• No results found

EFT of Gravity and Cosmologywork with:

N/A
N/A
Protected

Academic year: 2022

Share "EFT of Gravity and Cosmologywork with:"

Copied!
66
0
0

Loading.... (view fulltext now)

Full text

(1)

Alessandro Codello

EFT of Gravity and Cosmology

work with:

J Joergensen, F Sannino, O Svendsen R Percacci, A Tonero, L Rachwal

R K Jain

Probing the fundamental

nature of spacetime with the RG

NORDITA, Stockholm 23-27 March 2015

(2)

Effectivity vs Universality

Example: EFT of Pions (CPT)

Covariant EFT of Gravity in three lines

Renormalization in different schemes

Phenomenological parameters and their estimation

Adding matter

LO quantum corrections

Marginally deformed Starobinsky

Effective Friedmann equations

Outline of the talk

(3)

Effectivity vs Universality

theory space Universality

describes the massless IR

Effective field theories

describe the massive IR

Two main reasons why mathematical modeling of nature actually works

(4)

Effectivity vs Universality

theory space Universality

describes the massless IR

Effective field theories

describe the massive IR

Massive IR lies in the broken phase (G to G/H) Characteristic large scale at which G is brokenM

(5)

The theory of pions (CPT)

Low energy QCD can be described by an EFT of pions

Symmetry braking pattern

is the pion decay constant

Phenomenological parameters to be fixed by experiments ( )

Renormalization and scale dependence

Low energy expansion of physical quantities A(E) = E2

M2

1 + C1l1 E2

M2 + C2l2 E2 M2

+ ...

li1) = li2) + γi

(4π)2 log µ1 µ2 li

M Fπ ∼ 102 MeV

i = 1, 2 SU (2)L × SU(2)R → SU(2)V

(6)

The theory of small fluctuations of the metric

Planck’s scale is the characteristic scale of gravity

Classical theory (CT) is successful over many orders of magnitude

EFT of Gravity

gµν → gµν + √

16πGhµν = gµν + 1

M hµν

M ≡ 1

√16πG = MP lanck

√16π

MP lanck = 1

√G = 1.2 × 1019 GeV

(7)

EFT of Gravity

Sef f[g] =

d4x√ g

M4c0 + M2(−R) + c2,1R2 + c2,2Ric2 + c2,3Riem2 + 1

M2 c3,1R3 + ...

(8)

EFT of Gravity

Sef f[g] =

d4x√ g

M4 c0

����

R0

+M2 (−R)

� �� �

R

+ c2,1R2 + c2,2Ric2 + c2,3Riem2

� �� �

R2

+ 1

M2 c3,1R3 + ...

� �� �

R3



(9)

EFT of Gravity

Sef f[g] =

d4x√ g

M4 c0

����

R0

+M2 (−R)

� �� �

R

+ c2,1R2 + c2,2Ric2 + c2,3Riem2

� �� �

R2

+ 1

M2 c3,1R3 + ...

� �� �

R3



≡ M2

I1[g] + 1

M2 I2[g] + 1

M4 I3[g] + ...

m2 = −2Λ

(10)

Covariant EFT of Gravity

EFT: saddle point expansion in 1 M2

e

−Γ[g]

=

1P I

Dh

µν

e

−Sef f[g+ M1 h]

=

1P I

Dh

µν

e

−M2

{

I1[g+ M1 h]+ M 21 I2[g+ M1 h]+...

}

(11)

Covariant EFT of Gravity

LO

NLO CT

NNLO Γ[g] = I1[g]

+ 1 M2

I2[g] + 1

2Tr log I1(2)[g]

+ 1 M4

I3[g] + 1

2Tr ��

I1(2)[g]�−1

I2(2)[g]

+ 2-loops with I1[g]

+ . . .

EFT: saddle point expansion in 1 M2

(12)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

NNLO

I1

I2

I3

(13)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

NNLO

1) the general lagrangian of order is to be used both at tree level and in loop diagrams

2) the general lagrangian of order is to be used at tree level and as an insertion in loop diagrams

3) the renormalization program is carried out order by order

E2 En≥4

The EFT recipe in three lines

I1

I2

I3

(14)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

NNLO What do we already know?

UV divergencies and renormalization

G. ’t Hooft and M. J. G. Veltman, Annales Poincare Phys. Theor. A 20 (1974) 69 G. W. Gibbons, S. W. Hawking and M. J. Perry, Nucl. Phys. B 138 (1978) 141 S. M. Christensen and M. J. Duff, Nucl. Phys. B 170 (1980)

(15)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

NNLO

Two loops UV divergencies

M.H. Goroff and A. Sagnotti, Nucl.Phys.B266, 709 (1986) A. E. M. van de Ven, Nucl. Phys. B378, 309 (1992)

What do we already know?

(16)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

Finite LO terms NNLO

Leading logs

J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)

A. C., J. Joergensen, F. Sannino and O. Svendsen, JHEP 1502 (2015) 050

Conformal anomaly

S. Deser, M. J. Duff and C. J. Isham, Nucl. Phys. B 111, 45 (1976) R.J. Riegert, Phys. Lett. B 134 (1984) 56

Four graviton vertex in Minkowski space

D. C. Dunbar and P. S. Norridge, Nucl. Phys. B 433, 181 (1995)

Curvature square terms

A. C. and R. K. Jain, in preparation

What do we already know?

(17)

Covariant EFT of Gravity

Γ =

� + 1

+ 1 2 M

2

� + 1

2 − 1

12 + 1 + 1 8

M

4

+ . . .

LO

NLO CT

NNLO LOQG: the only QG we will ever observe!

Even if we have a fundamental theory its is generally difficult to compute phenomenological parameters...

(18)

Renormalization

= 1 2

1 (4π)2

d4x√ g

Λ4U V − 10Λ2U V m2 + 5m4 log Λ2U V m2 +

−23

3 Λ2U V + 13

3 m2 log Λ2U V m2

� R +

� 7

20C2 + 1

4R2 + 149

180E − 19

15�R�

log Λ2U V m2

� Cutoff regularization

m2 = −2Λ

measured

+ phenomenological parameters

(19)

Renormalization

= 1 2

1 (4π)2

d4x√ g

Λ4U V − 10Λ2U V m2 + 5m4 log Λ2U V m2 +

−23

3 Λ2U V + 13

3 m2 log Λ2U V m2

� R +

� 7

20C2 + 1

4R2 + 149

180E − 19

15�R�

log Λ2U V m2

� Cutoff regularization

m2 = −2Λ

Dimensional regularization

log Λ2U V → 1

� Λ2U V → 0 Λ4U V → 0

measured

+ phenomenological parameters

(20)

Renormalization

= 1 2

1 (4π)2

d4x√ g

Λ4U V − 10Λ2U V m2 + 5m4 log Λ2U V m2 +

−23

3 Λ2U V + 13

3 m2 log Λ2U V m2

� R +

� 7

20C2 + 1

4R2 + 149

180E − 19

15�R�

log Λ2U V m2

� Cutoff regularization

m2 = −2Λ

G runs if there is a mass scale involved also in dimensional regularization [Kirill’s talk]

Dimensional regularization

log Λ2U V → 1

� Λ2U V → 0 Λ4U V → 0

ci1) = ci2) + γi

(4π)2 log µ1

µ2 µ∂µci = γi (4π)2

measured

+ phenomenological parameters

(21)

Phenomenological parameters

Cavendish 1797 (1% off best value!) G = 6.67428 × 10−11m3kg−1s−2

(22)

Phenomenological parameters

Supernova Cosmology Project Λ = 10−47 GeV4

(23)

Planck mission [Alfio’s talk]

Phenomenological parameters

ξ(k) ∼ 109 k ≡ 0.05 Mpc−1 ∼ 10−40GeV ξ ≡ cR2

(24)

Adding matter

Γ =

� + 1

2 + 1

M

2

� + 1

+ 2 + . . .

LO

NLO CT

(25)

Adding matter

Γ =

� + 1

2 + 1

M

2

� + 1

+ 2 + . . .

LO

NLO CT

UV divergencies and renormalization with matter

Scalars

A. O. Barvinsky, A. Y. .Kamenshchik and I. P. Karmazin, Phys. Rev. D 48 (1993) 3677 ...

Gauge

S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006) ...

Yukawa

A. Rodigast and T. Schuster, Phys. Rev. Lett. 104, 081301 (2010) ...

(26)

Adding matter

Γ =

� + 1

2 + 1

M

2

� + 1

+ 2 + . . .

LO

NLO CT

Finite LO terms with matter

Flat space corrections to Newton’s potential

J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)

N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein (2003b) Phys. Rev. D 67 I.B. Khriplovich, G.G. Kirilin (2004) J. Exp. Theor. Phys. 98, 1063-1072

Covariant leading logs

A C, R Percacci, L Rachwal and A Tonero in preparation

(27)

Adding matter

Γ =

� + 1

2 + 1

M

2

� + 1

+ 2 + . . .

LO

NLO CT

Matter induced effective action

(28)

Integrating out matter

= −1 2

1 (4π)2

n=d2+1

1

m2n−d B2n 1

2

Matter induced effective action:

expandable in inverse powers of the (lightest) particle masse Local heat kernel coefficients

B6

Gilkey, PB

A. O. Barvinsky and G. A. Vilkovisky, Phys. Rept. 119 (1985) 1.

I. G. Avramidi, Lect. Notes Phys. M 64 (2000) 1.

Groh, Kai Saueressig, Frank Zanusso, Omar

B8

Amsterdamski, P Ven, AEM Van de

(29)

Integrating out matter

= −1 2

1 (4π)2

1

m2 B6 + ...

1 2

As in QED when we integrate out electrons

(30)

Integrating out matter

= −1 2

1 (4π)2

1 m2

d4x√ g

� 1

336R�R + 1

840Rµν�Rµν + 1

1296R3 − 1

1080RRµνRµν − 4

2835RµνRαν Rµα + 1

945RµνRαβRµανβ + 1

1080RRµναβRµναβ + 1

7560RµνRµαβγRναβγ + 17

45360RµναβRαβγδRγδµν − 1

1620Rα βµ νRµ νγ δRγ δα β

+ . . . 1

2

1

M4 → 1 m2M2

Changes how cubic terms are suppressed:

(31)

Integrating out matter

= −1 2

1 (4π)2

1 m2

d4x√ g

� 1

336R�R + 1

840Rµν�Rµν + 1

1296R3 − 1

1080RRµνRµν − 4

2835RµνRαν Rµα + 1

945RµνRαβRµανβ + 1

1080RRµναβRµναβ + 1

7560RµνRµαβγRναβγ + 17

45360RµναβRαβγδRγδµν − 1

1620Rα βµ νRµ νγ δRγ δα β

+ . . . 1

2

The same can be applied to and with some modifications to and thus find

(32)

Corrections to Newton’s interaction

(33)

2

Pαβ,γδ

kµkν + (k − q)µ(k − q)ν + qµqν 3

2ηµνq2

+2qλqσ

Iλσ,αβIµν,γδ + Iλσ,γδIµν,αβ − Iλµ,αβIσν,γδ − Iσν,αβIλµ,γδ +

qλqµ

ηαβIλν,γδ + ηγδIλν,αβ

+ qλqν

ηαβIλµ,γδ + ηγδIλµ,αβ

−q2

ηαβIµν,γδ + ηγδIµν,αβ

− ηµνqλqσ αβIγδ,λσ + ηγδIαβ,λσ) +

2qλ

Iσν,αβIγδ,λσ(k − q)µ + Iσµ,αβIγδ,λσ(k − q)ν

−Iσν,γδIαβ,λσkµ − Iσµ,γδIαβ,λσkν +q2

Iσµ,αβIγδ,σν + Iαβ,σνIσµ,αδ

+ ηµνqλqσ

Iαβ,λρIρσ,γδ + Iγδ,λρIρσ,αβ��

+

k2 + (k − q)2

Iσµ,αβIγδ,σν + Iσν,αβIγδ,σµ 1

2ηµνPαβ,γδ

k2ηγδIµν,αβ + (k − q)2ηαβIµν,γδ���

=

the truth behind Feynman diagrams...

Corrections to Newton’s interaction

(34)

V = − GM m r

� 1 + a G(M + m)

c

2

r + b G �

c

3

r

2

+ · · · �

Corrections to Newton’s interaction

(35)

V = − GM m r

� 1 + a G(M + m)

c

2

r + b G �

c

3

r

2

+ · · · � [G] = m

3

Kg s

2

[ �] = m

2

Kg

s [c] = m

s

Corrections to Newton’s interaction

(36)

Leading quantum corrections to Newton’s potential

J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)

V = − GM m r

� 1 + 3 G(M + m)

c

2

r + 41 10π

G �

c

3

r

2

+ · · · �

Corrections to Newton’s interaction

(37)

GM

c

2

r

∼ 10

−6

G �

c

3

r

2

∼ 10

−88

Leading quantum corrections to Newton’s law are incredibly small!

sun

Corrections to Newton’s interaction

(38)

Maybe there are some inside here...

Can we ever observe

quantum gravity effects?

(39)

LO quantum corrections

+ 1

2

=

1 2(4π)2

d4x√

g R

α log R

µ2 + β log −�

µ2

R + ...

Non-analytical vs non-local

(40)

LO quantum corrections

+ 1

2

=

1 2(4π)2

d4x√

g R

α log R

µ2 + β log −�

µ2

R + ...

Non-analytical vs non-local

Obtain finite part from beta functions (physical running)

2R ∂R = −µ ∂µ 2q2q2 = −µ ∂µ

(41)

LO quantum corrections

+ 1

2

=

1 2(4π)2

d4x√

g R

α log R

µ2 + β log −�

µ2

R + ...

Non-analytical vs non-local

Obtain finite part from beta functions (physical running)

2R ∂R = −µ ∂µ 2q2q2 = −µ ∂µ

As in QED

(42)

LO quantum corrections

+ 1

2

=

1 2(4π)2

d4x√

g R

α log R

µ2 + β log −�

µ2

R + ...

Non-analytical vs non-local

Obtain finite part from beta functions (physical running)

2R ∂R = −µ ∂µ 2q2q2 = −µ ∂µ

C = NS

72 minimally coupled scalars C = 1

4 EFT gravity C = 5

36 HDG

α = C 4(4π)2

α = β A topology must be

chosen...

(43)

Marginally deformed Starobinsky

+ 1

2

=

1 2(4π)2

d4x√

g R h

� R µ2

R + ...

(44)

Marginally deformed Starobinsky

R ∂Rh = − C

2(4π)2 h(R/µ2) = log R/µ2 One loop flow equation

+ 1

2

=

1 2(4π)2

d4x√

g R h

� R µ2

R + ...

(45)

Marginally deformed Starobinsky

R ∂Rh = − C

2(4π)2 h h(R) = h(R0)

� R R0

C

2(4π)2

+ 1

2

=

1 2(4π)2

d4x√

g R h

� R µ2

R + ...

C > 0 α = C α > 0 4(4π)2

RG improved flow equation R ∂Rh = − C

2(4π)2 h(R/µ2) = log R/µ2 One loop flow equation

(46)

Marginally deformed Starobinsky (L)

Leading quantum corrections to tensor-to-scalar ratio

A. C, J. Joergensen, F. Sannino and O. Svendsen, JHEP 1502, 050 (2015)

(47)

γ

i

� X m

2

≡ lim

ΛU V →∞

1/Λ2U V

ds

s s

−d/2+2

[f

i

(sX) − f

i

(0)]

+ 1

2

=

1

2(4π)d/2

ddx√

g tr R γi

�−�

m2

R + ...

Curvature expansion

The finite physical part of the effective action is covariantly encoded in the structure functions which can be computed using the non-local heat kernel expansion

Non-local heat kernel structure functions Non-local heat kernel

A. O. Barvinsky and G. A. Vilkovisky, Nucl. Phys. B 282 (1987) 163 I. G. Avramidi, Lect. Notes Phys. M 64 (2000) 1

A. Codello and O. Zanusso, J. Math. Phys. 54 (2013) 013513

(48)

= − 1 2(4π)2

d4x√

g tr

1RµνγRic

�−�

m2

Rµν + 1

120RγR

�−�

m2

� R

−1

6RγRU

�−�

m2

U + 1

2UγU

�−�

m2

U + 1

12Ωµνγ

�−�

m2

µν

+ 1 2

Curvature expansion

γRic(u) = 1

40 + 1

12u 1 2

1 0

1

u + ξ(1 − ξ)

2

log [1 + u ξ(1 − ξ)]

γR(u) = 23

960 1

96u + 1 32

1 0

� 2

u2 + 4

u [1 + ξ(1 − ξ)]

− 1 + 2ξ(2 − ξ)(1 − ξ2)

log [1 + u ξ(1 − ξ)]

γRU(u) = 1

12 1 2

1 0

1

u 1

2 + ξ(1 − ξ)

log [1 + u ξ(1 − ξ)]

γU(u) = 1 2

1 0

dξ log [1 + u ξ(1 − ξ)]

γ(u) = 1

12 1 2

1 0

1

u + ξ(1 − ξ)

log [1 + u ξ(1 − ξ)]

Explicit form for the structure functions

u ≡ −�

m2

(49)

Curvature expansion

γRic(u) = u

840 + u2

15120 u3

166320 + O(u4) γR(u) = u

336 + 11u2

30240 19u3

332640 + O(u4) γRU(u) = u

30 u2

280 + u3

1890 + O(u4) γU(u) = u

12 + u2

120 u3

840 + O(u4) γ(u) = u

120 + u2

1680 u3

15120 + O(u4)

= − 1 2(4π)2

d4x√

g tr

1RµνγRic

�−�

m2

Rµν + 1

120RγR

�−�

m2

� R

−1

6RγRU

�−�

m2

U + 1

2UγU

�−�

m2

U + 1

12Ωµνγ

�−�

m2

µν

+ 1 2

u ≡ −�

m2 Large energy expansion u � 1

(50)

Curvature expansion

γRic(u) = u

840 + u2

15120 u3

166320 + O(u4) γR(u) = u

336 + 11u2

30240 19u3

332640 + O(u4) γRU(u) = u

30 u2

280 + u3

1890 + O(u4) γU(u) = u

12 + u2

120 u3

840 + O(u4) γ(u) = u

120 + u2

1680 u3

15120 + O(u4)

= − 1 2(4π)2

d4x√

g tr

1RµνγRic

�−�

m2

Rµν + 1

120RγR

�−�

m2

� R

−1

6RγRU

�−�

m2

U + 1

2UγU

�−�

m2

U + 1

12Ωµνγ

�−�

m2

µν

+ 1 2

match with local heat

kernel

Large energy expansion u � 1

u ≡ −�

m2

(51)

Curvature expansion

γRic(u) = 23

450 1

60 log u + 5

18u log u

6u + 1

4u2 log u

2u2 + O

1 u3

γR(u) = 1

1800 1

120 log u 2

9u + log u

12u + 1

8u2 + log u

4u2 + O

1 u3

γRU(u) = 5

18 + 1

6 log u + 1

u 1

2u2 log u

u2 + O

1 u3

γU(u) = 1 1

2 log u 1

u log u

u 1

2u2 + log u

u2 + O

1 u3

γ(u) = 2

9 1

12 log u + 1

2u log u

2u 3

4u2 log u

2u2 + O

1 u3

= − 1 2(4π)2

d4x√

g tr

1RµνγRic

�−�

m2

Rµν + 1

120RγR

�−�

m2

� R

−1

6RγRU

�−�

m2

U + 1

2UγU

�−�

m2

U + 1

12Ωµνγ

�−�

m2

µν

+ 1 2

Low energy expansion u � 1

u ≡ −�

m2

(52)

Cosmological effective action (L)

Γ[g] = 1 16πG

d4x√

−g (R − 2Λ) + ξ

d4x√

−g R2 +

d4x√

−g RF (�)R

(53)

Cosmological effective action (L)

Γ[g] = 1 16πG

d4x√

−g (R − 2Λ) + ξ

d4x√

−g R2 +

d4x√

−g RF (�)R

F (�) = α log −�

m2

+ β m2

−�

+ γ m2

−� log −�

m2

+ δ m4 (−�)2

+ ...

α, β, γ, δ

are calculable constants depending on matter

content

(54)

Cosmological effective action (L)

Γ[g] = 1 16πG

d4x√

−g (R − 2Λ) + ξ

d4x√

−g R2 +

d4x√

−g RF (�)R

Leading logs

J. F. Donoghue and B. K. El-Menoufi, Phys. Rev. D 89, 104062 (2014)

Non-local cosmology

S. Deser and R. P. Woodard, Phys. Rev. Lett. 99, 111301 (2007)

Non-local gravity and dark energy

M. Maggiore and M. Mancarella, Phys. Rev. D 90, 023005 (2014).

F (�) = α log −�

m2

+ β m2

−�

+ γ m2

−� log −�

m2

+ δ m4 (−�)2

+ ...

α, β, γ, δ

are calculable constants depending on matter

content

Effective non-local cosmology

A. C. and K. J. Jain in preparation

(55)

Effective Friedmann equations (L)

Local gravity @ LO

H2 + 96πξG �

2H ¨H + 6H2H˙ − ˙H2

= 1

3Λ + 8πG 3 ρ

(56)

Effective Friedmann equations (L)

Local gravity @ LO

H2 + 96πξG �

2H ¨H + 6H2H˙ − ˙H2

= 1

3Λ + 8πG 3 ρ

2H ¨H + 6H2H˙ − ˙H2 = 0

t + C2 =

� dH

C1

H − 2H2 H = 1

2t H = 0

Pure Starobinsky gravity is exactly solvable

(57)

Effective Friedmann equations (L)

Local gravity @ LO

H2 + 96πξG �

2H ¨H + 6H2H˙ − ˙H2

= 1

3Λ + 8πG 3 ρ

2H ¨H + 6H2H˙ − ˙H2 = 0

t + C2 =

� dH

C1

H − 2H2 H = 1

2t H = 0

T = 0 ⇒ R = 0 R + Rn−1δR = −8πG T

Pure Starobinsky gravity is exactly solvable

(58)

Effective Friedmann equations (L)

R + R2 = 0 R + R2 = Λ

R + R2 = ργ R + R2 = ργ + ρm

(59)

Effective Friedmann equations (L)

H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t) How to interpret non-local terms?

PRELIMINARY RESULTS

(60)

Effective Friedmann equations (L)

H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t)

L(t − t) =

0

ds

� 1

µ2 + s − G(t − t; √ s)

G(t − t; m) = θ(t − t)

�a3(t)a3(t)

sin m(t − t)

m + O( ˙a) L ≡ log −�

µ2

L(t − t) = −2 lim

→0

�θ(t − t − �)

t − t + δ(t − t) log µ �

How to interpret non-local terms?

PRELIMINARY RESULTS

(61)

Effective Friedmann equations (L)

a(t) = a0e√Λ

3 t

a(t) = (t/t0)1/2

Try an iterative solution...

a(t) = (t/t0)2/3 H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t)

PRELIMINARY RESULTS

(62)

Effective Friedmann equations (L)

a(t) = a0e√Λ

3 t

a(t) = (t/t0)1/2

Try an iterative solution...

a(t) = (t/t0)2/3

no effect H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t)

PRELIMINARY RESULTS

(63)

Effective Friedmann equations (L)

a(t) = a0e√Λ

3 t

a(t) = (t/t0)1/2

Try an iterative solution...

a(t) = (t/t0)2/3

no effect no effect H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t)

PRELIMINARY RESULTS

(64)

Effective Friedmann equations (L)

H2(t) + 256πGα 3t4

log µt + log

� t

t0 − 1

+ 2 3

� t

t0 − 1

��

= 8πG

3 ρm(t0)

�t0 t

2

a(t) = a0e√Λ

3 t

a(t) = (t/t0)1/2

Try an iterative solution...

a(t) = (t/t0)2/3

... log R dominant a early times while log box at late times some effect

no effect no effect H2(t) + 16πGα

� a(t)¨ a2(t)�

a(t) + 2 H2(t) a(t)�

a(t)

� �

dt a32 (t)R(t) L(t − t)

+ 2 H(t) a(t)�

a(t)

dt L(t − t) d dt

�a32 (t)R(t)��

= 8πG

3 ρ(t)

PRELIMINARY RESULTS

(65)

Conclusions and Outlook

Compute all LO terms

Renormalization of NLO

Conformal anomaly contribution

Apply to cosmology

Apply to stars/black holes

Add the SM and constrain BSM

Connection with high energy quantum gravity

Falsify!

(66)

Thank you

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Tillväxtanalys har haft i uppdrag av rege- ringen att under år 2013 göra en fortsatt och fördjupad analys av följande index: Ekono- miskt frihetsindex (EFW), som

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor är samarbetet mellan de olika

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating