• No results found

Events / 3 GeV/c

N/A
N/A
Protected

Academic year: 2022

Share "Events / 3 GeV/c"

Copied!
47
0
0

Loading.... (view fulltext now)

Full text

(1)

Academic Training Lectures CERN 4, 5, 6, 7 April 2005

Monte Carlo Generators for the LHC

Torbj ¨orn Sj ¨ostrand

CERN and Lund University

1. (today) Introduction and Overview; Matrix Elements 2. (Tuesday) Parton Showers; Matching Issues

3. (Wednesday) Multiple Interactions and Beam Remnants

4. (Thursday) Hadronization and Decays; Summary and Outlook

(2)

Apologies

These lectures will not cover:

? Heavy-ion physics:

• without quark-gluon plasma formation, or

• with quark-gluon plasma formation.

? Specific physics studies for topics such as

• B production,

• Higgs discovery,

• SUSY phenomenology,

• other new physics discovery potential.

? The modelling of elastic and diffractive topologies.

They will cover the “normal” physics that will be there in (essentially) all LHC pp events, from QCD to exotics:

? the generation and availability of different processes,

? the addition of parton showers,

? the addition of an underlying event,

? the transition from partons to observable hadrons, plus

? the status and evolution of general-purpose generators.

(3)

Read More

These lectures (and more):

http://www.thep.lu.se/ ∼torbjorn/ and click on “Talks”

Steve Mrenna, CTEQ Summer School lectures, June 2004:

http://www.phys.psu.edu/∼cteq/schools/summer04/mrenna/mrenna.pdf Mike Seymour, Academic Training lectures July 2003:

http://seymour.home.cern.ch/seymour/slides/CERNlectures.html Bryan Webber, HERWIG lectures for CDF, October 2004:

http://www-cdf.fnal.gov/physics/lectures/herwig Oct2004.html Michelangelo Mangano, KEK LHC simulations workshop, April 2004:

http://mlm.home.cern.ch/mlm/talks/kek04 mlm.pdf The “Les Houches Guidebook to Monte Carlo Generators

for Hadron Collider Physics”, hep-ph/0403045

http://arxiv.org/pdf/hep-ph/0403045

(4)

Event Generator Position

“real life”

Machine ⇒ events produce events

“virtual reality”

Event Generator

observe & store events

Detector, Data Acquisition Detector Simulation

what is

knowable? Event Reconstruction

compare real and

simulated data Physics Analysis

conclusions, articles, talks, . . .

“quick

and dirty”

(5)

Event Generator Position

“real life”

Machine ⇒ events LHC

produce events

“virtual reality”

Event Generator PYTHIA, HERWIG observe & store events

Detector, Data Acquisition

ATLAS,CMS,LHC-B,ALICE

Detector Simulation Geant4, LCG

what is

knowable? Event Reconstruction ORCA, ATHENA

compare real and

simulated data Physics Analysis ROOT, JetClu

conclusions, articles, talks, . . .

“quick

and dirty”

(6)

Why Generators? (I)

0 1 2 3

100 150 200 250 300

Top Mass (GeV/c

2

) Top Mass (GeV/c

2

) Top Mass (GeV/c

2

) Top Mass (GeV/c

2

)

Events/10 GeV/c

2

32 33 34 35 36

150 160 170 180 190

Top Mass (GeV/c

2

) Top Mass (GeV/c

2

)

-log(likelihood)

0 1 2 3 4 5 6 7

0 20 40 60 80 100 120

m H rec (GeV/c 2 )

Events / 3 GeV/c 2

LEP

√s = 200-209 GeV

Tight

Data Background Signal (115 GeV/c2)

Data 18

Backgd 14 Signal 2.9

all > 109 GeV/c2

4 1.2 2.2

top discovery and mass determination

Higgs (non) discovery

Higgs and supersymmetry

exploration

not feasible without generators

(7)

Why Generators? (II)

• Allow theoretical and experimental studies of complex multiparticle physics

• Large flexibility in physical quantities that can be addressed

• Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

• predict event rates and topologies

⇒ can estimate feasibility

• simulate possible backgrounds

⇒ can devise analysis strategies

• study detector requirements

⇒ can optimize detector/trigger design

• study detector imperfections

⇒ can evaluate acceptance corrections

(8)

A tour to Monte Carlo

. . . because Einstein was wrong: God does throw dice!

Quantum mechanics: amplitudes =⇒ probabilities

Anything that possibly can happen, will! (but more or less often)

(9)

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, . . .

p

p/p

Incoming beams: parton densities

(10)

p

p/p

u g

W +

d

Hard subprocess: described by matrix elements

(11)

p

p/p

u g

W +

d

c s

Resonance decays: correlated with hard subprocess

(12)

p

p/p

u g

W +

d

c s

Initial-state radiation: spacelike parton showers

(13)

p

p/p

u g

W +

d

c s

Final-state radiation: timelike parton showers

(14)

p

p/p

u g

W +

d

c s

Multiple parton–parton interactions . . .

(15)

p

p/p

u g

W +

d

c s

. . . with its initial- and final-state radiation

(16)

Beam remnants and other outgoing partons

(17)

Everything is connected by colour confinement strings

Recall! Not to scale: strings are of hadronic widths

(18)

The strings fragment to produce primary hadrons

(19)

Many hadrons are unstable and decay further

(20)

Detector.gif (GIF Image, 460x434 pixels) http://atlas.web.cern.ch/Atlas/Detector.gif

1 of 1 02/06/2005 01:49 PM

These are the particles that hit the detector

(21)

The Monte Carlo method

Want to generate events in as much detail as Mother Nature

=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σ final state = σ hard process P tot,hard process→final state

(appropriately summed & integrated over non-distinguished final states) where P tot = P res P ISR P FSR P MI P remnants P hadronization P decays

with P i = Q j P ij = Q j Q k P ijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices, (flavour, mass, momentum, spin, production vertex, lifetime, . . . ) LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)

=⇒ several thousand choices

(of O(100) different kinds)

(22)

Generator Landscape

Hard Processes Resonance Decays

Parton Showers Underlying Event

Hadronization

Ordinary Decays

General-Purpose

HERWIG

PYTHIA

ISAJET

SHERPA

Specialized a lot

HDECAY, . . .

Ariadne/LDC, NLLjet

DPMJET

none (?)

TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core

(23)

Generator Homepages

HERWIG

http://hepwww.rl.ac.uk/theory/seymour/herwig/

PYTHIA

http://www.thep.lu.se/∼torbjorn/Pythia.html ISAJET

http://www.phy.bnl.gov/∼isajet/

SHERPA

http://www.physik.tu-dresden.de/∼krauss/hep/

HEPCODE Program Listing

http://www.ippp.dur.ac.uk/%7Ewjs/HEPCODE/index.html

(24)

Matrix Elements and Their Usage

L

⇒ Feynman rules

⇒ Matrix Elements

⇒Cross Sections +Kinematics

⇒ Processes

⇒ . . . ⇒

text

(25)

Cross sections and kinematics

u (1)

d (4) d (2)

u (3) g

ˆ s = (p 1 + p 2 ) 2

ˆ t = (p 1 − p 3 ) 2 = −ˆ s(1 − cos ˆ θ)/2 u = (p ˆ 1 − p 4 ) 2 = −ˆ s(1 + cos ˆ θ)/2

qq 0 → qq 0 : dˆ σ

dˆ t = π ˆ s 2

4

9 α 2 s ˆ s 2 + ˆ u 2

ˆ t 2 (∼ Rutherford)

p (A)

p (B)

1 2

s = (p A + p B ) 2 x 1 ≈ E 1 /E A x 2 ≈ E 2 /E B ˆ s = x 1 x 2 s

σ = X

i,j

ZZZ

dx 1 dx 2 dˆ t f i (A) (x 1 , Q 2 ) f j (B) (x 2 , Q 2 ) dˆ σ ij

dˆ t

(26)

Parton Distribution/Density Functions (PDF)

initial

conditions

nonpertubative

evolution pertubative (DGLAP)

http://durpdg.dur.ac.uk/hepdata/pdf.html

(27)

Peaking of PDF’s at small x and of QCD ME’s at low p

=⇒ most of the physics is at low transverse momenta . . .

(GeV) Inclusive Jet Measured E T

0 100 200 300 400 500 600

(nb/GeV) η d T / dE σ 2 d

10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10

10 2 CDF Run II Preliminary Integrated L = 177 pb -1 JetClu Cone R = 0.7

Uncorrected

| < 0.7 η Det

0.1 < |

| < 1.4 η Det

0.7 < |

| < 2.1 η Det

1.4 < |

| < 2.8 η Det

2.1 < |

. . . but New Physics likely to show up at large masses/p ’s

(28)

The Smaller Picture: Subprocess Survey

Kind Process PYT HER ISA

QCD & related Soft QCD ? ? ?

Hard QCD ? ? ?

Heavy flavour ? ? ?

Electroweak SM Single γ /Z 0 /W ± ? ? ? (γ/γ /Z 0 /W ± /f/g) 2 ? ? ?

Light SM Higgs ? ? ?

Heavy SM Higgs ? ? ?

SUSY BSM h 0 /H 0 /A 0 /H ± ? ? ?

SUSY ? ? ?

R/ SUSY ? ? —

Other BSM Technicolor ? — (?)

New gauge bosons ? — —

Compositeness ? — —

Leptoquarks ? — —

H ±± (from LR-sym.) ? — —

Extra dimensions (?) (?) (?)

(29)

PYTHIA Process Library

No. Subprocess Hard QCD processes:

11 f

i

f

j

→ f

i

f

j

12 f

i

f

i

→ f

k

f

k

13 f

i

f

i

→ gg 28 f

i

g → f

i

g 53 gg → f

k

f

k

68 gg → gg Soft QCD processes:

91 elastic scattering 92 single diffraction (XB) 93 single diffraction (AX) 94 double diffraction 95 low-p

production Open heavy flavour:

(also fourth generation) 81 f

i

f

i

→ Q

k

Q

k

82 gg → Q

k

Q

k

83 q

i

f

j

→ Q

k

f

l

84 gγ → Q

k

Q

k

85 γγ → F

k

F

k

Closed heavy flavour:

86 gg → J/ψg 87 gg → χ

0c

g 88 gg → χ

1c

g 89 gg → χ

2c

g 104 gg → χ

0c

105 gg → χ

2c

106 gg → J/ψγ 107 gγ → J/ψg 108 γγ → J/ψγ W/Z production:

1 f

i

f

i

→ γ

/Z

0

2 f

i

f

j

→ W

±

22 f

i

f

i

→ Z

0

Z

0

23 f

i

f

j

→ Z

0

W

±

25 f

i

f

i

→ W

+

W

15 f

i

f

i

→ gZ

0

16 f

i

f

j

→ gW

±

30 f

i

g → f

i

Z

0

31 f

i

g → f

k

W

±

19 f

i

f

i

→ γZ

0

20 f

i

f

j

→ γW

±

35 f

i

γ → f

i

Z

0

No. Subprocess 36 f

i

γ → f

k

W

±

69 γγ → W

+

W

70 γW

±

→ Z

0

W

±

Prompt photons:

14 f

i

f

i

→ gγ 18 f

i

f

i

→ γγ 29 f

i

g → f

i

γ 114 gg → γγ 115 gg → gγ Deeply Inel. Scatt.:

10 f

i

f

j

→ f

k

f

l

99 γ

q → q Photon-induced:

33 f

i

γ → f

i

g 34 f

i

γ → f

i

γ 54 gγ → f

k

f

k

58 γγ → f

k

f

k

131 f

i

γ

T

→ f

i

g 132 f

i

γ

L

→ f

i

g 133 f

i

γ

T

→ f

i

γ 134 f

i

γ

L

→ f

i

γ 135 gγ

T

→ f

i

f

i

136 gγ

L

→ f

i

f

i

137 γ

T

γ

T

→ f

i

f

i

138 γ

T

γ

L

→ f

i

f

i

139 γ

L

γ

T

→ f

i

f

i

140 γ

L

γ

L

→ f

i

f

i

80 q

i

γ → q

k

π

±

Light SM Higgs:

3 f

i

f

i

→ h

0

24 f

i

f

i

→ Z

0

h

0

26 f

i

f

j

→ W

±

h

0

32 f

i

g → f

i

h

0

102 gg → h

0

103 γγ → h

0

110 f

i

f

i

→ γh

0

111 f

i

f

i

→ gh

0

112 f

i

g → f

i

h

0

113 gg → gh

0

121 gg → Q

k

Q

k

h

0

122 q

i

q

i

→ Q

k

Q

k

h

0

123 f

i

f

j

→ f

i

f

j

h

0

124 f

i

f

j

→ f

k

f

l

h

0

No. Subprocess New gauge bosons:

141 f

i

f

i

→ γ/Z

0

/Z

0 0

142 f

i

f

j

→ W

0 +

144 f

i

f

j

→ R Heavy SM Higgs:

5 Z

0

Z

0

→ h

0

8 W

+

W

→ h

0

71 Z

0L

Z

0L

→ Z

0L

Z

0L

72 Z

0L

Z

0L

→ W

+L

W

L

73 Z

0L

W

±L

→ Z

0L

W

L±

76 W

+L

W

L

→ Z

0L

Z

0L

77 W

±L

W

±L

→ W

L±

W

±L

BSM Neutral Higgs:

151 f

i

f

i

→ H

0

152 gg → H

0

153 γγ → H

0

171 f

i

f

i

→ Z

0

H

0

172 f

i

f

j

→ W

±

H

0

173 f

i

f

j

→ f

i

f

j

H

0

174 f

i

f

j

→ f

k

f

l

H

0

181 gg → Q

k

Q

k

H

0

182 q

i

q

i

→ Q

k

Q

k

H

0

183 f

i

f

i

→ gH

0

184 f

i

g → f

i

H

0

185 gg → gH

0

156 f

i

f

i

→ A

0

157 gg → A

0

158 γγ → A

0

176 f

i

f

i

→ Z

0

A

0

177 f

i

f

j

→ W

±

A

0

178 f

i

f

j

→ f

i

f

j

A

0

179 f

i

f

j

→ f

k

f

l

A

0

186 gg → Q

k

Q

k

A

0

187 q

i

q

i

→ Q

k

Q

k

A

0

188 f

i

f

i

→ gA

0

189 f

i

g → f

i

A

0

190 gg → gA

0

Charged Higgs:

143 f

i

f

j

→ H

+

161 f

i

g → f

k

H

+

401 gg → tbH

+

402 qq → tbH

+

No. Subprocess Higgs pairs:

297 f

i

f

j

→ H

±

h

0

298 f

i

f

j

→ H

±

H

0

299 f

i

f

i

→ A

0

h

0

300 f

i

f

i

→ A

0

H

0

301 f

i

f

i

→ H

+

H

Leptoquarks:

145 q

i

`

j

→ L

Q

162 qg → `L

Q

163 gg → L

Q

L

Q

164 q

i

q

i

→ L

Q

L

Q

Technicolor:

149 gg → η

tc

191 f

i

f

i

→ ρ

0tc

192 f

i

f

j

→ ρ

+tc

193 f

i

f

i

→ ω

tc0

194 f

i

f

i

→ f

k

f

k

195 f

i

f

j

→ f

k

f

l

361 f

i

f

i

→ W

+L

W

L

362 f

i

f

i

→ W

±L

π

tc

363 f

i

f

i

→ π

+tc

π

tc

364 f

i

f

i

→ γπ

tc0

365 f

i

f

i

→ γπ

00tc

366 f

i

f

i

→ Z

0

π

tc0

367 f

i

f

i

→ Z

0

π

00tc

368 f

i

f

i

→ W

±

π

tc

370 f

i

f

j

→ W

±L

Z

0L

371 f

i

f

j

→ W

±L

π

tc0

372 f

i

f

j

→ π

±tc

Z

0L

373 f

i

f

j

→ π

±tc

π

tc0

374 f

i

f

j

→ γπ

tc±

375 f

i

f

j

→ Z

0

π

tc±

376 f

i

f

j

→ W

±

π

tc0

377 f

i

f

j

→ W

±

π

00tc

381 q

i

q

j

→ q

i

q

j

382 q

i

q

i

→ q

k

q

k

383 q

i

q

i

→ gg 384 f

i

g → f

i

g 385 gg → q

k

q

k

386 gg → gg 387 f

i

f

i

→ Q

k

Q

k

388 gg → Q

k

Q

k

No. Subprocess Compositeness:

146 eγ → e

147 dg → d

148 ug → u

167 q

i

q

j

→ d

q

k

168 q

i

q

j

→ u

q

k

169 q

i

q

i

→ e

±

e

∗∓

165 f

i

f

i

(→ γ

/Z

0

) → f

k

f

k

166 f

i

f

j

(→ W

±

) → f

k

f

l

Extra Dimensions:

391 ff → G

392 gg → G

393 qq → gG

394 qg → qG

395 gg → gG

Left–right symmetry:

341 `

i

`

j

→ H

±±L

342 `

i

`

j

→ H

±±R

343 `

±i

γ → H

±±L

e

344 `

±i

γ → H

±±R

e

345 `

±i

γ → H

±±L

µ

346 `

±i

γ → H

±±R

µ

347 `

±i

γ → H

±±L

τ

348 `

±i

γ → H

±±R

τ

349 f

i

f

i

→ H

++L

H

−−L

350 f

i

f

i

→ H

++R

H

−−R

351 f

i

f

j

→ f

k

f

l

H

±±L

352 f

i

f

j

→ f

k

f

l

H

±±R

353 f

i

f

i

→ Z

0R

354 f

i

f

j

→ W

±R

SUSY:

201 f

i

f

i

→ ˜ e

L

˜e

L

202 f

i

f

i

→ ˜ e

R

˜e

R

203 f

i

f

i

→ ˜ e

L

˜e

R

+ 204 f

i

f

i

→ ˜ µ

L

µ ˜

L

205 f

i

f

i

→ ˜ µ

R

µ ˜

R

206 f

i

f

i

→ ˜ µ

L

µ ˜

R

+ 207 f

i

f

i

→ ˜ τ

1

τ ˜

1

208 f

i

f

i

→ ˜ τ

2

τ ˜

2

209 f

i

f

i

→ ˜ τ

1

τ ˜

2

+

No. Subprocess 210 f

i

f

j

→ ˜ `

L

ν ˜

`

+ 211 f

i

f

j

→ ˜ τ

1

ν ˜

τ

+ 212 f

i

f

j

→ ˜ τ

2

ν ˜

τ

+ 213 f

i

f

i

→ ˜ ν

`

ν ˜

`∗

214 f

i

f

i

→ ˜ ν

τ

ν ˜

τ

216 f

i

f

i

→ ˜ χ

1

χ ˜

1

217 f

i

f

i

→ ˜ χ

2

χ ˜

2

218 f

i

f

i

→ ˜ χ

3

χ ˜

3

219 f

i

f

i

→ ˜ χ

4

χ ˜

4

220 f

i

f

i

→ ˜ χ

1

χ ˜

2

221 f

i

f

i

→ ˜ χ

1

χ ˜

3

222 f

i

f

i

→ ˜ χ

1

χ ˜

4

223 f

i

f

i

→ ˜ χ

2

χ ˜

3

224 f

i

f

i

→ ˜ χ

2

χ ˜

4

225 f

i

f

i

→ ˜ χ

3

χ ˜

4

226 f

i

f

i

→ ˜ χ

±1

χ ˜

1

227 f

i

f

i

→ ˜ χ

±2

χ ˜

2

228 f

i

f

i

→ ˜ χ

±1

χ ˜

2

229 f

i

f

j

→ ˜ χ

1

χ ˜

±1

230 f

i

f

j

→ ˜ χ

2

χ ˜

±1

231 f

i

f

j

→ ˜ χ

3

χ ˜

±1

232 f

i

f

j

→ ˜ χ

4

χ ˜

±1

233 f

i

f

j

→ ˜ χ

1

χ ˜

±2

234 f

i

f

j

→ ˜ χ

2

χ ˜

±2

235 f

i

f

j

→ ˜ χ

3

χ ˜

±2

236 f

i

f

j

→ ˜ χ

4

χ ˜

±2

237 f

i

f

i

→ ˜ g ˜ χ

1

238 f

i

f

i

→ ˜ g ˜ χ

2

239 f

i

f

i

→ ˜ g ˜ χ

3

240 f

i

f

i

→ ˜ g ˜ χ

4

241 f

i

f

j

→ ˜ g ˜ χ

±1

242 f

i

f

j

→ ˜ g ˜ χ

±2

243 f

i

f

i

→ ˜ g˜ g 244 gg → ˜g˜g 246 f

i

g → ˜q

iL

χ ˜

1

247 f

i

g → ˜q

iR

χ ˜

1

248 f

i

g → ˜q

iL

χ ˜

2

249 f

i

g → ˜q

iR

χ ˜

2

No. Subprocess 250 f

i

g → ˜q

iL

χ ˜

3

251 f

i

g → ˜q

iR

χ ˜

3

252 f

i

g → ˜q

iL

χ ˜

4

253 f

i

g → ˜q

iR

χ ˜

4

254 f

i

g → ˜q

j L

χ ˜

±1

256 f

i

g → ˜q

j L

χ ˜

±2

258 f

i

g → ˜q

iL

˜ g 259 f

i

g → ˜q

iR

˜ g 261 f

i

f

i

→ ˜ t

1

˜t

1

262 f

i

f

i

→ ˜ t

2

˜t

2

263 f

i

f

i

→ ˜ t

1

˜t

2

+ 264 gg → ˜t

1

˜t

1

265 gg → ˜t

2

˜t

2

271 f

i

f

j

→ ˜ q

iL

q ˜

j L

272 f

i

f

j

→ ˜ q

iR

˜ q

j R

273 f

i

f

j

→ ˜ q

iL

q ˜

j R

+ 274 f

i

f

j

→ ˜ q

iL

q ˜

j L

275 f

i

f

j

→ ˜ q

iR

˜ q

j R

276 f

i

f

j

→ ˜ q

iL

q ˜

j R

+ 277 f

i

f

i

→ ˜ q

j L

q ˜

j L

278 f

i

f

i

→ ˜ q

j R

˜ q

j R

279 gg → ˜q

iL

q ˜

i L

280 gg → ˜q

iR

˜ q

i R

281 bq

i

→ ˜ b

1

˜ q

iL

282 bq

i

→ ˜ b

2

˜ q

iR

283 bq

i

→ ˜ b

1

˜ q

iR

+ 284 bq

i

→ ˜ b

1

˜ q

i L

285 bq

i

→ ˜ b

2

˜ q

i R

286 bq

i

→ ˜ b

1

˜ q

i R

+ 287 f

i

f

i

→ ˜ b

1

˜ b

1

288 f

i

f

i

→ ˜ b

2

˜ b

2

289 gg → ˜b

1

˜ b

1

290 gg → ˜b

2

˜ b

2

291 bb → ˜b

1

b ˜

1

292 bb → ˜b

2

b ˜

2

293 bb → ˜b

1

b ˜

2

294 bg → ˜b

1

˜ g

295 bg → ˜b

2

˜ g

296 bb → ˜b

1

b ˜

2

+

(30)

HERWIG Process Library

IPROC Process

100 `+`→q ¯q(g) (all q flavours)

100+IQ `+`→q ¯q(g) (IQ = 1, 2, 3, 4, 5, 6 for q = d, u, s, c, b, t) 107 `+`→gg(g) (fictitious process)

110 `+`→q ¯qg (all flavours) 110+IQ `+`→q ¯qg (IQ as above)

120 `+`→q ¯q (all flavours, no hard gluon correction) 120+IQ `+`→q ¯q (IQ as above, no hard gluon correction)

127 `+`→gg (fictitious process, no hard gluon correction) 150+IL `+`→`00(IL = 1, 2, 3 for `0= e, µ, τ , N.B. ` 6= `0)

200 `+`→W+W(see sect. ?? on control of W/Z decays) 250 `+`→Z0Z0(see sect. ?? on control of W/Z decays) 300 `+`→Z0HSM0 →Z0q ¯q (all flavours)

300+IQ `+`→Z0HSM0 →Z0q ¯q (IQ as above) 306+IL `+`→Z0HSM0 →Z0`¯` (IL as above) 310, 311 `+`→Z0HSM0 →Z0W+W, Z0Z0Z0

312 `+`→Z0HSM0 →Z0γγ 399 `+`→Z0HSM0 →Z0anything

400+ID `+`→ν ¯νH0SM+ `+`H0SM(ID as in IPROC = 300 + ID) 500+ID `+`→`+`γγ → `+`q ¯q/`¯`/W+W

(ID=0–10 as in IPROC = 300 + ID)

550+ID `+`→`ν`γW → `ν`q ¯q0/`¯`0(ID=0–9 as in IPROC = 300 + ID) 600 `+`→q ¯qgg, q ¯qq00(all q flavours)

600+IQ `+`→q ¯qgg, q ¯qq00(IQ as above)

After generation, IHPRO is subprocess (see sect. ??) 700-99 Minimal Supersymmetric Standard Model (MSSM) processes

700 `+`→2-sparticle processes (sum of 710, 730, 740 and 760) 710 `+`→neutralino pairs (all neutralinos)

706+4IN1+IN2 `+`→eχ0IN10IN2(IN1,2=neutralino mass eigenstate) 730 `+`→chargino pairs (all charginos)

728+2IC1+IC2 `+`→eχ+IC1χeIC2(IC1,2=chargino mass eigenstate) 740 `+`→slepton pairs (all flavours)

736+5IL `+`→e`L,Re`L,R(IL = 1, 2, 3 fore` = ˜e, ˜µ, ˜τ ) 737+5IL `+`→e`Le`L(IL as above)

738+5IL `+`→e`Le`R(IL as above) 739+5IL `+`→e`Re`R(IL as above) 740+5IL `+`→eνLL(IL = 1, 2, 3 foreνe,eνµ,νeτ)

760 `+`→squark pairs (all flavours)

757+4IQ `+`→eqL,RqeL,R(IQ = 1, 2, 3, 4, 5, 6 foreq = ˜d, ˜u, ˜s, ˜c, ˜b, ˜t) 758+4IQ `+`→eqLeqL(IQ as above)

759+4IQ `+`→eqLeqR(IQ as above) 760+4IQ `+`→eqReqR(IQ as above)

800-99 R-parity violating supersymmetric processes 800 Single sparticle production, sum of 810–840 810 `+`→eχ0νi, (all neutralinos) 810+IN `+`→eχ0INνi, (IN=neutralino mass state)

820 `+`→eχe+i (all charginos) 820+IC `+`→eχICe+i, (IC=chargino mass state)

830 `+`→eνiZ0and `+`→e`+iW 840 `+`→eνih0/H0/A0and `+`→e`+iH 850 `+`→eνiγ

860 Sum of 870 and 880 870 `+`→`+`, via LLE only 867+3IL1+IL2 `+`→`+IL1`IL2(IL1,2=1,2,3 for e, µ, τ )

880 `+`→ ¯dd, via LLE and LQD 877+3IQ1+IQ2 `+`→dIL1IL2(IQ1,2=1,2,3 for d, s, b)

910 `+`→νe¯νeh0+ e+eh0 920 `+`→νe¯νeH0+ e+eH0 960 `+`→Z0h0 970 `+`→Z0H0 955 `+`→H+H 965 `+`→A0h0 965 `+`→A0H0

1000+ID `+`→t ¯t HSM0 (ID as in IPROC=300+ID) 1110+IQ `+`→q ¯q h0(IQ as in IPROC=100+IQ) 1116+IL `+`→`+`h0(IL=1,2,3 for e, µ, τ ) 1120+IQ `+`→q ¯q H0(IQ as in IPROC=100+IQ) 1126+IL `+`→`+`H0(IL=1,2,3 for e, µ, τ ) 1130+IQ `+`→q ¯q A0(IQ as in IPROC=100+IQ) 1136+IL `+`→`+`A0(IL=1,2,3 for e, µ, τ )

1140 `+`→d ¯u H++ ch. conj.

1141 `+`→s ¯c H++ ch. conj.

1142 `+`→b ¯t H++ ch. conj.

1143 `+`→e ¯νeH++ ch. conj.

1144 `+`→µ ¯νµH++ ch. conj.

IPROC Process

1145 `+`→τ ¯ντH++ ch. conj.

1200–99 Reserved for other `+`processes 1300 q ¯q → Z0/γ → q00(all flavours)

1300+IQ q ¯q → Z0/γ → q00(IQ = 1, 2, 3, 4, 5, 6 for q = d, u, s, c, b, t) 1350 q ¯q → Z0/γ → `¯` (all lepton species)

1350+IL q ¯q → Z0/γ → `¯` (IL = 1 − 6 for ` = e, νe, µ, νµ, etc.) 1399 q ¯q → Z0/γ → anything

1400 q ¯q → W±→q000(all flavours) 1400+IQ q ¯q → W±→q000(q0or q00as above)

1450 q ¯q → W±→`ν`(all lepton species) 1450+IL q ¯q → W±→`ν`(IL = 1, 2, 3 for ` = e, µ, τ )

1499 q ¯q → W±→anything 1500 QCD 2 → 2 hard parton scattering

After generation, IHPRO is subprocess (see sect. ??) 1600+ID gg/q ¯q → H0SM(ID as in IPROC = 300 + ID) 1700+IQ QCD heavy quark production (IQ as above)

After generation, IHPRO is subprocess (see sect. ??) 1800 QCD direct photon + jet production

After generation, IHPRO is subprocess (see sect. ??) 1900+ID q ¯q → q00W+W/Z0Z0→q00H0SM(ID as in IPROC = 300 + ID)

2000 t production via W±exchange (sum of 2001–2008) 2001–4 ¯u¯b → ¯d¯t , d¯b → u¯t , d¯b → ¯¯ u¯t , ub → dt 2005–8 ¯c¯b → ¯s¯t , s¯b → c¯t , ¯sb → ¯ct , cb → st

2100 W±+ jet production

2110 W±+ jet production (Compton only: gq → W q) 2120 W±+ jet production (annihilation only: q ¯q → W g) 2150 Z0+ jet production

2160 Z0+ jet production (Compton only: gq → Zq) 2170 Z0+ jet production (annihilation only: q ¯q → Zg) 2200 QCD direct photon pair production

After generation, IHPRO is subprocess (see sect. ??) 2300+ID QCD SM Higgs + jet production (ID as in IPROC=300+ID)

After generation, IHPRO is subprocess (see sect. ??) 2400 Mueller-Tang colour singlet exchange 2450 Quark scattering via photon exchange 2500+ID gg/q ¯q → t¯tHSM0 (ID as in IPROC=300+ID) 2600+ID q ¯q0→W±H0SM(ID as in IPROC=300+ID) 2700+ID q ¯q → Z0HSM0 (ID as in IPROC=300+ID)

2800 W+Wproduction in hadron-hadron collisions

2810 Z0Z0production in hadron-hadron collisions (including photon terms) 2815 Z0Z0production in hadron-hadron collisions (Z0only)

2820 W±Z0production in hadron-hadron collisions (including photon terms) 2825 W±Z0production in hadron-hadron collisions (Z0only)

2850 hadron-hadron → W+WX using MC@NLO 2860 hadron-hadron → Z0Z0X using MC@NLO 2870 hadron-hadron → W+Z0X using MC@NLO 2880 hadron-hadron → WZ0X using MC@NLO

2900+IQ gg + q ¯q → Q ¯QZ0for massless Q and ¯Q (IQ=1. . . 6 for Q = d . . . t) 2910+IQ gg + q ¯q → Q ¯QZ0, for massive Q and ¯Q (IQ=1. . . 6 for Q = d . . . t) 3000-3999 Minimal Supersymmetric Standard Model (MSSM) processes

3000 2-parton → 2-sparticle processes (sum of those below) 3010 2-parton → 2-sparton processes

3020 2-parton → 2-gaugino processes 3030 2-parton → 2-slepton processes

3100+ISQ gg/q ¯q → ˜q ˜q0H±(ISQ=IPROC−3100 as from table ??) 3200+ISQ gg/q ¯q → ˜q ˜q0h, H, A (ISQ=IPROC−3200 as from table ??) 3310,3315 q ¯q0→W±h0, H±h0(all q, q0flavours – gauge bosons mediated only) 3320,3325 q ¯q0→W±H0, H±H0(”)

3335 q ¯q0→H±A0(”)

3350 q ¯q → W±H(Higgstrahlung and Higgs mediated) 3355 q ¯q → H±H(all q flavours — gauge boson mediated only) 3360,3365 q ¯q → Z0h0, A0h0(”)

3370,3375 q ¯q → Z0H0, A0H0(”) 3410 bg → b h0+ ch. conj.

3420 bg → b H0+ ch. conj.

3430 bg → b A0+ ch. conj.

3450 bg → t H+ ch. conj.

3500 bq → bq0H±+ ch. conj.

3610 q ¯q/gg → h0(light scalar Higgs) 3620 q ¯q/gg → H0(heavy scalar Higgs) 3630 q ¯q/gg → A0(pseudoscalar Higgs) 3710 q ¯q → q00W+W/Z0Z0→q00h0 3720 q ¯q → q00W+W/Z0Z0→q00H0

3810+IQ gg + q ¯q → Q ¯Qh0(all q flavours in s-channel, IQ as usual for Q flavour) 3820+IQ gg + q ¯q → Q ¯QH0(”)

IPROC Process 3830+IQ gg + q ¯q → Q ¯QA0(”)

3839 gg + q ¯q → b¯tH++ ch. conjg. (all q flavours in s-channel) 3840+IQ gg → Q ¯Qh0(IQ as above)

3850+IQ gg → Q ¯QH0(”) 3860+IQ gg → Q ¯QA0(”) 3869 gg → b¯tH++ ch. conjg.

3870+IQ q ¯q → Q ¯Qh0(all q flavours in s-channel, IQ as above) 3880+IQ q ¯q → Q ¯QH0(”)

3890+IQ q ¯q → Q ¯QA0(”)

3899 q ¯q → b¯tH++ ch. conjg. (all q flavours in s-channel) 3900–99 Reserved for other hadron-hadron MSSM processes 4000–99 R-parity violating supersymmetric processes via LQD

4000 single sparticle production, sum of 4010–4050 4010 ¯ujdk→χe0li, ¯djdk→χe0νi(all neutralinos) 4010+IN ¯ujdk→χe0INli, ¯djdk→eχ0INνi(IN=neutralino mass state)

4020 ¯ujdk→χeνi, ¯djdk→eχe+i(all charginos) 4020+IC ¯ujdk→χeICνi, ¯djdk→χeICe+i (IC=chargino mass state)

4040 ujk→τ˜i+Z0, ujk→νeiW+and djk→e`+iW 4050 ujk→`e+ih0/H0/A0, ujk→eνiH+and djk→`e+iH 4060 Sum of 4070 and 4080

4070 ¯ujdk→u¯ldmand ¯djdk→ ¯dldm, via LQD only 4080 ¯ujdk→νjlkand ¯djdk→l+jlk, via LQD and LLE 4100-99 R-parity violating supersymmetric processes via UDD

4100 single sparticle production, sum of 4110–4150 4110 uidj→χe0k, djdk→χe0i(all neutralinos) 4110 +IN uidj→χe0INk, djdk→eχ0INi(IN as above)

4120 uidj→χe+k, djdk→χei(all charginos) 4120 +IC uidj→χe+IC¯uk, djdk→eχICi(IC as above)

4130 uidj→eg ¯dk, djdk→eg ¯ui

4140 uidj→ ˜b1Z0, djdk→ ˜t1Z0, uidj→ ˜tiW+and djdk→ ˜biW 4150 uidj→ ˜dk1h0/H0/A0, djdk→u˜i1h0/H0/A0, uidj→u˜H+, djdk→ ˜dH 4160 uidj→uldm, djdk→dldmvia UDD.

4200-99 Graviton resonance production 4200 Sum of 4210, 4250 and 4270 4210 gg/q ¯q → G → gg/q ¯q (all partons) 4210+IQ gg/q ¯q → G → q ¯q (IQ as above)

4220 gg/q ¯q → G → gg 4250 gg/q ¯q → G → `¯` (all leptons)

4250+IL gg/q ¯q → G → `¯` (IL = 1 − 6 for ` = e, νe, µ, νµ, etc.) 4260 gg/q ¯q → G → γγ

4270 gg/q ¯q → G → W+W/Z0Z0/H0SMHSM0 4271 gg/q ¯q → G → W+W

4272 gg/q ¯q → G → Z0Z0 4273 gg/q ¯q → G → H0SMHSM0

5000 Pointlike photon-hadron jet production (all flavours) 5100+IQ Pointlike photon heavy flavour pair production (IQ as above) 5200+IQ Pointlike photon heavy flavour single excitation (IQ as above)

After generation, IHPRO is subprocess (see sect. ??) 5300 Quark-photon Compton scattering

5500 Pointlike photon production of light (u, d, s) L=0 mesons 5510,20 S=0 mesons only, S=1 mesons only

After generation, IHPRO is subprocess (see sect. ??) 6000 γγ → q ¯q (all flavours)

6000+IQ γγ → q ¯q (IQ as above) 6006+IL γγ → `¯` (IL = 1, 2, 3 for ` = e, µ, τ )

6010 γγ → W+W

7000 − Baryon-number violating and other multi-W±processes 7999 generated by HERBVI package

8000 Minimum bias soft hadron-hadron event 9000 Deep inelastic lepton scattering (all neutral current) 9000+IQ Deep inelastic lepton scattering (NC on flavour IQ)

9010 Deep inelastic lepton scattering (all charged current) 9010+IQ Deep inelastic lepton scattering (CC on flavour IQ)

9100 Boson-gluon fusion in neutral current DIS (all flavours) 9100+IQ Boson-gluon fusion in neutral current DIS (IQ as above)

9107 J/ψ + gluon production by boson-gluon fusion 9110 QCD Compton process in neutral current DIS (all flavours) 9110+IP QCD Compton process in NC DIS (IP=1–12 for d − t, ¯d − ¯t)

9130 All O(αS) NC processes (i.e. 9100+9110)

9140+IP Heavy quark production by charged-current boson-gluon fusion IP: 1 = s¯c, 2 = b¯c, 3 = s¯t, 4 = b¯t (+ ch. conj.)

9500+ID W+W/Z0Z0→HSM0 in DIS (ID as in IPROC = 300 + ID) 10000+IP as IPROC = IP but with soft underlying event

(soft remnant fragmentation in lepton-hadron) suppressed

(31)

A Giant on Clay Feet

Subprocess lists look impressive, and have involved a lot of hard work, but:

? Processes usually only in lowest nontrivial order

⇒ need programs that include HO loop corrections to cross sections, alternatively do (p , y)-dependent rescaling by hand?

? No multijet topologies

⇒ have to trust shower to get it right,

alternatively match to HO (non-loop) ME generators

? Spin correlations often absent or incomplete

e.g. top produced unpolarized, while t → bW + → b` + ν ` decay correct

⇒ have to use external programs when important

? New physics scenarios appear at rapid pace

⇒ need to have a bigger class of “one-issue experts” contributing code

=⇒The Les Houches Accord

(Q: So why were the process libraries ever built?

A: Automatic code generation only maturing in recent years!)

(32)

The Les Houches Accord

Specialized Generator

=⇒ Hard Process

Les Houches Interface

HERWIG or PYTHIA (Resonance Decays) Parton Showers

Underlying Event Hadronization Ordinary Decays

Some Specialized Generators:

• AcerMC: ttbb, . . .

• ALPGEN: W/Z+ ≤ 6j,

nW + mZ + kH+ ≤ 3j, . . .

• AMEGIC++: generic LO

• CompHEP: generic LO

• GRACE+Bases/Spring:

generic LO+ some NLO loops

• GR@PPA: bbbb

• MadCUP: W/Z+ ≤ 3j, ttbb

• MadGraph+HELAS: generic LO

• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• O’Mega+WHIZARD: generic LO

• VECBOS: W/Z+ ≤ 4j

Apologies for all unlisted programs

(33)

Initialization

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP

COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),IDWTUP,

&NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),LPRUP(MAXPUP)

IDBMUP: incoming beam particles (PDG codes, p = 2212, p = −2212) EBMUP: incoming beam energies (GeV)

PDFGUP, PDFSUP: PDFLIB parton distributions (not used by PYTHIA) IDWTUP: weighting strategy

= 1: PYTHIA mixes and unweights events, according to known dσ max

= 2: PYTHIA mixes and unweights events, according to known σ tot

= 3: unit-weight events, given by user, always to be kept

= 4: weighted events, given by user, always to be kept

= -1, -2, -3, -4: also allow negative dσ NPRUP: number of separate user processes XSECUP(i): σ tot for each user process

XERRUP(i): error on σ tot for each user process XMAXUP(i): dσ max for each user process

LPRUP(i): integer identifier for each user process

(34)

The event

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,

&IDUP(MAXNUP),ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),

&PUP(5,MAXNUP),VTIMUP(MAXNUP),SPINUP(MAXNUP)

IDPRUP: identity of current process

XWGTUP: event weight (meaning depends on IDWTUP weighting strategy) SCALUP: scale Q of parton distributions etc.

AQEDUP: α em used in event AQCDUP: α s used in event

NUP: number of particles in event

IDUP(i): PDG identity code for particle i ISTUP(i): status code

MOTHUP(j,i): position of one or two mothers ICOLUP(j,i): colour and anticolour indices PUP(j,i): (p x , p y , p z , E, m)

VTIMUP(i): invariant lifetime cτ

SPINUP(i): spin (helicity) information

(35)

PDG Particle Codes

A. Fundamental objects

1 d 11 e 21 g

2 u 12 ν e 22 γ 32 Z 00

3 s 13 µ 23 Z 0 33 Z 000 4 c 14 ν µ 24 W + 34 W 0+

5 b 15 τ 25 h 0 35 H 0 37 H +

6 t 16 ν τ 36 A 0 39 G raviton

add − sign for antiparticle,

where appropriate + diquarks, SUSY, technicolor, . . . B. Mesons

100 |q 1 | + 10 |q 2 | + (2s + 1) with |q 1 | ≥ |q 2 |

particle if heaviest quark u, s, c, b; else antiparticle

111 π 0 311 K 0 130 K 0 L 221 η 0 411 D + 431 D + s 211 π + 321 K + 310 K 0 S 331 η 00 421 D 0 443 J/ψ C. Baryons

1000 q 1 + 100 q 2 + 10 q 3 + (2s + 1) with q 1 ≥ q 2 ≥ q 3 , or Λ-like q 1 ≥ q 3 ≥ q 2

2112 n 3122 Λ 0 2224 ∆ ++ 3214 Σ ∗0

2212 p 3212 Σ 0 1114 ∆ 3334 Ω

(36)

Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows, e.g. for qg → qg:

r br













r gb













while other qg → qg graphs only admit one colour flow:

r br













r gb













(37)

so nontrivial mix of kinematics variables (ˆ s, ˆ t) and colour flow topologies I, II:

|A(ˆ s, ˆ t)| 2 = |A I (ˆ s, ˆ t) + A II (ˆ s, ˆ t)| 2

= |A I (ˆ s, ˆ t)| 2 + |A II (ˆ s, ˆ t)| 2 + 2 Re A I (ˆ s, ˆ t)A II (ˆ s, ˆ t)  with Re  A I (ˆ s, ˆ t)A II (ˆ s, ˆ t)  6= 0

⇒ indeterminate colour flow, while

showers should know it (coherence),

hadronization must know it (hadrons singlets).

Normal solution:

interference

total ∝ 1

N C 2 − 1

so split I : II according to proportions in the N C → ∞ limit, i.e.

|A(ˆ s, ˆ t)| 2 = |A I (ˆ s, ˆ t)| 2 mod + |A II (ˆ s, ˆ t)| 2 mod

|A I (ˆ s, ˆ t)| 2 mod = |A I (ˆ s, ˆ t) + A II (ˆ s, ˆ t)| 2 |A I (ˆ s, ˆ t)| 2

|A I (ˆ s, ˆ t)| 2 + |A II (ˆ s, ˆ t)| 2

!

N C →∞

|A II (ˆ s, ˆ t)| 2 mod = . . .

(38)

The Bigger Picture

Process Selection Resonance Decays

Parton Showers Multiple Interactions

Beam Remnants

Hadronization Ordinary Decays

Detector Simulation ME Generator

ME Expression

SUSY/. . . spectrum calculation

Phase Space Generation

PDF Library

τ Decays

B Decays

=⇒ need standardized interfaces (LHAPDF, SUSY LHA, . . . )

(39)

The HEPEVT Event Record

Old standard output of the final event; being replaced by HepMC (in C++).

PARAMETER (NMXHEP=4000)

COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),

&VHEP(4,NMXHEP)

DOUBLE PRECISION PHEP, VHEP

NMXHEP = maximum number of entries NEVHEP = event number

NHEP = number of entries in current event

ISTHEP = status code of entry (0 = null entry, 1 = existing entry, 2 = fragmented/decayed entry, 3 = documentation entry) IDHEP = PDG particle identity (+ some internal, e.g. 92 = string) JMOHEP = mother position(s)

JDAHEP = first and last daughter position

PHEP = momentum (p x , p y , p z , E, m) in GeV

VHEP = production vertex (x, y, z, t) in mm

(40)

Do it yourself

CompHEP and MadGraph can easily be run interactively:

• user specifies process, e.g. gg → W + ud,

• program finds all contributing lowest-order Feynman graphs,

• the required amplitudes/cross sections are calculated,

• phase-space is sampled (with tricks) and unweighted to give a set of parton-level events,

• parton-level properties can be histogrammed,

• Les Houches Accord =⇒ complete events.

CompHEP (matrix-elements-based, good for ∼≤ 4 outgoing partons):

http://theory.sinp.msu.ru/comphep/

MadGraph (amplitude-based, can handle ∼≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

. . . but

• stiff price to pay for each additional parton =⇒ LO libraries,

• confined to lowest-order processes =⇒ NLO libraries.

(41)

Ready-made libraries

Many leading-order (LO) ones, e.g.:

•ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, QQ+ ≤ 6j, . . . http://mlm.home.cern.ch/mlm/alpgen/

•AcerMC: ttbb, WWbb, . . .

http://borut.home.cern.ch/borut/

• VECBOS: W/Z+ ≤ 4j

• GR@PPA: bbbb, . . .

• TopReX: tt, . . .

Not as many NLO, but still quite a few, e.g.

• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j http://mcfm.fnal.gov/

• PHOX family: photons + jets

http://wwwlapp.in2p3.fr/lapth/PHOX FAMILY/main.html

• MNR: cc, bb

• AYLEN/EMILIA: WW, WZ, ZZ, Wγ , Zγ

• EKS: 2j

• PROSPINO: ˜ q˜ q, ˜ q˜ g, ˜ g˜ g

• HIGLU: gg → H

(42)

Next-to-leading order (NLO) calculations

I. Lowest order, O(α em ):

qq → Z 0

p dσ/dp

lowest order

finite σ 0

(43)

Next-to-leading order (NLO) calculations

I. Lowest order, O(α em ):

qq → Z 0

p dσ/dp

lowest order finite σ 0

II. First-order real, O(α em α s ):

qq → Z 0 g etc.

p dσ/dp

real, +∞

(44)

Next-to-leading order (NLO) calculations

I. Lowest order, O(α em ):

qq → Z 0

p dσ/dp

lowest order finite σ 0

II. First-order real, O(α em α s ):

qq → Z 0 g etc.

p dσ/dp

real, +∞

III. First-order virtual, O(α em α s ):

qq → Z 0 with loops

p dσ/dp

virtual, −∞

(45)

σ NLO =

Z

n dσ LO +

Z

n+1 dσ Real +

Z

n dσ Virt

Simple one-dimensional example: x ∼ p /p ⊥max , 0 ≤ x ≤ 1 Divergences regularized by d = 4 − 2 dimensions,  < 0

σ R+V =

Z 1 0

dx

x 1+ M (x) + 1

 M 0 KLN cancellation theorem: M (0) = M 0

Phase Space Slicing:

Introduce arbitrary finite cutoff δ << 1 (so δ  || ) σ R+V =

Z 1 δ

dx

x 1+ M (x) +

Z δ 0

dx

x 1+ M (x) + 1

 M 0

Z 1 δ

dx

x M (x) +

Z δ 0

dx

x 1+ M 0 + 1

 M 0

=

Z 1 δ

dx

x M (x) + 1



 1 − δ −  M 0

Z 1 δ

dx

x M (x) + ln δ M 0

References

Related documents

The purpose with this study is to, in light of the globally integrated world economy, examine the impact of three main MWE-categories (political, economical and natural

Annual Lecture &amp; Reception of the Moravian Historical Society This conference explores Moravian history and music in a worldwide context from the 15 th to 21 st centuries1.

The downstream target group addressed in Article 4 and 5 includes event visitors or individuals, as in Andreasen’s (1994) definition of social marketing. The targeted

Table 3. This section asks general.. questions regarding the students view on EM as a way for them to find potential employers. The first question regarded what the students

Yet within both these industries, events for (and against) the policy, do not yield consistent negative (positive) abnormal returns, and so, no negative systematic abnormal

Event Generator PYTHIA, HERWIG observe &amp; store events.. Detector,

Start from fixed hard interaction ⇒ underlying event No separate hard interaction ⇒ minbias events Possible to choose two hard interactions, e.g.. Interactions uncorrelated, up

Torbj¨ orn Sj¨ ostrand Past, Present and Future of the PYTHIA Event Generator slide 2/31...