• No results found

Solar Water Pumping for Irrigation: Case Study of the Kilimanjaro Region

N/A
N/A
Protected

Academic year: 2021

Share "Solar Water Pumping for Irrigation: Case Study of the Kilimanjaro Region"

Copied!
73
0
0

Loading.... (view fulltext now)

Full text

(1)

BA

CHELOR

THESIS

Energy Engineering - Renewable Energy, 180 credits

Solar Water Pumping for Irrigation

Case Study of the Kilimanjaro Region in Tanzania

Niclas Bengtsson, Johan Nilsson

Bachelor Thesis in Energy Technology, 15 credits

(2)

Abstract  

 

This  study  has  been  conducted  as  a  Minor  Field  Study  (MFS).  It  focuses  on  solar   water  pumping  for  small-­‐scale  farmers  in  the  Kilimanjaro  Region  of  Tanzania.   The  purpose  is  to  investigate  the  possibilities  for  rural  farmers  to  operate  their   irrigation  with  solar  power  instead  of  their  current  option:  fossil  fuels,  primarily   petrol.  The  study  was  conducted  in  three  phases,  starting  with  pre-­‐study  in   Sweden,  followed  by  field  study  in  Tanzania  from  January  to  March  2015  and   finishing  with  summarizing  and  calculating  in  Sweden.  Fuel  powered  water   pumping  has  a  cheap  capital  cost;  however,  it  is  expensive  and  problematic  to   maintain  and  operate.  Solar  powered  water  pumping  is  almost  completely   opposite.  It  has  a  higher  initial  cost;  however,  it  is  considerably  cheaper  to  run.   The  results  indicate  that  the  investment  in  solar  power  might  be  too  expensive   for  the  farmers,  as  long  as  they  do  not  receive  external  financial  and  educational   support.  Assuming  that  the  farmers  are  able  to  obtain  a  solar  water  pumping   system,  results  show  that  they  will  benefit  and  save  a  considerably  amount  of   money  over  a  long  period  of  time.  Also,  solar  water  pumping  is  environmentally   friendly  compared  to  the  systems  in  Tanzania  today.    

(3)

 

Sammanfattning  

 

Den  här  studien  har  blivit  genomförd  som  en  Minor  Field  Study  (MFS).  Den   fokuserar  på  solcellsdriven  vattenpumpning  för  småskaliga  bönder  i   Kilimanjaroregionen  i  Tanzania.  Syftet  är  att  undersöka  möjligheterna  för   bönder  i  landsbygden  att  driva  deras  bevattningssystem  med  solenergi  istället   för  deras  nuvarande  alternativ,  fossila  bränslen  (främst  bensin).  Studien  blev   genomförd  i  tre  faser:  först  förstudie  i  Sverige,  följt  av  fältstudie  i  Tanzania  från   januari  till  mars  2015  och  den  avslutades  med  summering  och  kalkylering  i   Sverige.  Bränsledriven  vattenpumpning  har  en  billig  kapitalkostnad,  men  är  dyr   och  problematisk  att  underhålla  och  driva.  Solcellsdriven  vattenpumpning  är   tvärtom.  Den  har  en  högre  initial  kostnad,  men  är  avsevärt  billigare  att  driva.   Resultaten  indikerar  att  investeringen  i  solenergi  kan  vara  för  dyr  för  bönderna   om  de  inte  får  extern  support  med  finansiering  och  utbildning.  Resultatet  visar   att  om  bönderna  kan  erhålla  ett  solenergidrivet  vattenpumpningssystem,  så   kommer  de  ha  stor  nytta  av  det  och  spara  en  avsevärd  summa  pengar  över  en   lång  tid.  Dessutom  är  solcellsdriven  vattenpumpning  miljövänligt  jämfört  med   systemen  i  dagens  Tanzania.  

(4)

                       

This  study  has  been  carried  out  within  the  framework  of  the  Minor  Field  Studies   Scholarship  Programme,  MSF,  which  is  funded  by  the  Swedish  International   Development  Cooperation  Agency,  SIDA  and  administrated  by  The  Swedish   Council  for  Higher  Education.  The  Swedish  Council  for  Higher  Education  is  a   Swedish  government  agency  with  many  different  tasks  in  the  education  sector.   One  of  them  is  to  provide  organizations  and  individuals  in  Sweden  with  the   opportunity  to  participate  in  international  exchanges  and  partnerships.   Minor  Field  Studies  (MFS)  gives  students  at  Swedish  higher  education  

institutions  the  opportunity  to  conduct  field  studies  in  low  and  middle-­‐income   countries  for  the  purpose  of  gathering  material  for  an  essay  or  degree  project  at   Bachelor's  or  Master's  level.  The  higher  education  institutions  apply  for  funding   from  the  Swedish  Council  for  Higher  Education,  and  the  students  then  apply  for   scholarships  via  their  higher  education  institution.  

The  Student  Affairs  Department  administrates  the  MFS  programme  at  Halmstad   University.                 Rebecca  Rosenberg   International  Coordinator  

Program  Officer  MFS  Programme   Student  Affairs  Department   Halmstad  University  

     

(5)

Acknowledgements  

This  bachelor  thesis  was  made  possible  with  the  help  of  numerous  people  and   organizations.  Without  them,  this  study  would  not  have  been  accomplished.   Therefore,  we  would  like  to  give  our  acknowledgement  to  the  following:    

• SIDA:  This  study  was  conducted  as  a  Minor  Field  Study  (MFS)  with   financial  support  from  the  Swedish  International  Development   Cooperation  Agency  (SIDA).  Without  this  support,  the  field  study  in   Tanzania  would  not  have  been  possible.  We  would  therefore  like  to  thank   SIDA  for  their  trust  in  giving  us  this  opportunity.  

 

• Ingemar  Josefsson,  supervisor:  For  introducing  us  to  MFS  and  

encouraging  us  to  write  this  kind  of  thesis.  We  would  also  like  to  thank   you  for  your  support  and  advice  throughout  the  project.  

 

• Giliard  Mollel,  TAHA:  For  taking  us  with  you  in  your  daily  work  and   helping  us  collect  the  information  we  searched  for.  You  have  been  an   incredible  support  for  us  and  without  your  help  we  would  not  have   succeeded  with  this  project.  Thank  you  for  your  time  and  all  your  help.    

• Adam  Mark,  RVTSC  Moshi:  For  introducing  the  idea  about  combining   solar  water  pumping  with  irrigation  and  for  helping  us  get  in  contact  with   farmers  in  the  area.  

 

• Farmers  in  the  Kilimanjaro  Region:  Thank  you  for  taking  your  time  and   answering  our  questions.  We  would  also  like  to  thank  you  for  showing   interest  in  our  project.    

 

• Jan  Kleinhans:  For  letting  us  stay  in  your  apartment  during  our  stay  in   Moshi.  We  would  also  like  to  thank  you  for  sharing  your  experience  about   living  in  Tanzania  and  giving  us  advice  during  our  stay.  

 

• Deogratius  Matemu:  For  helping  us  meet  with  farmers  and  taking  the   time  to  help  us  during  our  stay.  We  would  also  like  to  thank  you  for   lending  us  your  camera  charger  when  ours  broke.  

 

• Laurence  Eliya:  For  being  an  excellent  guide  during  our  three-­‐day  safari   trip.  We  would  also  like  to  thank  you  for  the  email  conversations  and   advices  before  our  trip.  

 

• Ulla  Utterfors:  For  all  your  tips  and  advice  about  Tanzania  before  our   departure.  

 

• Nicholas  Lloyd-­‐Pugh:  For  helping  us  with  the  English  language  in  our   thesis.  

 

• Families,  friends  and  other  contributing  people:  Last  but  not  least,  we   would  like  to  thank  you  for  supporting  us  throughout  the  whole  project.  

(6)

 

Table  of  Contents  

Acknowledgements  ...  IV   Figures  ...  VII   Tables  ...  VIII   Abbreviations  ...  IX   Definitions  ...  X   1.   Introduction  ...  1   1.1   Background  ...  1  

1.1.1   The  Kilimanjaro  Region  ...  2  

1.1.2   Tanzania  Horticultural  Association  ...  2  

1.2   Purpose  ...  3  

1.3   Objectives  ...  3  

1.4   Earlier  Feasibility  Study  ...  3  

1.5   Hypothesis  ...  5  

1.6   Delimitations  ...  5  

2.   Methodology  ...  6  

2.1   Pre-­‐study  in  Sweden  ...  6  

2.2   Field  Research  in  Tanzania  ...  6  

2.3   Summarizing  in  Sweden  ...  6  

3.   Literature  Review  ...  7  

3.1   Water  Pumping  for  Irrigation  ...  7  

3.1.1   Pumps  ...  7  

3.1.2   Solar  Water  Pumping  System  ...  9  

3.1.3   Designing  a  Small-­‐Scale  Solar  Water  Pumping  System  ...  10  

3.1.4   Irrigation  Methods  ...  16  

3.1.5   Water  Sources  ...  17  

3.2   Economy  ...  18  

3.2.1   Life  Cycle  Cost  ...  18  

3.2.2   Break-­‐even  Point  ...  18   3.3   Environmental  Aspect  ...  18   4.   Field  study  ...  19   4.1   Locations  ...  19   4.2   Interviews  ...  19   4.2.1   Social  Conditions  ...  19  

4.2.2   Irrigation  and  Farming  ...  19  

4.2.3   Economy  and  Problems  ...  21  

4.2.4   Knowledge  and  Opinion  about  Solar  Power  ...  22  

4.3   An  Existing  Solar  Water  Pumping  System  ...  22  

5.   Design  of  a  Solar  Water  Pumping  System  for  Irrigation  ...  25  

5.1   Information  about  the  Location  and  Field  ...  25  

5.2   Analysis  of  the  System  ...  25  

6.   Comparison  between  Solar  and  Petrol  ...  32  

6.1   Economics  ...  32  

(7)

6.1.2   Operating  and  Maintenance  Cost  ...  32  

6.1.3   Life  Cycle  Cost  ...  33  

6.1.4   Break-­‐Even  Point  ...  33  

6.2   Environment  ...  34  

7.   Validations  and  Conclusions  ...  34  

7.1   Validations  of  Results  ...  34  

7.1.1   Interviews  ...  34  

7.1.2   Solar  Water  Pumping  System  ...  35  

7.1.3   Comparison  ...  36  

7.2   Recommendations  for  Solar  Water  Pumping  ...  37  

7.3   Reflections  ...  37  

8.   References  ...  39   9.   Appendix  ...  A.1   Appendix  A   Questionnaire  ...  A.1   Appendix  B   Survey  ...  B.1   Appendix  C   Friction  loss  diagram  for  PVC  pipe  ...  C.1   Appendix  D   Prices  on  Solar  Water  Pumping  Systems  ...  D.1   Appendix  E   Irrigation  Method  Comparison  ...  E.1   Appendix  F   Life  Cycle  Cost  ...  F.1  

(8)

Figures  

Figure  1:  Map  over  Tanzania.  ...  1  

Figure  2:  Map  over  Tanzania,  showing  the  Kilimanjaro  Region  in  red.  ...  2  

Figure  3:  Example  of  a  centrifugal  pump.  ...  7  

Figure  4:  Example  of  a  helical  rotor  pump.  ...  8  

Figure  5:  Basin  irrigation.  ...  16  

Figure  6:  Drip  irrigation  scheme.  ...  16  

Figure  7:  Pumping  water  with  centrifugal  pumps  from  the  river  in  Moshi  rural.  17   Figure  8:  Education  level  among  the  farmers.  ...  19  

Figure  9:  The  most  common  field  sizes,  in  acres,  among  the  farmers.  ...  20  

Figure  10:  The  most  common  water  source  among  the  farmers.  ...  20  

Figure  11:  Most  common  irrigation  method  used  by  the  farmers.  ...  21  

Figure  12:  The  most  common  energy  source  used  by  the  farmers.  ...  21  

Figure  13:  The  figur  shows  that  drip  irrigation  is  more  beneficial  than  basin.  ...  22  

Figure  14:  Solar  panels  mounted  on  top  of  a  roof.  ...  23  

Figure  15:  Water  storage  tanks  on  top  of  a  roof.  ...  23  

Figure  16:  System  layout  of  the  designed  SWPS.  ...  27  

Figure  17:  Pump  performance  curve  for  Lorentz  PS150  C-­‐SJ58.  ...  29  

Figure  18:  Diagram  showing  the  break-­‐even  point  between  petrol  and  solar   options.  ...  33  

(9)

 

Tables  

Table  1:  Steps  for  designing  a  solar  water  pumping  system.  ...  11  

Table  2:  Monthly  insolation  in  Moshi,  Tanzania.  ...  12  

Table  3:  The  cost  of  the  farmers  SWPS  ...  24  

Table  4:  Monthly  insolation  during  dry  season  in  Moshi,  Tanzania.  ...  27  

Table  5:  Requirements  for  the  pump.  ...  30  

Table  6:  Suitable  panel  selected.  ...  30  

Table  7:  Summary  of  the  main  components  in  the  SWPS.  ...  31  

(10)

 

Abbreviations  

Abbreviation   Definition  

GDP   Gross  Domestic  Product  

GNP   Gross  National  Product  

TAHA   Tanzania  Horticultural  Association  

SWPS   Solar  Water  Pumping  System  

PWPS   Petrol  Water  Pumping  System  

LCC   Life  Cycle  Cost  

BEP   Break-­‐Even  Point  

DC     Direct  Current  

AC     Alternating  Current  

TDH     Total  Dynamic  Head  

kWh     Kilowatt  hour  

kPa   Kilopascal  

$   United  States  dollars  

VAT   Value  Added  Tax  

CO2   Carbon  Dioxide  

MFS   Minor  Field  Study  

SIDA   Swedish  International  Development  Cooperation  Agency  

USAID   United  States  Agency  for  International  Development  

ha   Hectare  (10,000  m2)  

(11)

Definitions

 

Solar  radiation     The  amount  of  solar  energy  that  reach  the  earth.  The   outer  atmosphere  receives  a  nearly  constant  value  of   1,36  kW/m2.  However,  the  maximum  amount  of   solar  radiation  that  reaches  the  surface  of  the  earth   is  approximately  1  kW/m2  because  the  radiation  has   to  travel  through  the  atmosphere.  

 

Solar  irradiance     The  amount  of  solar  energy  received  on  a  specific   surface.  Usually  expressed  in  kW/m2.    

 

Insolation     The  amount  of  solar  irradiance  measured  over  a   specific  period  of  time.  Average  daily  insolation  in  a   month  is  often  used  when  designing  a  solar  system.   Usually  expressed  in  kWh/m2.  

 

Peak  sun  hours     The  average  daily  insolation,  expressed  in  

kWh/m2.day,  can  also  be  expressed  in  the  term  peak   sun  hours.  This  is  a  term  that  shows  the  amount  of   “full  sun  hours”  in  a  day.  To  achieve  the  peak  sun   hours,  the  total  insolation  is  divided  by  1  kW/m2   (the  approximately  maximum  value  of  solar   irradiance  on  the  surface  of  earth).    

 

Crop  rotation     A  technique  where  different  crops  are  grown  in   cycles  to  increase  nutrition  in  the  soil  and  minimize   spread  of  pest.  

 

Power  output  warranty     If  the  warranty  is  25  years,  the  solar  panels  power  

output  efficiency  should  be  at  least  80  %  after  this   period  of  time.    

 

Acre     An  American  or  English  unit  of  area  that  is   equivalent  to  4,047  m2  or  0.405  ha.    

 

Azimuth     One  of  the  coordinates  for  a  celestial  body  (e.g.  the   sun).  The  azimuth  is  along  the  horizon  where  0°  is   north,  90°  is  east,  180°  is  south  and  270°  is  west.    

(12)

1.   Introduction  

1.1   Background  

Tanzania  is  located  in   eastern  Africa.  With  its   945,000  km2  it  is  more   than  twice  the  size  of   Sweden.  There  are  over  50   million  inhabitants  and   the  majority  speaks  the   official  language  of   Swahili;  although,  there   are  many  people  who   speak  English  as  well  as   local  tribe  languages.   Tanzania’s  largest   neighbors  are:  Kenya  to   the  north,  the  Democratic   Republic  of  Congo  to  the   west,  Mozambique  to  the   south  and  the  Indian   Ocean  to  the  east.  Africa’s   highest  mountain,  

Kilimanjaro,  is  located  in   the  northeast  and  Lake   Victoria  in  the  northwest   (Nationalencyklopedin).    

Tanzania  is  one  of  the  poorest  countries  in  the  world  with  a  2013-­‐year’s  GDP  per   capita  of  $695  compared  to  Sweden’s  which  was  $58,164.  Agriculture  is  a  large   part  of  the  trade  and  industry;  it  accounts  for  28  %  of  the  nations  GNP.  

Approximately  80  %  of  the  population  earns  their  living  from  agriculture   (Nationalencyklopedin).    

 

There  are  many  small-­‐scale  farmers  who  work  all  day  long  to  provide  food  for   their  own  families  and  if  there  is  any  surplus,  they  sell  their  produce  on  a  very   fluctuating  market.  In  addition  to  the  uncertain  market  prices,  many  of  the   farmers  also  struggle  to  obtain  enough  water  to  irrigate  the  crops.  Even  if  there   is  a  water  source  nearby  the  farm,  they  still  have  the  problem  of  water  collection   and  transportation.  Most  farmers  use  fuel  powered  pumps,  which  is  very  

expensive  due  to  the  high  fuel  price.  These  pumps  are  not  only  expensive  to  run,   maintain  and  repair,  but  they  also  have  a  large  environmental  impact.    

 

(13)

1.1.1  The  Kilimanjaro  Region  

Mt  Kilimanjaro  is  5,896  m  high  and   close  to  the  Kenyan  border.  It  is  the   world’s  highest  freestanding  

mountain.  Every  year  around  25,000   trekkers  climb  the  mountain,  this   because  it  is  a  relatively  easy  climb,   which  can  be  done  without  ropes  and   experience  (Lonely  Planet,  2015).  The   Kilimanjaro  Region,  marked  red  in   Figure  2,  is  the  area  around  Mt  

Kilimanjaro.  It  is  13,250  km2  large  and   has  a  population  of  1.6  million  people   (National  Bureau  of  Statistics,  

Tanzania,  2013)  and  over  240,000   agricultural  households  (Ministry  of   Agriculture,  2012).    

 

Moshi  is  the  most  densely  populated  district  and  also  the  capital  city  of  the   region.  The  other  districts  are  Siha,  Hai,  Rombo,  Mwanga  and  Same.  Many   farmers  in  these  areas  collect  their  water  from  the  mountain.  Those  who  live  on   the  slopes  or  nearby  irrigate  using  gravity  and  the  farmers  who  live  further  away   use  pumps  to  collect  the  water  from  rivers,  streams,  boreholes  or  wells.    

 

The  region  has  two  rainy  seasons,  the  short  rain  season  is  from  November  to   December  and  the  longer  rain  season  is  from  March  to  May.  The  annual  rainfall  is   700-­‐1,200  mm  and  the  average  temperature  over  the  year  is  20-­‐26  °C  (The   World  Bank  Group,  2015).  During  the  rainy  seasons,  most  farmers  cultivate   maize  and  during  the  dry  seasons  they  mostly  cultivate:  green  peppers,  beans,   onions,  tomatoes  and  watermelons.    

1.1.2  Tanzania  Horticultural  Association  

TAHA  is  a  membership-­‐based  farmers  organization  that  was  founded  in  2004.   Since  then,  they  have  brought  together  large-­‐scale  professional  operations  and   small-­‐scale  farmers  to  try  and  help  everyone  develop  their  business.  TAHA  is  the   fastest  growing  farmer  organization  in  the  region  and  they  have  support  from   the  government  of  Tanzania  and  other  partners  such  as  USAID.  By  bringing  all   parts  of  the  horticultural  sector  (producers,  traders,  exporters  and  processors)   together,  everyone  can  cooperate  to  help  contribute  to  economic  growth  and  the   eradication  of  poverty  (TAHA).    

 

Small-­‐scale  farmers  who  are  members  in  TAHA  receive  advice  and  help  on  how   to  make  their  farming  more  profitable.  TAHA  also  help  farmers  to  invest  in   equipment  and  to  get  in  touch  with  other  people  in  the  same  business.  Together   with  their  partners,  they  arrange  field  days  where  members  can  visit  

demonstration  farms  to  obtain  more  knowledge  about  new  technology  and  how   to  produce  better  yields  and  bigger  quantities  of  crops.  

 

Figure  2:  Map  over  Tanzania,  showing  the   Kilimanjaro  Region  in  red  (Sémhur,  2009).  

(14)

1.2   Purpose  

The  purpose  of  this  project  is  to  investigate  the  feasibility  of  a  more  sustainable   solution  for  the  small-­‐scale  farmers’  irrigation  systems  in  Tanzania,  with  focus   on  the  Kilimanjaro  Region.  The  study  will  focus  on  a  system  using  solar  power,   due  to  the  low  operating  cost  and  environmental  benefits.  Solar  power  is  also   especially  interesting  considering  the  reducing  cost  of  solar  components  and  the   great  yearly  insolation  in  Tanzania.  The  focus  will  be  on  comparing  the  systems   that  are  in  use  today  with  a  solar  powered  option  to  give  a  picture  of  the  

advantages  and  disadvantages  of  the  different  systems.  The  study  will  also  

investigate  what  kind  of  irrigation  methods  that  is  in  use  in  the  area  and  which  of   the  methods  that  would  fit  a  solar  powered  system  best.  Besides  the  economic   aspect,  it  is  also  important  to  consider  the  social  aspect  of  the  farmers.  For   example  what  problems  the  farmers  encounter  in  their  daily  work,  what  the   farmers  knowledge  about  solar  power  are  and  what  their  thoughts  are  on   changing  to  a  new  type  of  system.  In  the  end,  the  report  will  show  which  type  of   solar  solution  that  would  suit  the  small-­‐scale  farmers  of  the  Kilimanjaro  Region   best  both  from  a  technical  and  economic  aspect.  

1.3   Objectives  

The  overall  objective  of  this  study  is  to  investigate  the  feasibility  of  using  SWPS   for  small-­‐scale  irrigation  instead  of  the  PWPS  that  are  the  most  common  today.   The  specific  objectives  are:    

 

• Investigate  the  farmers’  present  situation  through  interviews.  

• Investigate  what  kind  of  irrigation  methods  that  is  in  use  in  the  area  and   decide  which  one  that  would  fit  a  SWPS  best.  

• Make  an  economic  comparison  between  SWPS  and  PWPS.   • Design  a  SWPS  that  could  be  built  in  the  area.  

• Investigate  the  difficulties  of  changing  to  SWPS  and  give   recommendations  on  how  to  solve  them.  

• Investigate  if  there  is  any  SWPS  in  use  in  the  area  today.  

• Investigate  the  environmental  benefits  of  using  a  SWPS  instead  of  a  fuel   powered  pumping  system.  

1.4   Earlier  Feasibility  Study  

The  technology  for  using  solar  water  pumping  has  already  been  implemented  in   several  projects  around  the  world.  The  following  case  study  is  an  example  of  this.  

 

“Irrigation  schemes  using  solar  energy:  A  case  study  in  Togblo”  (Noumon,  

2008)  

A  civil  engineering  student  from  the  University  of  Karlsruhe  in  Germany   investigated  the  possibility  of  introducing  SWPS  in  Benin.  The  field  study  was   performed  during  2008  in  the  southern  part  of  Benin  where  there  is  a  relative   abundance  of  water.  Despite  this,  the  farmers  in  the  area  faced  many  problems.   Some  of  the  main  problems  were:  

 

• High  running  cost  for  farmers  using  fuel  powered  pumps  due  to  high  fuel   and  maintenance  cost.  

(15)

• High  running  cost  for  famers  using  electric  powered  pumps.  This  was   both  due  high  cost  and  unreliable  supply  of  electricity.  The  unreliable   supply  forced  the  farmers  who  used  this  type  of  system  to  couple  the   electric  pump  with  a  fuel  powered  pump  for  reliability.  

• Need  for  large  amount  of  manpower  for  farmers  who  used  manual   irrigation.  

• Problems  to  receive  financial  support  and  loans.    

The  main  objective  of  the  project  was  to  find  out  if  solar  water  pumping  could  be   cost-­‐competitive  compared  to  other  ongoing  pumping  systems  in  the  area.  The   study  also  investigates  what  type  of  irrigation  method  that  suits  a  SWPS  best  and   what  type  of  crops  that  gives  the  highest  profit.    

 

The  irrigation  method  that  was  chosen  in  the  study  was  drip  irrigation  with  a   water  reservoir.  This  was  primarily  for  the  reason  that  drip  irrigation  needs  a   relatively  low  daily  demand  of  water,  is  quite  simple  to  run  and  maintain  as  well   as  it  needs  less  manpower  than  manual  irrigation.  The  low  water  demand  limits   the  size  of  the  reservoir,  pump  and  the  required  amount  of  solar  panels.  The   main  crop  used  in  the  study  was  tomato.  This  was  due  to  the  high  price  for   tomatoes  during  dry  season  and  that  tomato  is  a  fast  growing  crop  with  modest   water  requirements.  

 

The  conclusion  of  the  study  was  that  the  solar  system  combined  with  a  drip   irrigation  system  is  possible  for  the  farmers  to  afford  with  technical  and  financial   assistance.  The  study  shows  that  both  technical  and  financial  institutions  in  the   area  showed  a  great  interest  in  the  solar  technology.  This  would  make  it  possible   for  farmers  to  receive  the  needed  assistance.  The  economic  analysis  show  that   smaller  plots  of  0.5-­‐1  ha  rather  than  larger  plots  are  more  economically  feasible   and  affordable  by  farmers  when  installing  a  solar  powered  system.  The  crop   selection  was  also  of  big  importance  and  a  crop  of  high  economical  value  should   be  chosen  when  investing  in  a  more  expensive  irrigation  system.  In  the  economic   comparison  between  the  solar  powered,  fuel  powered  and  electric  powered   system,  there  are  very  big  differences  in  investment  and  running  cost  between   the  systems.  The  solar  powered  system  had  many  times  higher  investment  cost   compared  to  the  other  two  systems.  However,  it  could  still  be  justified  when   compared  to  the  fuel  powered  system,  seeing  to  high  running  and  maintenance   cost  as  well  as  very  short  lifetime  (approximately  three  months)  of  the  fuel   pump.  When  compared  to  the  electric  pump  it  was  harder  to  justify  the  

economical  benefit  of  the  solar  system.  However,  as  a  result  of  unreliable  supply   of  electricity  in  Benin,  solar  system  is  a  good  option,  if  the  investment  is  possible   to  afford  for  the  farmer.  Worth  mentioning  is  that  all  components  for  the  SWPS   was  imported  from  USA.  Prices  for  the  components  may  have  been  different  if   the  components  were  bought  locally.    

           

(16)

The  author  of  this  study  believed  that  solar  powered  systems  in  Benin  could   have  a  bright  future  if  there  is  a  continuous  interest  from  the  government,   financial  and  technical  institutions  and  the  farmers  themselves.  The  author  also   believed  that  solar  systems  would  be  more  economically  feasible  in  the  future   with  a  continuous  increasing  oil  price  and  continuous  decreasing  price  on  the   solar  components.  

(Noumon,  2008)  

1.5   Hypothesis  

The  hypothesis  this  study  is  based  on  is:    

• A  SWPS  is  economically  competitive  compared  to  a  PWPS  for  small-­‐scale   irrigation  in  the  Kilimanjaro  Region,  Tanzania.  

1.6   Delimitations  

This  project  has  the  following  limits:    

• The  project  will  only  consider  small-­‐scale  farmers  in  the  Kilimanjaro   Region  that  have  access  to  a  water  source  and  are  using  pumps  to  collect   water.    

• No  actual  SWPS  will  be  built.  This  is  a  feasibility  study  for  the   implementation  of  SWPS  for  irrigation  in  the  Kilimanjaro  Region.  

• The  study  will  target  smaller  off-­‐grid  systems  and  does  not  consider  any   grid-­‐connected  systems.  

• Only  components  sold  in  Tanzania  will  be  investigated.    

(17)

2.   Methodology  

In  order  to  reach  the  objectives  of  the  study,  the  process  was  divided  into  three   phases:  pre-­‐study  in  Sweden,  field  research  in  Tanzania  and  summarizing  in   Sweden.    

2.1   Pre-­‐study  in  Sweden  

To  gain  more  knowledge  about  solar  power  and  water  pumping,  a  pre-­‐study  was   conducted.  Information  was  gathered  through  Internet  searches  and  literature   review.    

 

There  were  also  dialogues  with  contacts  in  Tanzania  through  e-­‐mail.  The  

purpose  of  this  was  to  obtain  a  better  understanding  of  farmers’  situation  and  to   be  as  prepared  as  possible  before  arrival.    

2.2   Field  Research  in  Tanzania  

The  field  research  was  conducted  by  interviewing  farmers  and  by  observing   their  fields  and  irrigation  systems.  Questionnaires  were  created  in  order  to   facilitate  the  survey.  By  dividing  the  questionnaires  into  different  areas,  the   answers  gave  a  general  picture  of  the  farmer’s  daily  challenges  and  problems.   The  interviews  were  conducted  in  a  semi-­‐structured  way,  allowing  

supplementary  questions  to  clarify  diffuse  answers.    All  farmers  were   interviewed  at  their  farm.  As  a  result  of  this,  it  was  easier  to  observe  their   situation  and  take  additional  notes  if  needed.  

 

An  important  part  of  the  field  research  was  the  help  from  TAHA.  From  a  contact   in  this  organization,  Mr.  Mollel,  a  lot  of  additional  information  that  the  

questionnaires  did  not  answer  could  be  gathered.  Through  Mr.  Mollel,  a  working   SWPS  was  located  and  the  owner  of  this  system  was  interviewed.  

2.3   Summarizing  in  Sweden  

Back  in  Sweden,  the  first  priority  was  to  summarize  all  gathered  information.   The  questionnaires’  answers  were  structured  in  an  Excel  sheet  and  all  other   information  was  compiled  and  analyzed.  In  this  way,  it  was  easy  to  see  if  there   was  anything  more  that  needed  to  be  obtained.  Through  e-­‐mail  contact  with  Mr.   Mollel  at  TAHA  and  solar  companies  in  Tanzania,  supplementary  data  was   collected.  

(18)

3.   Literature  Review  

3.1   Water  Pumping  for  Irrigation  

The  main  function  of  a  pump  is  to  transfer  energy  from  a  power  source  to  a  fluid,   in  order  to  create  a  pressure  on  the  fluid  to  transport  it  from  one  location  to   another.  In  an  irrigation  system,  the  pump  is  usually  used  to  lift  water  from  one   level  to  a  higher  level  or  add  pressure  in  order  to  obtain  the  required  working   pressure  of  the  system.  A  pump  might  for  example  move  water  from  a  well  or  a   river  to  an  irrigation  system  or  up  to  a  tank  for  later  use  (Ali,  2014).  

3.1.1  Pumps  

There  are  a  large  amount  of  pumps  out  on  the  market  for  different  uses  and   areas.  By  investigating  two  large  solar  pump  manufacturers,  Grundfos  (Grundfos,   2015)  and  Lorentz  (Lorentz,  2015),  two  types  of  pumps  are  most  commonly   found  for  SWPS  application.  Those  pump  types  are:  

 

• Centrifugal  pump  

• Helical  rotor  pump  (a  type  of  positive  displacement  pump)    

Centrifugal  pump  

The  centrifugal  pump,  seen  in  Figure  3;  use  centrifugal  force  to  increase  the   velocity  of  water.  When  water  enters  the  pump  it  moves  through  an  impeller,   similar  to  a  propeller,  this  causes  the  water  to  start  spinning.  The  spinning  action   forces  the  water  to  be  pushed  against  the  pump  walls.  This  happens  through  the   means  of  the  centrifugal  force.  When  this  happens  the  water  picks  up  speed,   which  later  on  becomes  pressure  when  the  water  leaves  the  pump  (Ali,  2014).  A   centrifugal  pump  can  be  either  single-­‐stage  or  multi-­‐stage.  A  multi-­‐stage  

centrifugal  pump  has  several  stages   with  casings  and  impellers.  This   means  that  the  water  moves  from  one   casing  to  another,  which  makes  the   pressure  increase  at  every  stage.  The   advantage  of  a  multi-­‐stage  pump  is   that  it  can  achieve  higher  pressures   without  increasing  the  diameter  of  the   impeller  because  of  the  multiple   stages.  Compared  to  a  single-­‐stage   pump,  the  multi-­‐stage  pump  also   achieves  higher  efficiency  at  same   capacity  and  head  (Volk,  2005).      

From  the  selection  at  Lorentz  

(Lorentz,  2015)  and  Grundfos  (Grundfos,  2015),  the  centrifugal  pump  is  divided   into  two  groups:  

 

• Surface  pump   • Submersible  pump  

 

Figure  3:  Example  of  a  single  stage  centrifugal  pump   (Fantagu,  2008).  

(19)

Centrifugal  surface  pump  

This  pump  is  the  most  popular  choice  where  the  water  source  is  shallow  or   located  above  the  pump.  The  maximum  suction  lift  is  limited  by  the  atmospheric   pressure.  This  is  because  the  driving  force  that  forces  the  water  up  into  the   impeller  is  the  absolute  pressure  of  the  water  at  the  water  source  (Volk,  2005).   At  sea  level  the  absolute  pressure  of  the  water  is  approximately  101  kPa  

(Nationalencyklopedin).  This  means  theoretically,  if  the  impeller  could  create  a   perfect  vacuum,  the  maximum  suction  height  would  be  10.3  m  (1  kPa  equals   0.102  m  of  head).  In  reality,  the  height  of  suction  is  shorter  due  to  friction  losses   in  the  inlet  pipe  and  lack  of  perfect  vacuum  from  the  impeller.  The  maximum   height  of  suction  at  sea  level  is  usually  not  more  than  8  m.  This  limit  decreases  at   higher  elevations  due  to  lower  atmospheric  pressure.  Worth  mentioning  is  also   that  the  suction  head  should  be  kept  as  low  as  possible  to  maximize  the  

efficiency  of  the  pump  (Ali,  2014).  The  popularity  of  the  surface  pump  is  mainly   because  of  its  simplicity,  compactness  and  price.  It  is  the  cheapest  configuration   of  a  single-­‐stage  pump  and  is  the  most  common  solution  for  portable  pumps   (Volk,  2005).  

 

Submersible  pump  

The  submersible  pump  is  installed  completely  under  water  where  the  motor  and   the  pump  are  connected  as  one  single  unit.  The  typical  pump  used  in  wells  and   boreholes  are  often  shaped  as  a  long,  narrow  cylinder,  which  is  installed   vertically  in  the  well.  The  submersible  pump  has  the  big  advantage  that  it  does   not  rely  on  the  external  air  pressure,  which  makes  it  a  good  choice  where  the   water  source  is  below  the  suction  limit  and  high  heads  are  needed.  One  of  the   disadvantages  compared  to  a  surface  pump  is  when  there  is  a  problem  or  when   the  unit  needs  maintenance.  Usually  the  pump  needs  to  be  brought  up  to  the   surface,  which  can  be  a  large  operation  if  the  well  or  borehole  is  deep.  Therefore,   it  is  very  important  that  the  pump  is  designed  and  installed  correctly  to  minimize   these  problems  (Volk,  2005).  

 

Helical  rotor  pump  

The  helical  rotor  pump,  seen  in  Figure  4,  is  a  type  of  positive  displacement  pump.   In  a  positive  displacement  pump,  a  forced  flow  of  the  fluid  occurs  when  the   chamber,  that  is  enclosing  the  fluid,  changes  its  volume  (Volk,  2005).  A  helical   rotor  pump  uses  a  helix  

rotor,  rotating  in  a   double-­‐helix  stator.  

Between  the  rotor  and  the   stator,  occur  fixed-­‐size   cavities.  When  the  rotor   rotates,  the  cavities   moves  along  with  it;   however,  the  volume  and   shape  of  the  cavities  stays   the  same.  These  cavities   move  the  water  through   the  pump.  The  shape  of  a  

(20)

often  long,  thin  and  cylindrical,  which  makes  it  easy  to  fit  inside  boreholes  with  a   small  diameter.  The  working  mechanism  of  the  pump  also  makes  it  a  good  option   where  the  head  for  the  pump  will  change  over  time,  for  example  due  to  seasonal   changes  in  water  level.  This  is  because  the  flow  varies  very  little  with  change  in   head,  so  the  output  from  the  pump  will  not  change  (Fraenkel  &  Thake,  2006).  In   the  selection  at  Lorentz  and  Grundfos,  the  helical  rotor  pump  is  only  used  for   submersible  applications.  

 

Summarizing  

Which  pump  selected  for  the  specific  system  is  not  always  clear.  Several  pump   types  can  fit  the  system  configuration.  The  characteristics  for  the  pumps  have  to   be  investigated  in  the  pump  performance  curves  and  a  consideration  has  to  be   done  for  every  specific  system.  However,  a  rule  of  thumb  is  that:  

 

• Surface  centrifugal  pump  is  used  when  the  suction  limit  for  the  specific   location  is  not  exceeded.  

• Submersible  centrifugal  pump  is  used  for  low  heads  and  high  flow  rates.   • Submersible  helical  rotor  pump  is  used  for  high  heads  and  low  flow  rates.   (Morales  &  Busch,  2010)  

3.1.2  Solar  Water  Pumping  System  

A  SWPS  for  irrigation  usually  consists  of  four  main  components:    

• Solar  panel  

• Electrical  controller   • Electric-­‐powered  pump   • Water  tank  and/or  batteries  

Solar  Panel  

A  solar  panel  consists  of  multiple  solar  cells  built  in  series.  Each  cell  is  built  up  of   two  or  more  layers  of  a  semiconductor  material  that  produces  DC  power  when   exposed  to  sunlight.  The  most  common  type  of  solar  cells  on  the  market  consists   of  layers  of  crystalline  silicon.  They  generally  perform  an  efficiency  of  around  15   %.  The  solar  panels  come  in  different  sizes  with  different  power  outputs.  They   can  be  arranged  in  series,  parallel  or  both  depending  on  the  voltage  and  current   requirements  of  the  components  in  the  system.  When  solar  panels  are  arranged   in  series  the  voltage  output  will  be  the  sum  of  all  the  single  panels  voltage  output   while  the  current  stays  the  same.  When  arranged  in  parallel  it  is  the  opposite.   The  power  output  decreases  over  time  but  should  not  decrease  more  than  10  %   over  a  period  of  10  years  (Morales  &  Busch,  2010).  Also  worth  mentioning  is  that   prices  on  solar  panels  have  been  divided  by  five  between  2008  and  2014 (IEA, 2014).  

Electric  controller  

An  electrical  controller  is  an  important  component  of  a  SWPS.  The  electrical   controller’s  duty  is  to  control  the  electrical  power  from  panels  to  pump  and   provide  necessary  protection  in  the  system.  The  component  usually  has  a  main   switch  which  makes  it  possible  to  disconnect  the  solar  panels  from  the  system.   The  controller  can  also  switch  off  the  pump  when  there  is  not  sufficient  power  

(21)

produced  from  the  panels  to  reach  the  minimum  power  required  by  the  pump.   Furthermore,  the  controller  can  also  limit  the  power  to  the  pump  when  the   panels  produce  too  much  power  to  limit  the  pump  from  exceeding  its  maximum   speed  rate.  A  safety  device  for  preventing  the  pump  from  running  dry  under  low-­‐ water  conditions  can  also  be  included  in  the  controller  (Morales  &  Busch,  2010).  

Electric  powered  pump  

The  pumps  used  in  a  SWPS  are  usually  powered  by  DC  electric  motors.  This  is   primarily  because  solar  panels  provide  DC  output.  If  an  AC  motor  is  used,  a  more   complex  control  system  with  an  inverter  is  required.  This  provides  extra  costs  to   the  system  and  power  losses  due  to  the  efficiency  of  the  inverter.  Use  of  an  AC   motor  can  be  justified  if  the  solar  system  is  used  for  more  than  water  pumping   and  an  inverter  is  required  anyway;  for  example  household  electricity.  If  not,  a   DC  pump  should  be  the  recommended  choice.  The  type  of  pumps  used  for  a   specific  system  mostly  depends  on  the  water  requirements  and  type  of  water   source  (Morales  &  Busch,  2010).  

Water  storage  tank  and  batteries  

Normally,  there  are  two  ways  to  store  energy  in  a  SWPS:  water  storage  tanks  and   batteries.  Water  tanks  are  more  effective  and  less  expensive  than  batteries.  If   properly  maintained,  tanks  are  a  longer  lasting  and  less  complex  option  (Morales   &  Busch,  2010).  

 

“Remember,  the  first  goal  of  a  solar-­‐powered  water  pump  system  is  to  store  water,   not  electricity.”  (Morales  &  Busch,  2010)  

 

A  water  storage  tank  stores  potential  energy  and  is  often  the  best  way  to  store   energy  produced  by  solar  panels.  The  tank  is  used  to  store  water  from  the  sunny   days,  when  the  energy  production  is  high,  to  days  where  the  energy  production   is  low;  for  example,  cloudy  days  or  days  of  system  malfunction.  Preferable,  the   amount  of  stored  water  should  be  enough  to  satisfy  the  water  needs  for  at  least   three  days,  depending  on  the  location’s  climate.  The  tank  shall  be  elevated  to   provide  enough  gravity-­‐induced  pressure  to  distribute  the  water  to  the  field.  The   material  and  structure  should  be  UV-­‐resistant  in  order  to  maximize  its  life  span   (Morales  &  Busch,  2010).    

 

Batteries  can  be  used  to  store  energy  from  periods  of  high  insolation  to  periods   of  lower  insolation,  when  the  produced  energy  from  the  solar  panels  is  not   enough  to  power  the  pump.  A  controller  unit  must  regulate  the  battery  charge   and  discharge  to  prevent  battery  failure  (Morales  &  Busch,  2010).    

3.1.3  Designing  a  Small-­‐Scale  Solar  Water  Pumping  System  

When  designing  a  small-­‐scale  SWPS  there  are  several  aspects  to  consider.  These   aspects  can  be  divided  into  11  steps  to  simplify  the  understanding  of  the  design.   The  11  steps  can  be  seen  in  Table  1.  

(22)

   

Table  1:  Steps  for  designing  a  solar  water  pumping  system  (Morales  &  Busch,  2010).   Step  1   Water  requirement  

Step  2   Type  of  water  source  

Step  3   Water  storage  

Step  4   System  layout  

Step  5   Insolation  and  solar  panel  location  

Step  6   Designed  flow  rate  for  the  pump  

Step  7   Total  dynamic  head  for  the  pump  

Step  8   Pump  selection  

Step  9   Solar  panel  selection  and  array  layout  

Step  10   Delivery  point  pressure  

Step  11   Summary  of  the  system    

Step  1  –  Water  requirements  

The  first  thing  to  consider  when  designing  a  SWPS  is  to  determine  the  water   requirement.  When  designing  a  system  for  irrigation,  the  average  water   requirement  for  the  crops  grown  on  the  field  can  be  used  to  determine  this   factor.  This  requirement  differs  depending  on  the  location.  Therefore,  the  crop   water  requirement  should  be  investigated  for  the  specific  location  where  the   system  is  being  installed.  In  addition,  when  the  implementation  of  crop  rotation   is  used,  the  crop  with  the  highest  water  demand  should  be  used  for  the  design   (Morales  &  Busch,  2010).  

Step  2  –  Type  of  water  source  

This  step  is  important  to  determine  what  type  of  pump  that  fits  the  system  best   and  to  find  out  if  the  source  can  handle  the  water  requirement.  The  first  thing  to   determine  is  what  type  of  water  source  that  will  be  used  in  the  system.  Common   sources  are:  well,  borehole,  river  and  spring.  The  next  step  is  to  determine  the   properties  of  the  source.  Important  factors  to  consider  are:  static  water  level,   dynamic  water  level  and  quality  of  water  (Morales  &  Busch,  2010).  

 

• Static  water  level:  

The  distance  from  the  surface  of  the  water  to  the  top  of  the  well.  This  can   be  measured  when  there  is  no  pumping  from  the  source  and  the  water  is   given  time  to  be  refilled.  The  static  water  level  can  change  over  time  and   depending  on  season  (Morales  &  Busch,  2010).  

 

• Dynamic  water  level:  

The  distance  from  the  top  of  the  well  to  the  surface  of  the  water  when  the   pump  is  running.  The  water  level  will  typically  descend  when  the  pump  is   running.  Depending  on  the  size  and  refilling  rate  of  the  source,  the  water   can  descend  several  meters.  If  there  is  question  about  the  capacity  of  the   source,  a  test  of  the  dynamic  water  level  should  be  performed.  This  can  be   done  through  a  pumping  test.  The  test  is  usually  performed  by  pumping  

(23)

water  from  the  source  with  several  pumping  rates.  From  the  test,  the   capacity  of  the  source  can  be  determined.  It  is  important  to  not  exceed  the   capacity  of  the  source.  This  can  lead  to  the  pump  running  dry  and  risking   severe  damage  (Ali,  2014).  

 

• Quality  of  water:  

The  quality  of  water  in  the  source.  This  is  more  important  when  water  is   used  for  human  consumption  rather  than  irrigation  purposes.  However,  if   there  is  suspicions  that  the  water  is  contaminated,  a  water  quality  test   should  be  performed  to  determine  the  content  in  the  water  (Morales  &   Busch,  2010).  

Step  3  –  Water  storage  

In  a  small-­‐scale  SWPS,  water  is  usually  stored  in  a  water  tank.  A  tank  is,  as   previously  mentioned,  often  the  most  economical  and  simplest  way  to  store   water  in  a  small-­‐scale  SWPS.  The  tanks  volume  should  be  able  to  hold  at  least   three  days  of  the  daily  water  requirement.  If  the  daily  water  requirement  is   large,  multiple  tanks  can  be  connected  together  for  storage.  

Step  4  –  System  layout  

Designing  a  sketch  of  the  system  layout  is  important  to  get  a  picture  of  the   system.  The  sketch  should  include  where  the  different  components  should  be   located.  It  should  also  include  the  elevations  and  distance  between  the  

components.  The  components  typically  included  are:     • Water  source   • Pump   • Solar  panel   • Storage  tank   • Pipelines  

(Morales  &  Busch,  2010)  

Step  5  –  Insolation  and  solar  panel  location  

Data  that  shows  the  available  insolation  should  be  collected  for  the  location.  This   can  be  done  through  several  insolation  data  programs  on  the  Internet.  These   programs  usually  show  the  daily  and  monthly  insolation  from  different  

measuring  stations  around  the  world.  One  example  of  an  insolation  program  is   PVGIS,  a  free  program  made  by  the  Joint  Research  Center  from  the  European   commission  (Joint  Research  Centre,  2014).  Another  option  is  to  contact  a   qualified  expert  in  the  area,  who  can  measure  the  insolation  on  site,  to  get  the   exact  values  for  the  selected  location  (Morales  &  Busch,  2010).  The  average   monthly  insolation  used  in  this  study  can  be  seen  in  Table  2.  

 

Table  2:  Monthly  insolation  in  Moshi,  Tanzania  (Joint  Research  Centre,  2015).  

Optimal  azimuth  =  327°,  Optimal  angle    =  1°  

Month   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  

Peak  sun   hours  

6.5   6.5   6.7   5.2   4.5   4.1   4.4   5.0   6.0   6.3   6.1   6.1  

(24)

The  angle  and  direction  of  the  panels  should  also  be  considered  in  order  to   maximize  their  production.  If  the  panels  are  fixed  and  used  for  year  round   applications,  the  angle  and  direction  should  be  a  mean  value  of  the  yearly  

direction  of  the  maximum  solar  irradiance.  Furthermore,  it  is  important  that  the   location  of  the  solar  panels  does  not  have  any  significant  shadowing  during  the   day  in  order  to  get  full  sun  exposure  (Morales  &  Busch,  2010).  

Step  6  –  Designed  flow  rate  for  the  pump  

The  flow  rate,  which  the  pump  is  designed  for,  is  based  on  the  peak  sun  hours  for   the  chosen  design  month  and  the  daily  water  demand.  There  are  several  ways  to   choose  the  design  month  for  the  system.  However,  the  most  common  way  is  to   design  after  the  month  with  the  least  amount  of  insolation.  The  reason  is  to   ensure  that  the  system  is  not  undersized  for  any  month  of  the  year  (Morales  &   Busch,  2010).    

 

The  designed  flow  rate  for  the  pump  can  be  calculated  from  Equation  1.    

  𝐷𝑒𝑠𝑖𝑔𝑛𝑒𝑑  𝑓𝑙𝑜𝑤  𝑟𝑎𝑡𝑒  𝑓𝑜𝑟  𝑝𝑢𝑚𝑝 =𝐷𝑎𝑖𝑙𝑦  𝑤𝑎𝑡𝑒𝑟  𝑑𝑒𝑚𝑎𝑛𝑑

𝑃𝑒𝑎𝑘  𝑠𝑢𝑛  ℎ𝑜𝑢𝑟𝑠  

(1)    

Step  7  –  Total  dynamic  head  for  the  pump  (TDH)  

TDH  for  a  pump  is  the  sum  of  the  vertical  lift,  pressure  head  and  friction  losses.      

• Vertical  lift:  

The  vertical  distance  from  water  surface  at  the  source  and  water  surface   in  the  tank.  As  previously  stated,  the  water  level  in  the  source  can  change   depending  on  season  and  usually  change  when  the  pump  is  running.  The   vertical  lift  should  therefore  be  designed  for  the  time  when  the  water   level  in  the  source  is  at  its  minimum.  

 

• Pressure  head:  

The  pressure  at  the  delivery  point  in  the  tank.  If  the  delivery  point  is  on   the  top  of  the  tank,  this  parameter  can  be  set  to  0.  

 

• Friction  loss:  

Pressure  losses  due  to  friction  in  the  pipes.  This  parameter  is  determined   through  four  factors:  inner  diameter,  length  and  roughness  of  pipe  as  well   as  flow  rate  of  the  water.  The  friction  losses  can  be  obtained  from  a  

friction  loss  chart/table  for  the  selected  pipe.   (Morales  &  Busch,  2010)  

 

Vertical  lift  can  be  calculated  from  Equation  2:    

  𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙  𝑙𝑖𝑓𝑡 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐  𝐻𝑒𝑎𝑑 + 𝑇𝑎𝑛𝑘  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑎𝑛𝑘  𝐻𝑒𝑖𝑔ℎ𝑡   (2)  

 

When  using  a  friction  loss  table,  seen  in  Appendix  C,  length  of  pipe  and  flow  rate   have  to  be  known.  Length  of  pipe  is  calculated  from  Equation  3.  A  preferable   diameter  of  the  pipe  is  selected  from  the  table.  A  smaller  diameter  equals  more  

References

Related documents

In the theory part (Sec- tion 2), we first establish the theory of Nominal Logic (Section 2.1), next, the theory of Psi-calculi (Section 2.2) and the symbolic operational

The process of adaptation will also be analyzed in terms of building adaptive capacity and implementing adaptive decisions in order to examine the adaptation that is taking place,

For example, allowing broadcast channels to have non-empty support would let us hide broadcast actions, routing tables could be made local by including a scoped name per node, and

For exam- ple, allowing broadcast channels to have non-empty support would let us hide broadcast actions, routing tables could be made local by including a scoped name per node,

Resultatet visar dock att trots att socialarbetarna inte anser sig identifiera ADHD har vissa av dem ändå delvis anpassat behandlingen och bemötandet för

with the conditioned PER as the response variable, and US reward, odor, previous scent–reward experience, and trial as fixed factors. We used individual bee as a

This work is concerned with the transition to turbulence of the flow in bent pipes, but it also includes an analysis of large-scale turbulent structures and their use for flow

[r]