• No results found

Porous Polymeric Monoliths by Less Common Pathways: Preparation and Characterization

N/A
N/A
Protected

Academic year: 2022

Share "Porous Polymeric Monoliths by Less Common Pathways: Preparation and Characterization"

Copied!
73
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)
(3)

iii

(4)

iv

(5)

v

.

I. Monolithic Space-filling Porous Materials from Engineering Plastics by Thermally Induced Phase Separation

II. Porous Space-filling Monolithic Polyvinylidene Difluoride (PVDF) Materials by Thermally Induced Phase Separation

III. Porous Melamine-Formaldehyde Monoliths by Step-Growth Polymerization Reactions via an Organic Sol-gel Process

IV. Porous Polyvinylidene Difluoride (PVDF) Monoliths via Thermally Induced Dissolution/Precipitation. Three Strategies to Pore-Tuning

Probing the possibilities of further controlling of the PVDF monolith pore formation process

.

(6)

vi

(7)

vii

(8)

viii

(9)

ix

Table of Contents

1 Introduction ... 1

2 Chromatography – An Overview ... 3

2.1 Fundamental Considerations in a Chromatographic Column ... 5

2.2 Types of HPLC Stationary Phases ... 6

2.2.1 Particulate Packing Materials ... 6

2.2.2 Porous Monolithic Support Materials ... 8

3 Synthesis of Porous Polymeric Monoliths ... 9

3.1 Overview and historical perspective... 9

3.2 Thermally Induced Dissolution/Precipitation ... 10

3.2.1 Thermally Induced Phase-Separation (TIPS) Process ... 10

3.2.2 Solubility of Polymers ... 11

3.3 Preparation of Porous Polymeric Monoliths via Dissolution/Precipitation Process ... 15

3.3.1 Commodity Polymers ... 16

3.3.2 Porogenic Solvents (Diluents) ... 17

3.3.3 Polymers as Co-porogens ... 20

3.3.4 Pore Formation Control in PVDF Monoliths ... 24

3.4 Synthesis of Porous Polymeric Monoliths via Step-Growth Polymerization Reaction ... 25

3.4.1 Highly Mesoporous Melamine-Formaldehyde Monoliths ... 26

4 Monolithic Materials Characterizations ...30

4.1 Morphology Characterization Techniques ... 31

4.1.1 Porous Properties and Surface Area ... 31

4.1.1.1 Nitrogen Adsorption Desorption Analysis – BET/BJH ...32

4.1.1.2 Mercury Intrusion Porosimetry – MIP ...37

4.1.2 Surface Imaging by Scanning Electron Microscopy – SEM ... 39

4.2 Chemical Composition Characterization Techniques ... 42

4.2.1 Elemental Composition and Functional Group Determination... 43

4.2.1.1 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy – (ATR-FTIR) ...43

4.2.1.2 Energy-Dispersive X-ray Spectroscopy – EDS ...44

4.2.1.3 X-ray Photoelectron Spectroscopy – XPS ...44

4.2.2 Electrophoretic Light Scattering (ELS) – ζ-(zeta)-potential measurements ... 48

4.2.3 X-ray Diffraction – XRD ... 49

5 Porous Polymeric Monolith Applications ...51

6 Concluding Remarks and Future Aspects ...53

7 Acknowledgements ...55

8 References ...57

(10)

x

(11)

1

1 Introduction

(12)

2

(13)

3

2 Chromatography – An Overview

(14)

4

(15)

5

2.1 Fundamental Considerations in a Chromatographic Column

(16)

6

2.2 Types of HPLC Stationary Phases

2.2.1 Particulate Packing Materials

(17)

7 above

(18)

8

2.2.2 Porous Monolithic Support Materials

(19)

9

3 Synthesis of Porous Polymeric Monoliths 3.1 Overview and historical perspective

(20)

10

3.2 Thermally Induced Dissolution/Precipitation

3.2.1 Thermally Induced Phase-Separation (TIPS) Process

(21)

11 3.2.2 Solubility of Polymers

(22)

12

δ δ

δ

δ (equation 2)

δ

vap m

H RT V

= -

2 2 2

D P H

= + +

(

, ,

) (

2 , ,

)

2

(

, ,

)

2

4 D s D p P s P p H s H s

RED Ro

- + - + -

=

(23)

13 δ

δ δ

δ

(24)

14

(25)

15

3.3 Preparation of Porous Polymeric Monoliths via Dissolution/Precipitation Process

(26)

16 3.3.1 Commodity Polymers

(27)

17 3.3.2 Porogenic Solvents (Diluents)

(28)

18

(29)

19

(30)

20

3.3.3 Polymers as Co-porogens

(31)

21

<

< <

(32)

22

(33)

23

(34)

24

3.3.4 Pore Formation Control in PVDF Monoliths

(35)

25

3.4 Synthesis of Porous Polymeric Monoliths via Step- Growth Polymerization Reaction

(36)

26

3.4.1 Highly Mesoporous Melamine-Formaldehyde Monoliths

(37)

27

(38)

28

(39)

29

(40)

30

4 Monolithic Materials Characterizations

(41)

31

4.1 Morphology Characterization Techniques

4.1.1 Porous Properties and Surface Area

(42)

32

4.1.1.1 Nitrogen Adsorption Desorption Analysis – BET/BJH

𝑃

𝑉𝑎(𝑃0−𝑃) = 𝑉1

𝑚𝐶 +𝐶−1𝑉

𝑚𝐶[𝑃𝑃

0]

(43)

33

.

(44)

34 γ

ɛ

(45)

35

γ

γ

(46)

36

(47)

37

4.1.1.2 Mercury Intrusion Porosimetry – MIP

𝐷 = 1

𝑃4𝛾 cos 𝜑

𝛾 𝜑

(48)

38

(49)

39

4.1.2 Surface Imaging by Scanning Electron Microscopy – SEM

(50)

40

(51)

41

(52)

42

4.2 Chemical Composition Characterization Techniques

(53)

43

4.2.1 Elemental Composition and Functional Group Determination

4.2.1.1 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy – (ATR-FTIR)

α β γ

(54)

44

4.2.1.2 Energy-Dispersive X-ray Spectroscopy – EDS

4.2.1.3 X-ray Photoelectron Spectroscopy – XPS

(55)

45

Element Line Type Apparent Concentration

k Ratio Wt% Wt%

Sigma

Standard Label

Factory Standard

C K series 0.24 0.00242 70.97 1.91 C Vit Yes

F K series 0.43 0.00085 29.03 1.91 CaF2 Yes

Total: 100.00

(56)

46

Peak Bond

energy (eV)

Atomic concentration (%)

MF9 GCS MF16 WBS MF8 WIS

C 1s [C-(C,H)] 284.7 4.15 3.06 2.3

C 1s [C-(O,N)] 286.4 12.27 12.49 9.4

C 1s [N=C-N, C=O] 287.4 35.38 33.94 37.93

O 1s [C=O] 530.6 0.92 0.6 0.27

O 1s [(C-OH),(C-O-C)] 532.5 7.73 5.35 5.81

N 1s [C=N-C] 398.1 13.67 16.75 14.27

N 1s [N-(C,H)] 399.4 25.88 27.82 30.02

[C-(C,H)]:[C -

(O,N)]:[N=C-N, C=O] N/A 1:2.96:8.5 1:4.08:11.09 1:4.09:16.49

C:N N/A 1.31:1 1.11:1 1.12:1

[N-(C,H)]:[(C-OH),(C-O-

C)] N/A 3.35:1 5.2:1 5.1:1

(57)

47

(58)

48

4.2.2 Electrophoretic Light Scattering (ELS) – ζ-(zeta)-potential measurements

(59)

49 4.2.3 X-ray Diffraction – XRD

(60)

50

(61)

51

5 Porous Polymeric Monolith Applications

(62)

52

(63)

53

6 Concluding Remarks and Future Aspects

(64)

54

(65)

55

7 Acknowledgements

(66)

56

(67)

57

8 References

[1] Roddy, F. M., U.S. Patent 2,478,013 1949.

[2] Smith, W. F., Hashemi, J. (Eds.), Foundations of Materials Science and Engineering, 4th Ed., Mcgraw-Hill Publishing 2006.

[3] Merline, D. J., Vukusic, S., Abdala, A. A., Polymer journal 2013, 45, 413-419.

[4] Coullerez, G., Léonard, D., Lundmark, S., Mathieu, H. J., Surface and interface analysis 2000, 29, 431-443.

[5] Petrović, M., Hernando, M. D., Díaz-Cruz, M. S., Barceló, D., Journal of Chromatography A 2005, 1067, 1-14.

[6] Marquet, P., Lachatre, G., Journal of Chromatography B: Biomedical Sciences and Applications 1999, 733, 93-118.

[7] Vollmer, M., Hörth, P., Nägele, E., Analytical chemistry 2004, 76, 5180-5185.

[8] Yu, C., Davey, M. H., Svec, F., Fréchet, J. M., Analytical Chemistry 2001, 73, 5088- 5096.

[9] Tswett, M. S., Berichte der Deutschen Botanischen Gesellschaft 1906, 24, 316- 323.

[10] Engelhardt, H., Journal of Chromatography B 2004, 800, 3-6.

[11] Willstätter, R., Stoll, A., Untersuchungen über Chlorophyll, Springer-Verlag, Berlin 1913.

[12] Kuhn, R., Lederer, E., Ber 1931, 64, 1349.

[13] Martin, A., Synge, R. M., Biochemical Journal 1941, 35, 1358.

[14] Snyder, L. R., Kirkland, J. J., Dolan, J. W. (Eds.), Introduction to Modern Liquid Chromatography, 3rd Ed., John Wiley & Sons, Hoboken 2011.

[15] McNaught, A. D., Wilkinson, A. (Eds.), IUPAC Compendium of Chemical Terminology, Blackwell Scientific Publications, Oxford 1997.

[16] Van Deemter, J. J., Zuiderweg, F. J., Klinkenberg, A. V., Chemical Engineering Science 1956, 5, 271-289.

[17] Svec, F., Journal of separation science 2004, 27, 1419-1430.

[18] Unger, K. K., Skudas, R., Schulte, M. M., Journal of Chromatography A 2008, 1184, 393-415.

[19] MacNair, J. E., Lewis, K. C., Jorgenson, J. W., Analytical chemistry 1997, 69, 983- 989.

[20] Ohmacht, R., Boros, B., Kiss, I., Jelinek, L., Chromatographia 1999, 50, 75-81.

[21] Chen, H., Horváth, C., Journal of Chromatography A 1995, 705, 3-20.

[22] Gustavsson, P.-E., Larsson, P.-O., Journal of Chromatography A 1996, 734, 231- 240.

[23] Xie, S., Allington, R. W., Fréchet, J. M. J., Svec, F., Modern Advances in Chromatography, Springer-Verlag Berlin Heidelberg 2002, pp. 87-125.

[24] Kłodzińska, E., Moravcova, D., Jandera, P., Buszewski, B., Journal of Chromatography A 2006, 1109, 51-59.

(68)

58

[25] Guiochon, G., Journal of Chromatography A 2007, 1168, 101-168.

[26] Hjerten, S., Liao, J.-L., Zhang, R., Journal of Chromatography A 1989, 473, 273- 275.

[27] Svec, F., Fréchet, J. M., Analytical Chemistry 1992, 64, 820-822.

[28] Mould, D., Synge, R., Analyst 1952, 77, 964-969.

[29] Svec, F., Journal of chromatography A 2010, 1217, 902-924.

[30] Peters, E. C., Svec, F., Fréchet, J., Advanced Materials 1999, 11, 1169-1181.

[31] Svec, F., Tennikova, T. B., Deyl, Z. (Eds.), Monolithic Materials: Preparation, Properties and Applications, Elsevier, Amsterdam 2003.

[32] Mai, N. A., Duc, N. T., Irgum, K., Chemistry of Materials 2008, 20, 6244-6247.

[33] Nguyen, A. M., Nordborg, A., Shchukarev, A., Irgum, K., Journal of separation science 2009, 32, 2619-2628.

[34] Work, W., Horie, K., Hess, M., Stepto, R., Pure and applied chemistry 2004, 76, 1985-2007.

[35] Barker, J., Fock, W., Discussions of the Faraday Society 1953, 15, 188-195.

[36] Matsuyama, H., Okafuji, H., Maki, T., Teramoto, M., Kubota, N., Journal of membrane science 2003, 223, 119-126.

[37] Lin, Y., Chen, G., Yang, J., Wang, X., Desalination 2009, 236, 8-15.

[38] Guillen, G. R., Pan, Y., Li, M., Hoek, E. M., Industrial & Engineering Chemistry Research 2011, 50, 3798-3817.

[39] Matsuyama, H., Kim, M.-m., Lloyd, D. R., Journal of Membrane Science 2002, 204, 413-419.

[40] Gu, M., Zhang, J., Xia, Y., Wang, X., Journal of Macromolecular Science, Part B 2007, 47, 180-191.

[41] Cui, Z.-Y., Xu, Y.-Y., Zhu, L.-P., Deng, H.-Y., et al., Journal of Macromolecular Science® 2009, 48, 41-54.

[42] Lloyd, D. R., Kinzer, K. E., Tseng, H., Journal of Membrane Science 1990, 52, 239-261.

[43] Lloyd, D. R., Kim, S. S., Kinzer, K. E., Journal of Membrane Science 1991, 64, 1- 11.

[44] Kim, S. S., Lloyd, D. R., Journal of membrane science 1991, 64, 13-29.

[45] Chan, P. K., Modelling and Simulation in Materials Science and Engineering 2006, 14, 41-51.

[46] Matsuyama, H., Kudari, S., Kiyofuji, H., Kitamura, Y., Journal of applied polymer science 2000, 76, 1028-1036.

[47] Gu, M., Zhang, J., Wang, X., Tao, H., Ge, L., Desalination 2006, 192, 160-167.

[48] Soroko, I., Lopes, M. P., Livingston, A., Journal of Membrane Science 2011, 381, 152-162.

[49] Yave, W., Quijada, R., Serafini, D., Lloyd, D. R., Journal of Membrane Science 2005, 263, 146-153.

(69)

59

[50] Yave, W., Quijada, R., Ulbricht, M., Benavente, R., Polymer 2005, 46, 11582- 11590.

[51] Vanegas, M. E., Quijada, R., Serafini, D., Polymer 2009, 50, 2081-2086.

[52] Atkinson, P. M., Lloyd, D. R., Journal of Membrane Science 2000, 175, 225-238.

[53] Matsuyama, H., Maki, T., Teramoto, M., Asano, K., Journal of membrane science 2002, 204, 323-328.

[54] GUO, B., FAN, J., LIU, J., XU, J., Wang, X., Acta Polymerica Sinica 2009, 1, 008.

[55] Tao, Y., Yu, G., Wang, X., Wang, Z., International Journal of Polymeric Materials 2011, 60, 706-719.

[56] Svec, F., Journal of separation science 2004, 27, 747-766.

[57] Ghasem, N., Al-Marzouqi, M., Duidar, A., Separation and Purification Technology 2012, 98, 174-185.

[58] Yang, M.-C., Perng, J.-S., Journal of Polymer Research 1998, 5, 213-219.

[59] Matsuyama, H., Teramoto, M., Kudari, S., Kitamura, Y., Journal of applied polymer science 2001, 82, 169-177.

[60] Yeow, M., Liu, Y., Li, K., Journal of Applied Polymer Science 2004, 92, 1782- 1789.

[61] Cao, Y., Croll, T. I., O'Connor, A. J., Stevens, G. W., Cooper-White, J. J., Journal of Biomaterials Science, Polymer Edition 2006, 17, 369-402.

[62] Yang, J., Wang, X. L., Tian, Y., Lin, Y., Tian, F., Journal of Polymer Science Part B:

Polymer Physics 2010, 48, 2468-2475.

[63] Lin, D.-J., Beltsios, K., Young, T.-H., Jeng, Y.-S., Cheng, L.-P., Journal of membrane science 2006, 274, 64-72.

[64] Wang, X., Wang, X., Zhang, L., An, Q., Chen, H., Journal of Macromolecular Science, Part B 2009, 48, 696-709.

[65] Li, C.-L., Wang, D.-M., Deratani, A., Quémener, D., et al., Journal of Membrane Science 2010, 361, 154-166.

[66] Ahmad, A., Ideris, N., Ooi, B., Low, S., Ismail, A., Desalination 2011, 278, 318- 324.

[67] Ghasem, N., Al-Marzouqi, M., Abdul Rahim, N., Separation and Purification Technology 2012, 99, 91-103.

[68] Wang, X., Yue, X., Wang, X., Guo, Q., Journal of Macromolecular Science, Part B 2011, 50, 880-889.

[69] Lin, Y., Tang, Y., Ma, H., Yang, J., et al., Journal of applied polymer science 2009, 114, 1523-1528.

[70] Nakatsuka, K., Ohmukai, Y., Maruyama, T., Matsuyama, H., Desalination and Water Treatment 2010, 17, 275-280.

[71] Ghasem, N., Al-Marzouqi, M., Duaidar, A., International Journal of Greenhouse Gas Control 2011, 5, 1550-1558.

[72] Matsuyama, H., Berghmans, S., Batarseh, M. T., Lloyd, D. R., Journal of membrane science 1998, 142, 27-42.

(70)

60

[73] Yoo, S., Kim, C., Journal of applied polymer science 2008, 108, 3154-3162.

[74] Ma, W., Chen, S., Zhang, J., Wang, X., Journal of Macromolecular Science®, Part B: Physics 2010, 50, 1-15.

[75] Van de Witte, P., Dijkstra, P. J., Van den Berg, J. W. A., Feijen, J., Journal of Membrane Science 1996, 117, 1-31.

[76] Ulbricht, M., Polymer 2006, 47, 2217-2262.

[77] Castro, A. J., Oak, P., U.S. Patents 4,247,498 1981.

[78] Barton, A. F. M., Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, Boca Raton, FL, USA 1983.

[79] Hildebrand, J., Scott, R., Annual Review of Physical Chemistry 1950, 1, 75-92.

[80] Huggins, M. L., The Journal of Physical Chemistry 1942, 46, 151-158.

[81] Flory, P. J., The Journal of chemical physics 2004, 10, 51-61.

[82] Hansen, C. M., The Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient - Their Importance in Surface Coating Formulation, Danish Technical Press, Copenhagen 1967.

[83] Hansen, C. M., Journal of Paint Technology 1967, 39, 505-510.

[84] Hansen, C. M. (Ed.), Hansen Solubility Parameters: A User's Handbook, 2nd Ed., CRC Press, Boca Raton 2007.

[85] Barton, A., Pure and Applied Chemistry 1985, 57, 905-912.

[86] Luna-Bárcenas, G., Meredith, J. C., Sanchez, I. C., Johnston, K. P., et al., The Journal of chemical physics 1997, 107, 10782-10792.

[87] Ten Brinke, G., Karasz, F. E., Macromolecules 1984, 17, 815-820.

[88] Kanamori, K., Nakanishi, K., Hanada, T., Soft Matter 2009, 5, 3106-3113.

[89] Barrett, E. P., Joyner, L. G., Halenda, P. P., Journal of the American Chemical society 1951, 73, 373-380.

[90] Yan, H., Row, K. H., International journal of molecular sciences 2006, 7, 155- 178.

[91] Wu, D., Xu, F., Sun, B., Fu, R., et al., Chemical reviews 2012, 112, 3959-4015.

[92] Zalipsky, S., Harris, J. M., Poly (ethylene glycol) 1997, 680, 1-13.

[93] Saeki, S., Kuwahara, N., Nakata, M., Kaneko, M., Polymer 1977, 18, 1027-1031.

[94] Josic, D., Buchacher, A., Jungbauer, A., Journal of Chromatography B:

Biomedical Sciences and Applications 2001, 752, 191-205.

[95] Liu, F., Hashim, N. A., Liu, Y., Abed, M., Li, K., Journal of Membrane Science 2011, 375, 1-27.

[96] Ahmad, A., Idens, N., Ooi, B., Low, S., Ismail, A., Journal of Applied Sciences 2014, 14, 1299-1303.

[97] Zhang, Y., Ding, H., Wei, S., Liu, S., et al., Journal of Porous Materials 2010, 17, 693-698.

[98] Kanamori, K., Nakanishi, K., Hanada, T., Advanced Materials 2006, 18, 2407- 2411.

(71)

61

[99] Seo, M., Hillmyer, M. A., Science 2012, 336, 1422-1425.

[100] Kailasam, K., Jun, Y.-S., Katekomol, P., Epping, J. D., et al., Chemistry of Materials 2009, 22, 428-434.

[101] Baraka, A., Hall, P., Heslop, M., Reactive and Functional Polymers 2007, 67, 585-600.

[102] Mequanint, K., Sanderson, R., Polymer 2003, 44, 2631-2639.

[103] Du Fresne von Hohenesche, C., Schmidt, D., Schadler, V., Chemistry of Materials 2008, 20, 6124-6129.

[104] Rogers, M. E., Long, T. E. (Eds.), Synthetic methods in step-growth polymers, John Wiley & Sons, Hoboken 2003.

[105] Ruben, G. C., Pekala, R. W., Journal of non-crystalline solids 1995, 186, 219- 231.

[106] Kreibiehl, G., Mahnke, H., Weber, H., Woerner, F. P., U. S. Patent 4,540,717 1985.

[107] Bretterbauer, K., Schwarzinger, C., Current Organic Synthesis 2012, 9, 342- 356.

[108] Cheong, I. W., Shin, J. S., Kim, J. H., Lee, S. J., Macromolecular Research 2004, 12, 225-232.

[109] Bhattacharya, A., Rawlins, J. W., Ray, P. (Eds.), Polymer grafting and crosslinking, John Wiley & Sons, Hoboken 2009.

[110] Nicolau, V., Martinelli, M., Strumia, M., Estenoz, D., Meira, G., Journal of applied polymer science 2009, 113, 1030-1041.

[111] Rogers, M. E., Long, T. E. (Eds.), Synthetic methods in step-growth polymers, John Wiley & Sons, Hoboken 2003.

[112] Wu, Y., Li, Y., Qin, L., Yang, F., Wu, D., Journal of Materials Chemistry B 2013, 1, 204-212.

[113] Hench, L. L., West, J. K., Chemical Reviews 1990, 90, 33-72.

[114] Rouquerol, J., Rouquerol, F., Sing, K. S. W., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic press Inc., Cornwall 1999.

[115] Altman, E. I. (Ed.), Numerical Data and Functional Relationships in Science and Technology: Group 3:@ Crystal and Solid State Physics. Vol. 42, Physics of Covered Solid Surfaces. Subvol. A: Adsorbed Layers on Surfaces. Part 1: Adsorption on Surfaces and Surface Diffusion of Adsorbates, Springer 2001.

[116] Brunauer, S., Emmett, P. H., Teller, E., Journal of the American Chemical Society 1938, 60, 309-319.

[117] Langmuir, I., Journal of the American Chemical Society 1916, 38, 2221-2295.

[118] Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., et al., Pure Appl Chem 1985, 57, 603-619.

[119] Sing, K., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 187, 3-9.

(72)

62

[120] Webb, P. A., Orr, C., Analytical methods in fine particle technology, Micromeritics Instrument Corp 1997.

[121] Buchmeiser, M. R. (Ed.), Polymeric materials in organic synthesis and catalysis, Wiley-VCH, Weinheim, Germany 2003.

[122] Rolando, M., Roque-Malherbe, R., CRC Press Taylor and Francis Group, NW Suite 2007.

[123] Ritter, H., Drake, L., Industrial & Engineering Chemistry Analytical Edition 1945, 17, 782-786.

[124] Webb, P. A., Micromeritics Instrument Corp, Norcross, Georgia 2001.

[125] Egger, C., Du Fresne, C., Raman, V., Schädler, V., et al., Langmuir 2008, 24, 5877-5887.

[126] Scherer, G. W., Smith, D. M., Stein, D., Journal of non-crystalline solids 1995, 186, 309-315.

[127] Scherer, G. W., Smith, D. M., Qiu, X., Anderson, J. M., Journal of non- crystalline solids 1995, 186, 316-320.

[128] McMullan, D., Scanning 1995, 17, 175-185.

[129] Goldstein, J. I., Newbury, D. E., Joy, D. C., Fiori, C., et al., Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York 1981.

[130] Vernon-Parry, K. D., III-Vs Review 2000, 13, 40-44.

[131] Stuart, B., Infrared Spectroscopy: Fundamentals and Applications, John Wiley

& Sons, Chichester, England 2004.

[132] Gregorio, R., Journal of Applied Polymer Science 2006, 100, 3272-3279.

[133] Zhang, M., Zhang, A.-Q., Zhu, B.-K., Du, C.-H., Xu, Y.-Y., Journal of Membrane Science 2008, 319, 169-175.

[134] Shindo, D., Oikawa, T., Analytical Electron Microscopy for Materials Science, Springer, Tokyo 2002, pp. 81-102.

[135] Vickerman, J. C., Gilmore, I. S. (Eds.), Surface analysis: the principal techniques, 2nd Ed., John Wiley & Sons, Chichester, UK 2009.

[136] Van der Heide, P., X-ray photoelectron spectroscopy: an introduction to principles and practices, John Wiley & Sons, Hoboken, New Jersey 2011.

[137] Watts, J. F., Wolstenholme, J., An introduction to surface analysis by XPS and AES, Wiley, Chichester, England 2003.

[138] Ratner, B. D., Castner, D. G., Electron spectroscopy for chemical analysis, Nova Science Publisher, Inc., New York 2009.

[139] Briggs, D., Surface analysis of polymers by XPS and static SIMS Cambridge University Press, Cambridge, UK 1998, pp. 47-87.

[140] Derylo-Marczewska, A., Goworek, J., Pikus, S., Kobylas, E., Zgrajka, W., Langmuir 2002, 18, 7538-7543.

[141] Jiang, J., Oberdörster, G., Biswas, P., Journal of Nanoparticle Research 2009, 11, 77-89.

(73)

63

[142] Hunter, R. J., in: Hunter, R. J. (Ed.), Zeta Potential in Colloid Science, Academic Press, London 1981, pp. 11-58.

[143] Hunter, R. J., in: Hunter, R. J. (Ed.), Zeta Potential in Colloid Science, Academic Press, London 1981, pp. 59-124.

[144] Buszewski, B., Bocian, S., Dziubakiewicz, E., Journal of separation science 2010, 33, 1529-1537.

[145] Taylor, J. D., Terray, A., Hart, S. J., Analytica chimica acta 2010, 670, 78-83.

[146] Hammond, C., Hammond, C. (Eds.), Basics of crystallography and diffraction, 3rd Ed., Oxford 2001.

[147] Nischang, I., Teasdale, I., Brüggemann, O., Analytical and bioanalytical chemistry 2011, 400, 2289-2304.

[148] Urban, J., Svec, F., Fréchet, J. M., Analytical chemistry 2010, 82, 1621-1623.

[149] Liu, H., Bai, X., Wei, D., Yang, G., Journal of Chromatography A 2014, 1324, 128-134.

[150] Svec, F., Journal of Chromatography A 2012, 1228, 250-262.

[151] Saito, Y., Jinno, K., Greibrokk, T., Journal of separation science 2004, 27, 1379- 1390.

[152] Wu, R. a., Hu, L., Wang, F., Ye, M., Zou, H., Journal of Chromatography A 2008, 1184, 369-392.

[153] Courtois, J., Byström, E., Irgum, K., Polymer 2006, 47, 2603-2611.

[154] Hemström, P., Nordborg, A., Irgum, K., Svec, F., Fréchet, J. M., Journal of separation science 2006, 29, 25-32.

[155] Regnier, F. E., Journal of High Resolution Chromatography 2000, 23, 19-26.

[156] Svec, F., Peters, E. C., Sýkora, D., Yu, C., Frechet, J. M., Journal of High Resolution Chromatography 2000, 23, 3-18.

[157] Hilder, E. F., Svec, F., Frechet, J. M., Electrophoresis 2002, 23, 3934-3953.

[158] Štulík, K., Pacáková, V., Suchánková, J., Coufal, P., Journal of Chromatography B 2006, 841, 79-87.

[159] Hilder, E. F., Svec, F., Fréchet, J. M., Journal of Chromatography A 2004, 1044, 3-22.

[160] Sýkora, D., Peters, E. C., Svec, F., Fréchet, J. M., Macromolecular Materials and Engineering 2000, 275, 42-47.

[161] Vázquez, M., Paull, B., Analytica chimica acta 2010, 668, 100-113.

[162] Svec, F., Journal of Chromatography B 2006, 841, 52-64.

References

Related documents

Background: Separation science is heavily reliant on materials to fulfill ever more complicated demands raised by other areas of science, notably the rapidly expanding

It was found that porous pavements have a potential to reduce meltwater runoff, avoid excessive water on the road surface during the snowmelt period, and accomplish

First a crystal has grown between the zeolites on the fourth picture and second there is a bridge on the last picture (x 10 000). To conclude on the gel precursor

It is further noticed that large inclusions produce a greater disturbance of the strain energy density field, and are more likely to lead to crack tip shielding, which further

The APVD curves show the amount of liquid absorbed in the foams. These results can be interpreted with respect to opened and closed pores. The foam made from 1.5 wt% NFC

We now want to understand this result from the perspective of the IIB theory. From IIB, one expects only four space-filling branes to arise by reducing to eight dimensions, which

While in the other three cases the particles accumulate in low-velocity regions, at the pore entrance accumulation occurs in a high-velocity region.. Therefore, if accumulation is

With each oil, two films were prepared and from each film, five dumbbells were cut. Two additional pieces were cut out, with no specific form for the crystallinity measurements.