• No results found

Power MOSFET

N/A
N/A
Protected

Academic year: 2022

Share " Power MOSFET"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

IRL530N

HEXFET

®

Power MOSFET

S D

G

V

DSS

= 100V R

DS(on)

= 0.10Ω

I

D

= 17A

TO-220AB

1/09/04

Parameter Max. Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 17

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 A

IDM Pulsed Drain Current  60

PD @TC = 25°C Power Dissipation 79 W

Linear Derating Factor 0.53 W/°C

VGS Gate-to-Source Voltage ± 16 V

EAS Single Pulse Avalanche Energy‚ 150 mJ

IAR Avalanche Current 9.0 A

EAR Repetitive Avalanche Energy 7.9 mJ

dv/dt Peak Diode Recovery dv/dt ƒ 5.0 V/ns

TJ Operating Junction and -55 to + 175

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (1.6mm from case )

°C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)

Absolute Maximum Ratings

Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 1.9

RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient ––– 62

Thermal Resistance Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

l

Logic-Level Gate Drive

l

Advanced Process Technology

l

Dynamic dv/dt Rating

l

175°C Operating Temperature

l

Fast Switching

l

Fully Avalanche Rated

(2)

IRL530N

Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.122 ––– V/°C Reference to 25°C, ID = 1mA ––– ––– 0.100 VGS = 10V, ID = 9.0A „ ––– ––– 0.120 Ω VGS = 5.0V, ID = 9.0A „ ––– ––– 0.150 VGS = 4.0V, ID = 8.0A „ VGS(th) Gate Threshold Voltage 1.0 ––– 2.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 7.7 ––– ––– S VDS = 25V, ID = 9.0A

––– ––– 25

µA VDS = 100V, VGS = 0V

––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100

nA VGS = 16V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -16V

Qg Total Gate Charge ––– ––– 34 ID = 9.0A

Qgs Gate-to-Source Charge ––– ––– 4.8 nC VDS = 80V

Qgd Gate-to-Drain ("Miller") Charge ––– ––– 20 VGS = 5.0V, See Fig. 6 and 13 „

td(on) Turn-On Delay Time ––– 7.2 ––– VDD = 50V

tr Rise Time ––– 53 –––

ns ID = 9.0A

td(off) Turn-Off Delay Time ––– 30 ––– RG = 6.0Ω, VGS = 5.0V

tf Fall Time ––– 26 ––– RD = 5.5Ω, See Fig. 10 „

Between lead, 6mm (0.25in.) from package

and center of die contact

Ciss Input Capacitance ––– 800 ––– VGS = 0V

Coss Output Capacitance ––– 160 ––– pF VDS = 25V

Crss Reverse Transfer Capacitance ––– 90 ––– ƒ = 1.0MHz, See Fig. 5

 Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

‚ Starting TJ = 25°C, L = 3.7mH RG = 25Ω, IAS = 9.0A. (See Figure 12) .

Notes:

Electrical Characteristics @ T

J

= 25°C (unless otherwise specified)

nH IGSS

S D

G

LS Internal Source Inductance ––– 7.5 –––

RDS(on) Static Drain-to-Source On-Resistance

LD Internal Drain Inductance ––– 4.5 –––

IDSS Drain-to-Source Leakage Current

ƒISD ≤ 9.0A, di/dt ≤ 540A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C

„ Pulse width ≤ 300µs; duty cycle ≤ 2%

S D

G

Parameter Min. Typ. Max. Units Conditions

IS Continuous Source Current MOSFET symbol

(Body Diode) ––– –––

showing the

ISM Pulsed Source Current integral reverse

(Body Diode) † ––– –––

p-n junction diode.

VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 9.0A, VGS = 0V „ trr Reverse Recovery Time ––– 140 210 ns TJ = 25°C, IF = 9.0A

Qrr Reverse RecoveryCharge ––– 740 1100 nC di/dt = 100A/µs„

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Source-Drain Ratings and Characteristics

A 17 60

(3)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature

Fig 2. Typical Output Characteristics

0.1 1 1 0 1 0 0

0.1 1 1 0 1 0 0

I , Drain-to-Source Current (A)D

V , D rain-to-S ource V oltage (V )D S A 2 0µ s P U LS E W ID T H T = 2 5°CJ

VGS TOP 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V

2 .5V

0.1 1 1 0 1 0 0

0.1 1 1 0 1 0 0

I , Drain-to-Source Current (A)D

V , D rain-to-S ource V oltage (V )D S A 2 0µ s P U LS E W ID T H T = 1 75 °C

VGS TOP 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V

2.5 V

J

0 . 1 1 1 0 1 0 0

2 3 4 5 6 7 8 9 1 0

T = 2 5 °CJ

V , G ate-to -S o urce V oltag e (V )G S

DI , Drain-to-Source Current (A)

V = 5 0V

2 0µ s P U L S E W ID TH T = 1 7 5°CJ

A DS

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

T , J unc tion T em perature (°C )J R , Drain-to-Source On ResistanceDS(on) (Normalized)

V = 1 0V G S A I = 15 AD

(4)

IRL530N

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 8. Maximum Safe Operating Area Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage

0 3 6 9 1 2 1 5

0 1 0 2 0 3 0 4 0 5 0

Q , T otal G ate C harge (nC )G V , Gate-to-Source Voltage (V) GS

V = 8 0V V = 5 0V V = 2 0V

D S D S D S

A F O R TE S T C IR C U IT S E E F IG U R E 1 3 I = 9.0 AD

1 1 0 1 0 0

0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4

T = 2 5°CJ

V = 0V G S

V , S o urc e-to -D ra in V o lta ge (V )

I , Reverse Drain Current (A)

S D

SD

A T = 17 5°CJ

1 1 0 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0 0 0

V , D rain-to-S ource V oltage (V )D S

I , Drain Current (A)

O P E R A T IO N IN T H IS A R E A LIM IT E D B Y R

D

D S (o n )

1 0 µ s

1 0 0 µ s

1 m s

1 0 m s

A T = 25 °C

T = 17 5°C S ing le P u ls e

C J 0

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

1 1 0 1 0 0

C, Capacitance (pF)

V , D rain-to-S ourc e V oltage (V )D S A V = 0V , f = 1 M H z

C = C + C , C S H O R TE D C = C

C = C + C G S

iss g s g d d s rs s g d

o ss ds g d

C is s

C os s C rs s

(5)

0.01 0.1 1 10

0.00001 0.0001 0.001 0.01 0.1 1

Notes:

1. Duty factor D = t / t

2. Peak T = P x Z + T

1 2

J DM thJC C

P

t t DM

1 2

t , Rectangular Pulse Duration (sec)

Thermal Response(Z )

1

thJC

0.01 0.02 0.05 0.10 0.20 D = 0.50

SINGLE PULSE (THERMAL RESPONSE)

Fig 9. Maximum Drain Current Vs.

Case Temperature

Fig 10a. Switching Time Test Circuit

VDS 90%

10%

VGS

td(on) tr td(off) tf

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

VDS

Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %

RD

VGS

RG

D.U.T.

5.0V

+

-VDD

25 50 75 100 125 150 175

0 5 10 15 20

T , Case Temperature ( C)

I , Drain Current (A)

C °

D

(6)

IRL530N

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

VDS L

D.U.T.

VDD

IAS

tp 0.01Ω

RG +

-

tp

VDS

IAS

VDD V(BR)DSS

5.0 V

QG

QGS QGD

VG

Charge

Fig 13a. Basic Gate Charge Waveform

D.U.T. VDS

ID IG

3mA VGS

.3µF 50KΩ 12V .2µF

Current Regulator Same Type as D.U.T.

Current Sampling Resistors

+ -

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit 5.0 V

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0

2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5

J E , Single Pulse Avalanche Energy (mJ)AS

A S tarting T , J unc tion T em perature (°C ) V = 25 V

I TO P 3 .7A 6 .4A B O T T O M 9.0 A

D D

D

(7)

P.W. Period

di/dt Diode Recovery

dv/dt

Ripple ≤5%

Body Diode Forward Drop Re-Applied

Voltage Reverse Recovery

Current Body Diode Forward

Current

VGS=10V

VDD

ISD Driver Gate Drive

D.U.T. ISDWaveform

D.U.T. VDSWaveform

Inductor Curent

D = P.W.

Period

+ - +

+

- + -

-

Fig 14. For N-Channel HEXFETS

*

VGS = 5V for Logic Level Devices

Peak Diode Recovery dv/dt Test Circuit

ƒ

‚ „

RG

VDD

• dv/dt controlled by RG

• Driver same type as D.U.T.

• ISD controlled by Duty Factor "D"

• D.U.T. - Device Under Test D.U.T Circuit Layout Considerations

• Low Stray Inductance • Ground Plane

• Low Leakage Inductance Current Transformer



*

(8)

IRL530N

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

(;$03/(

,17+($66(0%/</,1(&

7+,6,6$1,5)

/27&2'(

$66(0%/('21:: 3$57180%(5

$66(0%/<

/27&2'(

'$7(&2'(

<($5 

/,1(&

:((.

/2*2 5(&7,),(5 ,17(51$7,21$/

Note: "P" in assembly line position indicates "Lead-Free"

LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN - B -

1.32 (.052) 1.22 (.048)

3X0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185)

4.20 (.165)

3X 0.93 (.037) 0.69 (.027)

4.06 (.160) 3.55 (.140) 1.15 (.045) MIN 6.47 (.255) 6.10 (.240)

3.78 (.149) 3.54 (.139) - A - 10.54 (.415)

10.29 (.405) 2.87 (.113)

2.62 (.103)

15.24 (.600) 14.84 (.584)

14.09 (.555) 13.47 (.530)

3X1.40 (.055) 1.15 (.045)

2.54 (.100) 2X

0.36 (.014) M B A M 4

1 2 3

NOTES:

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.

2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

HEXFET 1- GATE 2- DRAIN 3- SOURCE 4- DRAIN

LEAD ASSIGNMENTS IGBTs, CoPACK 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR

EXAMPLE:

INTHE ASSEMBLYLINE"C"

THIS IS ANIRF1010 LOT CODE 1789

ASSEMBLEDONWW19, 1997 PART NUMBER

ASSEMBLY LOT CODE

DATECODE YEAR7 = 1997

LINE C WEEK19 LOGO

RECTIFIER INTERNATIONAL

For GB Production

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/04 TO-220AB package is not recommended for Surface Mount Application.

References

Related documents

There it was showed that sequential accident models promote a passive, retrospective approach to prevention, whereas systemic models promote a more integrated approach with a

Enligt Andersson (2009) kan good governance ses som ett “helhetskoncept för samhällsstyrning” (s. 60) och vi menar att UNDP avser att bekämpa korruption just genom ett

när han visar hur alkemistisk färgsymbolik går igen i romanen (s. Och hans tolkning av alkemiens roll i boken är säkert riktigare än både Ekners och En­

The rate constant has been found decrease exponentially with the driving force (energy gap law [40]). In the M.I.R., nuclear tunnelling between the reactant and product state

We conduct large-scale cellular trace-driven experiments com- paring different opportunistic network coded data dissemi- nation strategies and different cache seeding strategies

För att förstå och kunna bemöta dem på ett värdigt sätt är det viktigt att ha kunskap om vilka följder långvarig smärta kan ha på människors aktivitet i det dagliga

The aim of the study is twofold: first and foremost to gain a deeper understanding of how multilingual children perceive the functions of their mother tongue and the

För Top-5% divideras I:s andel dokument bland de 5% högst citerade dokumenten, med avseende de ämneskategorier till vilka I:s dokument hör, med en förväntad andel (approximativt 0,05,