• No results found

Reiterated homogenization of degenerate nonlinear elliptic equations

N/A
N/A
Protected

Academic year: 2021

Share "Reiterated homogenization of degenerate nonlinear elliptic equations"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

REITERATED HOMOGENIZATION

OF DEGENERATE NONLINEAR

ELLIPTICEQUATIONS

J.BYSTR



OM* J. ENGSTR



OM* P.WALL*

(Dedicatedtothe memoryofJacques-LouisLions)

Abstract

Theauthorsstudyhomogenizationof somenonlinear partialdi erential equations of the

form div a hx;h 2

x;Du

h



=f;whereaisperiodicinthe rsttwoargumentsandmonotone

inthethird.Inparticularthecasewhereasatis esdegeneratedstructureconditionsisstudied.

Itisprovedthatu

h

convergesweaklyinW 1;1

0

( )totheuniquesolutionofalimitproblemas

h!1. Moreover,explicitexpressionsforthelimitproblemareobtained.

KeywordsHomogenization, Reiterated,Monotone,Degenerated

2000MR Subject Classi cation35B27,35J70,74Q99

Chinese Library Classi cationO175.21,O175.25 DocumentCode A

ArticleID 0252-9599(2002)03-03251-10

x1. Introduction

Thispaperisdevotedtohomogenizationofpartialdi erentialoperatorsincludingseveral

periodicallyoscillatinglengthscales. Thistypeofequationsappearinmany eldsofphysics

andengineeringscienceswherethephysicalphenomenaoccurinhighlyheterogeneousmedia.

One example is heat conduction in composite materials involving two di erent materials

whichare periodically distributed. Thelocal characteristicsarethen described byrapidly

oscillatingfunctions. Adirectnumericaltreatmentofsuchproblemsisoftenimpossibledue

totherapidly oscillatingfunctions andonehastoapplysometypeofasymptoticanalysis.

Thebranchof mathematicsdeveloped fortheanalysisofthese typesofproblems isknown

ashomogenization.Formoreinformationconcerningthehomogenizationtheory,thereader

isreferredto [1,2,7,10]and[12].

Wewillnowgiveashortoverviewofpreviousresultsconnectedtothisworkandexplain

what our contribution is. Let us consider the class of partial di erential equations of the

form

div (a

h (x;Du

h

))=f on, u

h 2W

1;p

0

(); (1.1)

wherea

h

isincreasinglyoscillatingas h!1,isanopenboundedsubsetofR n

;1<p<

1;1=p+1=q=1andf 2W 1;q

():Thehomogenizationproblemfor(1.1)consistsofthe

study of theasymptoticbehaviorof solutionsu

h

as h!1. Inmanyimportant casesu

h

convergesweaklyin W 1;p

0

() tothesolutionuofthehomogenizedproblem

div (b(Du)=f on, u2W 1;p

0 ():

In [6] and [11] the following situation was studied: a

h

is of the form a

h

(x;) = a(hx;),

whereaismonotone,continuousandsatis essuitablecoercivenessandgrowthconditionsin

thesecondargumentandisperiodicinthe rstargument. Acorrespondinghomogenization

ManuscriptreceivedJanuary31,2002.

DepartmentofMathematics,LuleaUniversityofTechnology,SE-97187Lulea,Sweden.

(2)

result,withthedi erencethataonlysatis esdegeneratestructureconditions,wasobtained

in[9]. Inthissituationitisnaturaltoworkwithweightedspaceswhichmeansthatinstead

of(1.1)wehave

div(a(hx;Du

h

))=f on, u

h 2W

1;p

0 (;

h );

where(

h

)isasequenceofperiodicweights.

Inthe casewhen a

h

(x;)= a(hx;h 2

x;);where a isperiodicin the rsttwovariables,

onespeaks aboutreiteratedhomogenization. This conceptwas introducedbyBensoussan,

LionsandPapanicolaouin[1],whereitwasstatedaresultforlinearoperators. Concerning

reiterated homogenization ofnonlinear problems werefer to[13] and [14]. One important

application of reiterated homogenization is that it has been an indispensable tool in the

constructionofstructureswithextremee ectivematerialproperties. Concerningthistopic

we refer to the collection of classical papers in [5], where the introduction gives a good

selection of references. We remark that some of the homogenization problems abovealso

havebeenstudiedby -convergenceforthecorrespondingvariationalproblemsandbytwo-

scaleconvergence,butleaveoutthis discussionsinceitisoutofthescopeofthiswork.

Inthispaperwestudyreiteratedhomogenizationwhereaonlysatis esdegeneratestruc-

tureconditions. Morepreciselyweprovethatthesolutionsu

h of

div (a(hx;h 2

x;Du

h

))=f on, u

h 2W

1;p

0 (;

h );

convergesweaklyto uin W 1;1

0

(); whereuisthesolutionofahomogenizedproblem

div (b(Du)=f on, u2W 1;p

0 ():

Thispaperisorganizedinthefollowingway:InSection2we xsomenotationandpresent

necessarypreliminaryresults. Section3containsthehomogenizationresultdescribedabove,

whichalsoisthemainresultofthispaper. InSection4wederiveahomogenizationresultfor

anauxiliaryproblem. Akeyingredientin theproofofthemainresultisthatthesolutions

oftheauxiliaryproblemareusedtode neaspecialtypeoftestfunction. Finally,inSection

5wegivesomepropertiesofthehomogenizedoperatorb.

x2. Preliminariesand Notation

Letbearegularbounded opensubsetofR n

and jEjdenotetheLebesguemeasureof

thesetE in R n

: Moreoverleth ;idenotetheEuclideanscalarproductonR n

and

E the

characteristic function of the set E: Let pbe areal constant1 <p< 1and letq beits

conjugateexponent,1=p+1=q=1:WewilldenotebyC andC

i

constantsthatmaychange

fromoneplacetoanother.

Furthermore,letY =Z =(0;1) n

be theunit cubein R n

. Letf

i

Y :i=1;;Ng

beafamilyofdisjointopensetssuchthat

Yn N

S

i=1

i

=0andj@

i j=0.

LetbeaweightonR n

,i.e. ismeasurableand

>0a.e., and 

1=( p 1)

arein L 1

loc ( R

n

): (2.1)

Wedenote by L p

( ;)the setof realfunctions uinL 1

loc

() such thatu

1=p

isin L p

( ),

by W 1;p

( ;) the set of the functions u in W 1;1

loc

() such that u 2 L p

(;) and Du 2

[L p

(;) ] n

: Moreover,wedenotebyW 1;p

0

(;) thecompletion ofC 1

0

( )withrespectto

thenorminW 1;p

(;) ,i.e.

kuk

W 1;p

(;)

=

 Z



juj p

+jDuj p



dx



1=p

:

ByC 1

per

(Y)wemeantheset ofall Y-periodicfunctions in C 1

(R n

)withmean valuezero.

Wealsode neW 1;p

per

(;)asthesetofrealfunctions uinW 1;1

loc (R

n

)with meanvaluezero

1;p

(3)

Wenowde netheMuckenhoupt A

p class:

De nition 2.1. Let p>1;K1andlet bea weighton R n

. Then  isin the class

A

p ( K)if



1

jQj Z

Q

dz



1

jQj Z

Q

 1

p 1

dz



p 1

K

foreverycubeQ2R n

withfacesparalleltothecoordinateplanes. WesetA

p

= S

K1 A

p (K):

Let

i

beaY-periodicweightonR n

,i.e. 

i

satis es(2.1)andis Y-periodic. Wede ne

theweights

h and

h as



h (x)=

N

X

i=1



i ( x)

i

(hx); 

h (x)=

N

X

i=1



i (hx)

i h

2

x



: (2.2)

Then itfollowsthat 

h

; 

h

1=(p 1)

; 

h and 

h

1=(p 1)

allare in L 1

loc (R

n

): Moreover,we

assumethat

i ,

h and

h

areinA

p

(K)forsomeK.

Leta:R n

R n

R n

!R n

beafunctionsuchthat

a(y;z;)= N

X

i=1



i (y)a

i

(z;): (2.3)

Weassumethat a(;z;) isY-periodic anda(y;;)is Z-periodic. Wealso assumethata

satis es certaincontinuityand monotonicityconditions. Tobe morespeci c, assumethat

there exist constants c i

1

; c i

2

>0 and constants and with 0   min(1;p 1) and

max( p;2) <1suchthat

ja

i (z;

1 ) a

i (z;

2 )jc

i

1



i

(z)( 1+j

1 j+j

2 j)

p 1

j

1



2 j

; (2.4)

ha

i (z;

1 ) a

i (z;

2 );

1



2 ic

i

2



i

(z)( 1+j

1 j+j

2 j)

p

j

1



2 j

; (2.5)

fora.e. z2R n

,every 2R n

:Moreoverweassumethat

a

i

( z;0)=0 (2.6)

fora.e. z2R n

:

Asadirect consequenceof(2.4),(2.5),and(2.6)thefollowinginequalitieshold:

ja

i

(z;)jc i

a



i (z)



1+jj p 1



; (2.7)



i (z)jj

p

c i

b (

i

(z)+h a

i

(z;);i); (2.8)

Z

Z

j+Dv



i j

p



i

(z)dzc i

c

(1+jj p

): (2.9)

In[8]thefollowingresultisproved.

Lemma2.1. Letp>1andK1:ThenthereexisttwopositiveconstantsÆ=Æ(n;p;K)

andC=C( n;p;K)suchthat



1

jQj Z

Q

 1+Æ

dy

 1

1+Æ

C 1

jQj Z

Q

dy; (2.10)



1

jQj Z

Q



(1+Æ) =(p 1)

dy

 1

1+Æ

C 1

jQj Z

Q



1=(p 1)

dy; (2.11)

for everycube withfaces parallel tothe coordinateplanes andevery 2A

p (K):

In[9]thefollowingweightedcompensatedcompactnessresultisproved.

Lemma 2.2. Let  2A

p

; K 1; let(

h

)be a family in A

p

(K) andlet bean open

boundedset. Let(u

h

)beafamilyof functionssatisfying

(1) R

jDu

h j

p



h

dyC

1

<1for everyh2N;

(2)there existsafunctionu2W 1;p

( ;)suchthatu !uinL 1

():

(4)

Moreover,let(a

h

)beafamily ofvectorfunctionsin R n

suchthat

(3) R

ja

h j

q



1=(p 1)

h

dyC

2

<1for everyh2N;

(4)div( a

h

)=f 2L 1

( )onC 1

0

() for everyh2N;

(5)there existsa2



L q

;

1=(p 1)



n

suchthat a

h

!aweakly in



L 1

()



n

:

Then

Z

ha

h

;Du

h

idy! Z

ha;Duidy

for every2C 1

0 ():

In[15]thefollowingconvergenceresultforperiodicfunctions isproved.

Lemma 2.3. Let 1 p 1 and letu

h 2L

p

loc (R

n

) be Y-periodic for h 2 N: More-

over, suppose that u

h

! u weakly in L p

( Y) (weakly



if p = 1) as h ! 1: Let w

h be

de ned by w

h

(x)=u

h

(hx): Then ash!1 it holds that w

h

! 1

jYj R

Y

u(y)dy weakly in

L p

() (weakly



if p=1):

Weendthissectionwithasimpleextensionlemma.

Lemma 2.4. Let  be a Y-periodic weight on R n

; let g : Y !R n

be a function such

that

g2[L q

(Y;

1=(p 1)

] n

; Z

Y

hg;Dwidy=0; 8w2W 1;p

per (Y;);

andleteg bethe Y-periodicextension toR n

ofg: Then wehave

e g2[L

q

loc (R

n

;

1=(p 1)

)]

n

; Z

R n

h eg;Dvidy=0; 8v2C 1

0 (R

n

):

Insituationswherenoconfusioncanoccurwewillusethesamenotationfortheextended

function asfortheoriginalone.

x3. The MainTheorem

LetusconsiderthefollowingDirichletproblems:

 R

a hx;h 2

x;Du

h



;D

dx= R

fdx; 82W 1;p

0 (;

h );

u

h 2W

1;p

0 (;

h );

(3.1)

wheref 2L 1

( ):Bystandardresultsin existencetheorythere existuniquesolutionsfor

eachh:Belowwestatethemainresultofthispaper.

Theorem3.1. Let(u

h

)bethesolutions of (3.1). Then

u

h

!uweakly inW 1;1

0 ( );

a hx;h 2

x;Du

h



!b(Du) weaklyin



L 1

( )



n

;

ash!1;where uistheunique solutionof

 R

hb(Du);Didx= R

fdx for every2W 1;p

0 ();

u2W 1;p

0 ( ):

(3.2)

The operator b:R n

!R n

isde nedas

b()= 1

jYj Z

Y b

Y

y;+Du



(y)



dy;

whereu



isthe uniquesolutionof the Y-cell problem

 R

Y

b

Y

y;+Du



( y)



;D

dy=0for every2W 1;p

per (Y);

u



2W 1;p

per (Y):

The operator b

Y

:Y R n

!R n

isde nedasb

Y

(y;)= N

P

i=1



i (y)b

i

(); where

b

i ()=

1

jZj Z

a

i



z;+Dv



i ( z)



dz;

(5)

andv



i

arethe uniquesolutions ofthe Z-cellproblems

(

R

Z D

a

i



z;+Dv



i (z)



;D( z) E

dz=0for every2W 1;p

per ( Z ;

i );

v



i 2W

1;p

per ( Z ;

i ):

Proof. Letus rstprovethat kDu

h k

L p

(;h)

C :Byperiodicityitfollowsthat

Z



h

(x)dxC ; Z

(

h (x) )

1=(p 1)

dxC : (3.3)

Thus,by(2.8),(3.1),(3.3),Poincare'sandHolder'sinequalitiesweobtain

Z

j Du

h j

p



h

(x)dxc

b

 Z



h

( x)dx+ Z

fu

h dx



C

 Z



h

( x)dx+kfk

L 1

() Z

jDu

h jdx



C



1+

 Z

jDu

h j

p



h (x)dx



1=p



:

Henceitisclearthat

kDu

h k

L p

(;

h )

C : (3.4)

Let

h

bede ned as

h

=a hx;h 2

x;Du

h



:Then(2.7)and(3.4)implies

k

h k

[L q

(;

1=( p 1)

h )]

n

C : (3.5)

TakeÆ>0suchthat (2.11)holds. Nowchoose

1

suchthat

1+

1

p 1 

1

= 1+Æ

p 1 :

Then

1

>0and p 1 

1

>0:LetQbeacubeinR n

containing. Holder'sinequality

and(3.4)thengives

Z

jDu

h j

1+1

dx

 Z

jDu

h j

p



h dx

 1+

1

p

 Z



h 1+

1

p 1 

1

dx

 p 1 

1

p

C

 Z



h 1+Æ

p 1

dx

 p 1

p+Æ

C

 Z

Q



h 1+Æ

p 1

dx

 p 1

p+Æ

:

Byapplying(2.11) and(3.3)in theinequalityabove,weobtain

Z

jDu

h j

1+1

dxC

 Z

Q



h 1=(1 p)

dx



(p 1)(1+Æ)=(p+Æ)

C : (3.6)

Next,chooseÆ>0suchthat (2.10)holdsandchoose

2

suchthat

1+Æ=( 1+

2 )

q 1

q 1 

2 :

Then

2

>0andq 1 

2

>0:Byusing(2.10)andarguingsimilarlyasfor(3.6)weobtain

Z

j

h j

1+2

dxC :

Thismeansthat(u

h

)and(

h

)areboundedinW 1;1+

1

0

()and



L 1+

2

()



n

respectively:

Sincethesespacesarere exive,wehavethatthereexistsubsequences,stilldenotedby(u

h )

and(

h

),suchthat

u

h

!u



weaklyin W 1;1+

1

0

(); (3.7)



h

!



weaklyin



L 1+

2

()



n

: (3.8)

From(3.7)and(3.8)itfollowsthat

u

h

!u



weaklyin W 1;1

0

(); (3.9)

 ! weaklyin



L 1

()



n

: (3.10)

(6)

Fromouroriginalproblem(3.1)wehave

Z

h

h

;Didx= Z

fdxforevery2W 1;p

0 (;

h

): (3.11)

Byusing thefact C 1

0

()W 1;p

0 (;

h

)and(3.10)wecanpasstothelimitin(3.11),thus

Z

h



;Didx= Z

fdxforevery2C 1

0 ():

Densityandthefact that

 2[L

q

()]

n

(see(3.17))thengives

Z

h



;Didx= Z

fdxforevery2W 1;p

0

( ): (3.12)

Letusnowobservethat by(3.9),(3.10) and(3.12)thetheorem isprovedifweshowthat

u

 2W

1;p

0

( ); (3.13)





=b(Du



) a.e. on; (3.14)

since the uniqueness of the solution of the homogenized problem (3.2) then implies that

u



=ua.e. on:

Westartwiththeproofof(3.13). Weobservethatsinceisaregularboundedopenset

itissuÆcienttoshowthatDu

 2[L

p

()]

n

: Let2C

0

():ThenHolder'sinequalityand

(3.4)gives

kDu

h

k

[L 1

() ] n



 Z

jDu

h j

p



h (x)dx

1

p

 Z

(

h (x) )

1

p 1

jj q

dx

1

q

C

 Z

( 

h (x) )

1

p 1

jj q

dx

 1

q

: (3.15)

Applyingliminfonbothsidesof(3.15)andusingtheweaklowersemicontinuityofthenorm

ontheleft handsideandperiodicityontherighthandsideweobtain

Z

jDu



jjjdxCkk

L q

()

forevery2C

0 ():

BydensityandLandau'stheoremwethenhavethat

Du

 2[L

p

()]

n

: (3.16)

Byusing(3.5)andargumentssimilartothoseemployedintheproofof(3.16)itcanalsobe

deducedthat



 2[L

q

() ] n

: (3.17)

Itremainstoprove(3.14). Forthispurposeletusde nethetestfunction

w



h

(x)=( ;x)+ 1

h u



h (hx);

where u



h

is de ned as in the auxiliaryproblem (see Section 4). To be able to apply the

compensatedcompactnessresult(Lemma2.2)wehavetoprovecertainfactsaboutw



h and

a



hx;h 2

x;Dw



h



. Therefore,byperiodicity,(4.5)andthefactthat

h

(x)=

h

(hx)weget

Z

Dw



h

p



h

(x)dxC : (3.18)

Moreover,byusing(2.7)and(3.18) weobtain

Z

ja(hx;h 2

x;Dw



h )j

q

(

h ( x))

1=(p 1)

dxC :

(7)

ByperiodicityandLemma 2.3wehavethat

w



h

( )!( ;) in L 1

();

a



hx;h 2

x;Dw



h



! 1

jYj Z

Y b

Y

y;+Du





dy=b() weaklyin



L 1

()



n

:

Finally,dueto(4.6),wecanapplyLemma2.4on(4.1)andobtain

div



a



hx;h 2

x;Dw



h



=0onC 1

0 ();

andwearenowreadytoapplythecompensatedcompactnessresult. Indeed,bythemono-

tonicityofawehavefora xed  that

Z

D



h a



hx;h 2

x;Dw



h (x)



;Du

h

(x) Dw



h (x)

E

( x)dx0

forevery2C 1

0

( ),0:Bythecompensated compactnesslemma (Lemma 2.2)with

theweight =1,wegetinthelimit

Z

h



b();Du



(x) i( x)dx0

forevery2C 1

0

();0:Henceforour xed2R n

wehavethat

h



b();Du



(x) i0fora.e. x2:

Bydensityandthecontinuityofb (seeLemma5.2),itfollowsthat

h



b();Du



( x) i0fora.e. x2andevery2R n

:

Since b is monotone (5.3)and continuous (5.4),wehave that b is maximalmonotone and

hence (3.14) follows. Finally, let us observe that we have provedthe theorem only up to

asubsequence;but sincethehomogenizedoperator isuniquelyde ned andthesolutionof

thehomogenized problemis uniquewecanconcludethat thetheorem holdsfor thewhole

sequence.

x4. An AuxiliaryProblem

Inthis section weprovea homogenizationresult forthe auxiliaryproblem. This result

was used in the de nition of the special type of test functions de ned in the proof of the

mainresult(Theorem3.1)ofthispaper.

Fix andconsiderthefollowingDirichletproblems:

 R

Y

ha(y;hy;+Du



h

);Didy=0,82W 1;p

per Y;

h



;

u



h 2W

1;p

per Y;

h



:

(4.1)

Bystandard resultsin existencetheory there exist uniquesolutions for each h: Belowwe

statetheauxiliaryresultofthispaper.

Theorem4.1. Let



u



h



bethe solutionsof (4.1). Wethenhave that

u



h

!u



weakly inW 1;1

per (Y);

a



y;hy;+Du



h



!b

Y

y;+Du





weakly in



L 1

(Y)



n

;

ash!1;where u



isthe uniquesolution of

 R

Y

b

Y

y;+Du





;D

dy=0for every2W 1;p

per (Y);

u



2W 1;p

per (Y):

(4.2)

The operator b

Y

:Y R n

!R n

isde nedasb

Y

(y;)= N

P

i=1



i (y)b

i

( ); where

b

i ()=

1

jZj Z

a

i

(z; +Dv



i (z))dz

(8)

andv



i

arethe uniquesolutions ofthe Z-cellproblems

 R

Z h a

i

(z; +Dv



i

(z));D( z)idz=0,82W 1;p

per ( Z ;

i );

v



i 2W

1;p

per (Z ;

i ):

(4.3)

Proof. By(2.8),(4.1)and(2.7)wehavethat

Z

Y

j+Du



h j

p



h

(y)dyC

b

 Z

Y



h

( y)dy+C

a Z

Y



1+j+Du



h j

p 1





h

(y)jjdy



:

Moreover,ifweuseYoung's inequality onthe righthand side and rearrangethe resulting

inequalityweobtain



1 C

a C

b 2

q 1



q

 Z

Y

j+Du



h j

p



h (y)dy

C

b



1+ C

a 2

q 1



q +

C

a jj

p

 (p 1)

p

 Z

Y



h ( y)dy;

where isapositiverealnumber. Bychoosing smallenoughwegetthat

Z

Y

j+Du



h j

p



h

(y)dyC : (4.4)

Inparticularthisimplies

Z

Y jDu



h j

p



h

( y)dyC : (4.5)

Letusde ne i

h

=a

i

(hy;+Du



h

): Byusing(2.7)and(4.4),itfollowsthat

Z

i

 i

h

q

(

i (hy))

1=(p 1)

dyC : (4.6)

Moreover,by using (2.11), (4.5),(2.10), (4.6)andargumentssimilar tothose employed in

theproofof(3.6),itcanbededucedthat

Z

Y

Du



h

1+1

dyC ; Z

i

 i

h

1+

2

dyC :

Thuswehavethat



u



h



and  i

h



areboundedinW 1;1+1

per

(Y)and



L 1+2

(

i )



n

respectively:

Sincethese spaces arere exive,there exist subsequences,still denotedby



u



h



and  i

h



;

suchthat

u



h

!u





weaklyinW 1;1+1

per

(Y);  i

h

! i



weaklyin



L 1+2

(

i )



n

:

Hencewecan concludethat

u



h

!u





weaklyinW 1;1

per

(Y);  i

h

! i



weaklyin



L 1

(

i )



n

: (4.7)

Usingsimilarideasasintheproofof(3.16),itcanbeshownthat

 i

 2[L

q

(Y)]

n

: (4.8)

From(4.1)and(4.7)itfollowsthat

N

X

i=1 Z

i

 i



;D

dy=0forevery2C 1

per ( Y):

Densityargumentsin conjunctionwith(4.8)thenresultsin

N

X Z

i

 i



;D

dy=0forevery2W 1;p

per ( Y):

(9)

Thusthetheoremisprovedifweshowthat

u



 2W

1;p

per

( Y); (4.9)

 i



=b

i

+Du







a.e. on

i

; (4.10)

since the uniqueness of the solution of the homogenized problem (4.2) then implies that

u





=u



a.e. onY:

Let us start with (4.9). We observe that since Y is a regular bounded open set it is

suÆcient to showthat Du



 2 [L

p

(Y)]

n

which is obtained using the sameideas asin the

proofof(3.16).

Itremainstoprove(4.10). Thereforeletusde nethetestfunction w

;i

h by

w

;i

h

(y)=(;y)+ 1

h v



i

(hy); (4.11)

where v



i 2 W

1;p

per (Z ;

i

) isde ned as in (4.3). To be ableto applythe compensated com-

pactnessresult(Lemma2.2) wehaveto provecertainfacts aboutw

;i

h anda

i



hy;Dw

;i

h



.

Indeed,

Z

i jDw

;i

h j

p



i

(hy)dyC (4.12)

followsfrom(4.11). Moreover,wealsohavethat

Z

i ja

i

(hy;Dw

;i

h )j

q

(

i (hy))

1=(p 1)

dyC

by(2.7)and(4.12). Byperiodicityweobtain

w

;i

h

()!( ;) stronglyinL 1

(

i );

a

i

(hy;Dw

;i

h )!

1

jZj Z

Z a

i

(z;+Dv



i

(z))dz=b

i

() weaklyin



L 1

(

i )



n

:

Applicationof Lemma 2.4on(4.3)givesdiv (a

i

(hy;Dw

;i

h

))=0onC 1

0 (

i

): Bythe mono-

tonicityofa

i

wehavefora xed  that

Z

i h

i

 a

i

(hy;Dw

;i

h

(y));+Du



h

(y) Dw

;i

h

(y)i( y)dy0

forevery2C 1

0 (

i

),0:Bythecompensatedcompactnesslemma(Lemma 2.2)with

=1;wethengetinthelimit

Z

i

 i

 b

i

();+Du



 (y) 

(y)dy0

forevery2C 1

0 (

i

); 0:Henceforour xed 2R n

wehavethat

 i

 b

i

();+Du



 ( y) 

0fora.e. y2

i :

Bydensityandthecontinuityofb

i

(5.2),itfollowsthat

a

 b

i

( );+Du



 ( y) 

0fora.e. y2

i

andevery 2R n

.

Sinceb

i

ismonotone(5.1)andcontinuous(5.2),wehavethatb

i

ismaximalmonotoneand

hence(4.10)follows.

x5. PropertiesoftheHomogenized Operators b

i

andb

Inthissectionwelistsomepropertiesofthehomogenizedoperatorsb

i

andb. Inparticular

these properties imply the existence and uniqueness of the solution of the homogenized

problem(intheauxiliaryand mainproblemrespectively).

Lemma5.1. Letb bethe homogenizedoperator de nedin Theorem 4:1. Then

(10)

(a)b

i

()isstrictly monotone. Inparticular, we havethat

hb

i (

1 ) b

i (

2 );

1



2 iec

2 (1+j

1 j+j

2 j)

p

j

1



2 j

(5.1)

for every

1

;

2 2R

n

:

(b)b

i

()iscontinuous. Inparticular, wehave for =

that

jb

i ( 

1 ) b

i (

2 )jec

1 (1+j

1 j+j

2 j)

p 1

j

1



2 j

(5.2)

for every

1

;

2 2R

n

:

(c) b

i

(0)=0:

Proof. Thesepropertiesfollowbyusingthesameideasasin[3]and[4].

Lemma5.2. Letb bethe homogenizedoperator de nedin Theorem 3:1. Then

(a)b()isstrictly monotone. Inparticular, we havethat

h b(

1 ) b(

2 );

1



2 i

e

C

2 (1+j

1 j+j

2 j)

p

j

1



2 j

(5.3)

for every

1

;

2 2R

n

:

(b)b()iscontinuous. Inparticular, wehavefor Æ=

=

( ) that

jb(

1 ) b(

2 )j

e

C

1 (1+j

1 j+j 

2 j)

p 1 Æ

j

1



2 j

Æ

(5.4)

for every

1

;

2 2R

n

:

(c) b(0)=0:

Proof. These properties follow by using (5.1) and (5.2) in the corresponding theorem

givenin forexample[3]and[4].

References

[1] Bensoussan,A.,Lions,J.L.&Papanicolaou,G.,Asymptoticanalysisforperiodicstructures[M],North

Holland,Amsterdam,1978.

[2] Braides,A.&Defranceschi,A.,Homogenizationofmultipleintegrals[M],OxfordUniversityPress,New

York,1998.

[3] Bystrom,J., Correctorsfor somenonlinear monotone operators [R],Research report, No. 11, ISSN:

1400{4003,DepartmentofMathematics,LuleaUniversityofTechnology,1999.

[4] Bystrom,J.,Correctorsforsomenonlinearmonotoneoperators[J],J.NonlinearMath.Phys.,8:1(2001),

8{30.

[5] Cherkaev,A.&Kohn,R.,Topicsinthemathematicalmodellingofcompositematerials[M],Birkhauser,

Boston,1997.

[6] Chiado Piat, V. & Defranceschi, A., Homogenization of monotone operators [J], Nonlinear Anal.,

14:9(1990),717{732.

[7] Cioranescu,D.&Donato,P.,Anintroductiontohomogenization[M],OxfordUniversityPress,Oxford,

1999.

[8] Coifman,R.R.&Fe erman,C.,Weightednorminequalitiesformaximalfunctionandsingularintegrals

[J],StudiaMath.,51(1974),241{250.

[9] De Arcangelis, R. & Serra Cassano, F., Onthe homogenization of degenerate elliptic equations in

divergenceform[J],J.Math.PuresAppl.,71(1992),119{138.

[10] Defranceschi,A.,AnintroductiontohomogenizationandG-convergence[M],Lecturenotes,Schoolon

homogenization,ICTP,Trieste,1993.

[11] Fusco,N.&Moscariello,G.,Onthe homogenizationofquasilineardivergencestructureoperators[J],

AnnaliMat.Pura Appl.,146(1987),1{13.

[12] Jikov,V.,Kozlov, S.&Oleinik,O.,Homogenizationof di erentialoperators andintegralfunctionals

[M],Springer-Verlag,Berlin-Heidelberg-NewYork,1994.

[13] Lions,J.-L.,Lukkassen,D.,Persson,L.-E.&Wall,P.,Reiteratedhomogenizationofmonotoneoper-

ators[J],C.R.Acad.Sci.ParisSeriesI,330:8(2000),675{680.

[14] Lions,J.-L.,Lukkassen,D.,Persson,L.-E.&Wall,P.,Reiteratedhomogenizationofnonlinearmono-

toneoperators[J],Chin.Ann.Math.,22B:1(2001),1{12.

[15] Lukkassen,D.&Wall,P.,Onweakconvergenceoflocallyperiodicfunctions[J],J.Nonlinear. Math.

Phys.,9:1(2002),42{572002.

References

Related documents

d Prqwh Fduor surfhgxuh ri Phwursrolv w|sh/ vhh h1j1 ^7`1 Wklv lv grqh e| uvw sodflqj hyhu| lq0 foxvlrq lq d uhfwdqjxodu ru kh{djrqdo duud|1 Hdfk glvn lv wkhq jlyhq d vpdoo

Mitrea ([13]) studied the situation of A ∈ C ∞ ; Castro, Rodríguez-López and Staubach ([4]) considered Hölder matrices and Nyström ([16]) the case of complex elliptic matrices,

Consider a liquid flowing through a thin film region separated by two closely spaced moving surfaces, assuming that the fluid pressure is not vary- ing across the film thickness

Zh kdyh hydoxdwhg wzr glhuhqw zryhq frpsrvlwh uhlqirufhphqwv wkdw duh xvhg lq wkh frqvwuxfwlrq ri hqjlqh krrgv dqg wdlojdwhv rq YROYR fduv1 Wkh wdlojdwh phqwlrqhg lv fxuuhqwo|

Lq wklv sdshu zh frqvlghu wkh sureohp ri krz wr prgho wkh hodvwlf surshuwlhv ri zryhq frpsrvlwhv1 Pruh vshflf/ zh zloo xvh pdwkhpdwlfdo krprjh0 ql}dwlrq wkhru| dv d uhihuhqfh

Wklv uhlwhudwhg krprjhql}dwlrq frxog ri frxuvh eh jhqhudol}hg wr q vfdohv/ dqg zh frqfoxgh wkdw lw frxog eh d xvhixo wrro iru ghwhuplqdwlrq ri wkh vwlqhvv whqvruv ri shulrglf

[r]

(a) To prove the existence and uniqueness of continuous weak solutions to the mixed boundary value problem for quasilinear elliptic equations with con- tinuous and Sobolev