-liable within contemporary theoretical approaches. Though the width of these distributions is still broader than the dibaryon signal we look for, it is not broader by an order of magnitude.
We are not aware of any model-independent peak search
anal-ysis for such a case. Hence we will proceed by assuming two
scenarios,wherethebackgroundisaccountedforeitherbyphase space-likeprocesses(meaningprocesses,whichgiveidentical con-tributions in all MN Nπ π spectra, e.g. chiral terms, various
con-tactterms,etc.)orbythe N∗
(
1440)
N∗(
1440)
processdisplayedinFig. 3.The N∗
(
1440)
N∗(
1440)
scenario representsa theoretically-motivatedbackgrounddescription,though possibly oversimplified asdiscussedabove.Asusualinsuchpeaksearches,weassume interferencestobe smallandaddtheresonancetermincoherentlytothebackground term.Undertheseassumptionsthe shapesofbothresonanceand
Fig. 6. (Color online.) Difference spectraas defined inthe text in dependence of Mppπ π. The dashed curve represents the simulation ofan I=3 resonance
with mass
m
=2380 MeV andwidth=70 MeV, the solidlinethet-channel
N∗(1440)N∗(1440) excitation. The left panel exhibits the situation at √s=2.72 GeV,therightpanelthatat√s=2.88 GeV.
backgroundcanbeconsideredtobeknown(alsowithinWASA ac-ceptance). Then for givenmass andwidth ofthe resonanceonly the relativecontributions ofresonance andbackgroundenter the simultaneous fit of all three invariant mass spectra. The upper limits(95%C.L.)resultingfromthesesingle-parameterfitsare dis-played in Fig. 5 in dependence of a hypothetical dibaryon mass
Mdibar yon for assumed resonancewidths of 50 MeV (solid lines),
100MeV(dotted)and150MeV(dashed).
In order to investigatethe case, where the backgroundis as-sumedtobedistributedphase-spacelike,weconsiderthe follow-ingdifference spectraconstructedoutofthethreeinvariant-mass spectra:
σpp
π+π+−
σ
ppπ−π−,σpp
π+π+−
σ
ppπ+π− andσpp
π−π−−
σ
ppπ+π−, since they have the advantage that there the contri-butions fromphase-space likedistributions cancel.Note that any possible contaminations from misreconstructed background, like three-pion production with subsequentπ
0 Dalitz decay, cancelsoutinthedifferencespectraaswell.
Inthesedifferencespectra,whichareplottedin
Fig. 6
forboth beam energies, double baryon excitations due to t-channel me-son exchange produce an antisymmetric pattern (see solid lines inFig. 6
),whereas an I=
3 resonanceinthe ppπ
+π
+ subsystem shouldshowupingeneralbyanasymmetricpatternformedbyits directpeakanditsreflection–asindicatedbythedashed curves inFig. 6
.Fig. 7. (Coloronline.)Upperlimits(C.L.95%)inpercentageofthetotalcrosssection fromthesearchforan I=3 resonancestructureconductedonthedifference spec-tradefinedineqs.(2)–(4)at√s=2.72 GeV (top)and2.88GeV(bottom).Thesolid, dottedanddashedlinesrefertoafitsearchwithapeakwidthof=50,100and 150MeV,respectively.
Since we know the expected signature of such a resonance
inthe difference spectra,we can perform againsingle-parameter peakfindingfitssimultaneouslytoall threedifferencespectraper beam energyand thus obtain upperlimits for such a resonance independenceofits massandwidth.The resultsforthe95%C.L. upperlimitsofthispeakfindingsearcharedisplayedin
Fig. 7
.Bothin
Fig. 5
andinFig. 7
the95%C.L.upperlimitsareplotted inpercentageofthetotalcrosssection.Theextrapolationofour re-sultsobtainedwithin theWASAacceptancetototalcrosssections introducessystematicuncertainties,asdiscussedinthe experimen-talsection.Theyamountto40%forthelower energyand20%for thehigherenergy.Forboth scenarios – N∗
(
1440)
N∗(
1440)
and phase-spacelike background – we obtain qualitatively similar results. Due to the muchsuperior statisticsatthehigherenergy,the resultingupper limits are much more stringent there. As expected, the data are most sensitive to the signature of a narrow resonance. Also, for largedibaryonmassestheupperlimitsareingeneralsubstantially lower than for smallmasses. The largest upper limit happensin the N∗(
1440)
N∗(
1440)
background scenario fora dibaryon massof about 2380 MeV and a width of 100 MeV, where the upper
limitreaches40%ofthetotalcrosssection.
Comparedto the formation cross section of1.7 mb found for
d∗
(
2380)
[46], theupper limitsfound herefor theproduction of an I=
3 dibaryonresonancearesmallerbythreetofourordersof magnitude.Moreinformative should bethe comparisonto
formation/pro-duction of a
system by conventional t-channel meson
ex-change. In two-pion production (isoscalar part) the peak cross section for d∗
(
2380)
formation is roughly one order of magni-tude largerthan the one fortheconventionalprocess [2]at the d∗
(
2380)
peak energy. If we assume that the four-pionpro-duction at the beam energies considered here is dominated by
tained at the higher incident energy are in general significantly smaller – with the exception of the case Mdibar yon
≈
2380 MeVand
=
100 MeV forthe N∗(
1440)
N∗(
1440)
scenario,wherethe upper limit is of the same order as the conventional++
++
production. The results for the higher incident energy appear to be quite significant. If the interaction between the two
++
particles produced side-by-side in the decay ofthe intermediate
N∗
(
1440)
N∗(
1440)
systemwouldbeattractive,thenthe probabil-itytoforma dibaryonshouldbe substantiallylarger thanforthe conventionalprocess–asitisobviouslythecaseford∗(
2380)
for-mation in the presence of an isoscalar+
0 system. However, our results suggest that the probability for dibaryon formation in the presence of a
++
++ system in the intermediate state is smaller (with the possible exception of the above mentioned case). This is in support of the findings of Ref. [14], which pre-dicted an attractive interaction between the
pair in case of
d∗
(
2380)
,butrepulsionincaseofD30andhencenodibaryonfor-mation.
4. Summaryandconclusions
We havesearchedforan I
=
3 dibaryon resonance,whichhasbeen predictedby Dyson andXuong as well asby various
QCD-based andhadronic modelcalculations todecay into the N N
π π
system. The mass range of our search covers the region from
2.2–2.5 GeV, i.e. from near-to two-pionthreshold tothe nominal
thresholdof2mandabove.Toourknowledgethishasbeen
thefirstsuchsearch–withtheexceptionofsome earlierattempt byuseofproton–nucleuscollisions
[49]
.We have found no apparent indication for such a resonance
in our data.The deduced upper crosssection limitsforthe pro-duction of such a resonance are three to four orders of magni-tude smaller than the formation cross section of 1.7 mb found ford∗
(
2380)
.Theyalsoareuptoone orderofmagnitudesmaller thanthecrosssectionforconventional++
++productioninthe
pp
→
ppπ
+π
+π
−π
− reaction – again in sharp contrast to the corresponding situationfor d∗(
2380)
formation, wherethis is an orderofmagnitudelargerthaninconventionalformation.
An improved, reliable background descriptionby conventional
t-channelmesonexchangeprocesseswouldcertainlyhavethe po-tentialtolowertheseupperlimitsconsiderably.
With only upper limits at present we, of course, cannot ex-cludetheexistenceofsucharesonance.However,ifexistent,either theproductionprocessofthe I
=
3 resonanceassociatedwiththe emissionoftwopionshasanunusuallysmallcrosssectionorsuch aresonancehasamassabovetheenergyregioninvestigatedhere –aspredicted,e.g. inRef.[22].However,insuchacase,whenthe resonance lies significantly above thethreshold,its width is expectedto bevery broadduetoits fall-partdecayandhenceit will be very hard to distinguish such a resonance from conven-tionalprocesses.
Acknowledgements
Weacknowledgevaluable discussionswithSt. Brodsky,A.Gal, I.Strakovsky,F.Wang,C.WilkinandZ.Zhangonthisissue.Weare indebted to Luis Alvarez-Ruso for using his code. This work has beensupportedbyDFG(CL214/3-1),STFC(ST/L00478X/1)andby thePolishNationalScienceCenter throughgrantsNos.DEC-2013/ 11/N/ST2/04152and2011/03/B/ST2/01847.
References
[1]M.Bashkanov,etal.,Phys.Rev.Lett.102(2009)052301. [2]P.Adlarson,etal.,Phys.Rev.Lett.106(2011)242302. [3]P.Adlarson,etal.,Phys.Lett.B721(2013)229. [4]P.Adlarson,etal.,Phys.Rev.C88(2013)055208. [5]P.Adlarson,etal.,Phys.Lett.B743(2015)325.
[6]H.Clement,M.Bashkanov,T.Skorodko,Phys.Scr.T166(2015)014016. [7]M.Bashkanov,H.Clement,T.Skorodko,HyperfineInteract.234(2015)57. [8]G.Agakishiev,etal.,Phys.Lett.B750(2015)184.
[9]P.Adlarson,etal.,Phys.Rev.Lett.112(2014)202301. [10]P.Adlarson,etal.,Phys.Rev.C90(2014)035204. [11]R.Workman,EPJWebConf.81(2014)02023.
[12]R.L.Workman,W.J.Briscoe,I.I.Strakovsky,Phys.Rev.C93(2016)045201. [13]F.J.Dyson,N.-H.Xuong,Phys.Rev.Lett.13(1964)815.
[14]T.Goldman,K.Maltman,G.J.Stephenson,K.E.Schmidt,FanWang,Phys.Rev.C 39(1989)1889.
[15]H. Huang,J. Ping, F.Wang,Phys. Rev.C89(2014) 034001, and references therein.
[16]Q.B.Li,P.N.Shen,J.Phys.G26(2000)1207.
[17]F.Huang,Z.Y.Zhang,P.N.Shen,W.L.Wang,Chin.Phys.C39(2015)071001.
[18]Y.Dong,P.Shen,F.Huang,Z.Zhang,Phys.Rev.C91(2015)064002. [19]X.Q.Yuan,Z.Y.Zhang,Y.W.Yu,P.N.Shen,Phys.Rev.C60(1999)045203. [20]Hua-XingChen,etal.,Phys.Rev.C91(2015)025204.
[21]T.Kamae,T.Fujita,Phys.Rev.Lett.38(1977)471.
[22]P.J.Mulders,A.T.Aerts,J.J.deSwart,Phys.Rev.D21(1980)2653. [23]A.Gal,H.Garcilazo,Phys.Rev.Lett.111(2013)172301. [24]A.Gal,H.Garcilazo,Nucl.Phys.A928(2014)73.
[25]M.Bashkanov,StanleyJ.Brodsky,H.Clement,Phys.Lett.B727(2013)438. [26]Chr.Bargholtz,etal.,Nucl.Instrum.MethodsA594(2008)339.
[27]H.H.Adam,etal.,arXiv:nucl-ex/0411038.
[28]E.Pickup,D.K.Robinson,E.O.Salant,Phys.Rev.Lett.8(1962)329. [29]E.Pickup,D.K.Robinson,E.O.Salant,Phys.Rev.125(1962)2091. [30]G.Agakishiev,etal.,Eur.Phys.J.A48(2012)74.
[31]S.Barsov,etal.,Eur.Phys.J.A31(2007)95. [32]S.AbdEl-Samad,etal.,Phys.Lett.B522(2001)16. [33]F.Balestra,etal.,Phys.Rev.C63(2001)024004. [34]G.Alexander,etal.,Phys.Rev.154(1967)1284. [35]S.Danieli,etal.,Nucl.Phys.B27(1971)157. [36]D.R.Ward,etal.,Nucl.Phys.B172(1980)302. [37]V.Blobel,etal.,Nucl.Phys.B111(1976)397. [38]V.Blobel,etal.,Nucl.Phys.B135(1978)379. [39]S.Teis,etal.,Z.Phys.A356(1997)421. [40]J.Złoma ´nczuk,etal.,Phys.Lett.B436(1998)251. [41]S.AbdEl-Samad,etal.,Eur.Phys.J.A39(2009)281.
[42]L.Alvarez-Ruso,E.Oset,E.Hernändez,Nucl.Phys.A633(1998)519. [43]XuCao,Bing-SongZou,Hu-ShanXu,Phys.Rev.C81(2010)065201. [44]T.Skorodko,etal.,Eur.Phys.J.A35(2008)317.
[45]T.Skorodko,etal.,Phys.Lett.B679(2009)30.
[46]M.Bashkanov,H.Clement,T.Skorodko,Eur.Phys.J.A51(2015)87. [47]A.V.Anisovich,etal.,Eur.Phys.J.A48(2012)15.
[48]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. [49]L.M.Andronenko,etal.,AIPConf.Proc.221(1990)216.