• No results found

Power MOSFET

N/A
N/A
Protected

Academic year: 2022

Share " Power MOSFET"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

IRL540N

HEXFET

®

Power MOSFET

S D

G

V

DSS

= 100V R

DS(on)

= 0.044Ω

I

D

= 36A

TO-220AB

5/13/98

Parameter Max. Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 36

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 26 A

IDM Pulsed Drain Current  120

PD @TC = 25°C Power Dissipation 140 W

Linear Derating Factor 0.91 W/°C

VGS Gate-to-Source Voltage ± 16 V

EAS Single Pulse Avalanche Energy‚ 310 mJ

IAR Avalanche Current 18 A

EAR Repetitive Avalanche Energy 14 mJ

dv/dt Peak Diode Recovery dv/dt ƒ 5.0 V/ns

TJ Operating Junction and -55 to + 175

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (1.6mm from case )

°C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)

Absolute Maximum Ratings

Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 1.1

RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient ––– 62

Thermal Resistance Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

l

Logic-Level Gate Drive

l

Advanced Process Technology

l

Dynamic dv/dt Rating

l

175°C Operating Temperature

l

Fast Switching

l

Fully Avalanche Rated

(2)

IRL540N

Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA ––– ––– 0.044 VGS = 10V, ID = 18A „ ––– ––– 0.053 Ω VGS = 5.0V, ID = 18A „ ––– ––– 0.063 VGS = 4.0V, ID = 15A „ VGS(th) Gate Threshold Voltage 1.0 ––– 2.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 14 ––– ––– S VDS = 25V, ID = 18A

––– ––– 25

µA VDS = 100V, VGS = 0V

––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100

nA VGS = 16V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -16V

Qg Total Gate Charge ––– ––– 74 ID = 18A

Qgs Gate-to-Source Charge ––– ––– 9.4 nC VDS = 5.0V

Qgd Gate-to-Drain ("Miller") Charge ––– ––– 38 VGS = 5.0V, See Fig. 6 and 13 „

td(on) Turn-On Delay Time ––– 11 ––– VDD = 50V

tr Rise Time ––– 81 –––

ns ID = 18A

td(off) Turn-Off Delay Time ––– 39 ––– RG = 5.0Ω, VGS = 5.0V

tf Fall Time ––– 62 ––– RD = 2.7Ω, See Fig. 10 „

Between lead, 6mm (0.25in.) from package

and center of die contact

Ciss Input Capacitance ––– 1800 ––– VGS = 0V

Coss Output Capacitance ––– 350 ––– pF VDS = 25V

Crss Reverse Transfer Capacitance ––– 170 ––– ƒ = 1.0MHz, See Fig. 5

 Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

‚ Starting TJ = 25°C, L = 1.9mH RG = 25Ω, IAS = 18A. (See Figure 12) .

Notes:

Electrical Characteristics @ T

J

= 25°C (unless otherwise specified)

nH IGSS

S D

G

LS Internal Source Inductance ––– 7.5 –––

RDS(on) Static Drain-to-Source On-Resistance

LD Internal Drain Inductance ––– 4.5 –––

IDSS Drain-to-Source Leakage Current

ƒISD ≤ 18A, di/dt ≤ 180A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C

„ Pulse width ≤ 300µs; duty cycle ≤ 2%

S D

G

Parameter Min. Typ. Max. Units Conditions

IS Continuous Source Current MOSFET symbol

(Body Diode) ––– –––

showing the

ISM Pulsed Source Current integral reverse

(Body Diode) † ––– –––

p-n junction diode.

VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 18A, VGS = 0V „ trr Reverse Recovery Time ––– 190 290 ns TJ = 25°C, IF = 18A

Qrr Reverse RecoveryCharge ––– 1.1 1.7 µC di/dt = 100A/µs„

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Source-Drain Ratings and Characteristics

A 36 120

(3)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

1 1 0 1 0 0 1 0 0 0

0.1 1 1 0 1 0 0

I , Drain-to-Source Current (A)D

V , Drain-to-Source Voltage (V)D S A 2 0 µ s P U L S E W I D T H T = 25°CJ

VGS TOP 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V

2 . 5 V

1 1 0 1 0 0 1 0 0 0

0.1 1 1 0 1 0 0

I , Drain-to-Source Current (A)D

V , Drain-to-Source Voltage (V)D S A 2 0 µ s P U L S E W I D T H T = 175°C

VGS TOP 15V 12V 10V 8.0V 6.0V 4.0V 3.0V BOTTOM 2.5V

2 . 5 V

J

1 1 0 1 0 0 1 0 0 0

2 4 6 8 1 0

T = 25°CJ

V , Gate-to-Source Voltage (V)G S

DI , Drain-to-Source Current (A)

T = 175°CJ

A V = 50V

20µs PULSE WIDTH D S

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

T , Junction Temperature (°C)J R , Drain-to-Source On ResistanceDS(on) (Normalized)

V = 10V G S A I = 30AD

(4)

IRL540N

Fig 8. Maximum Safe Operating Area Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

1 1 0 1 0 0 1 0 0 0

0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8

T = 25°CJ

V = 0V G S

V , Source-to-Drain Voltage (V)

I , Reverse Drain Current (A)

S D

SD

A T = 1 7 5 ° CJ

1 1 0 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0 0 0

V , Drain-to-Source Voltage (V)D S

I , Drain Current (A)

O P E R A T I O N I N T H I S A R E A L I M I T E D BY R

D

D S ( o n )

1 0 µ s

1 0 0 µ s

1 m s

1 0 m s

A T = 25°C

T = 175°C Single Pulse

C J 0 3 6 9 1 2 1 5

0 2 0 4 0 6 0 8 0 1 0 0

Q , Total Gate Charge (nC)G V , Gate-to-Source Voltage (V) GS

V = 80V V = 50V V = 20V

D S D S D S

A FOR TEST CIRCUIT SEE FIGURE 13 I = 18AD

0 1 0 0 0 2 0 0 0 3 0 0 0

1 1 0 1 0 0

C, Capacitance (pF)

V , Drain-to-Source Voltage (V)D S A V = 0V, f = 1MHz

C = C + C , C SHORTED C = C

C = C + C G S

iss gs gd ds rss gd

oss ds gd

C iss

C oss C rss

(5)

Fig 9. Maximum Drain Current Vs.

Case Temperature

Fig 10a. Switching Time Test Circuit

VDS 90%

10%

VGS

td(on) tr td(off) tf

Fig 10b. Switching Time Waveforms

VDS

Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %

RD

VGS RG

D.U.T.

5.0V

+

-VDD

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

25 50 75 100 125 150 175

0 10 20 30 40

T , Case Temperature ( C)

I , Drain Current (A)

C °

D

0.01 0.1 1 10

0.00001 0.0001 0.001 0.01 0.1 1

Notes:

1. Duty factor D = t / t

2. Peak T = P x Z + T

1 2

J DM thJC C

P

t t DM

1

2

t , Rectangular Pulse Duration (sec)

Thermal Response(Z )

1

thJC

0.01 0.02 0.05 0.10 0.20 D = 0.50

SINGLE PULSE (THERMAL RESPONSE)

(6)

IRL540N

QG

QGS QGD

VG

Charge

5.0 V

Fig 13b. Gate Charge Test Circuit Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

D.U.T. VDS

ID IG

3mA VGS

.3µF 50KΩ 12V .2µF

Current Regulator Same Type as D.U.T.

Current Sampling Resistors

+ -

Fig 12b. Unclamped Inductive Waveforms Fig 12a. Unclamped Inductive Test Circuit

tp

V(B R )D SS

IA S

R G

IA S 0 .0 1Ω tp

D .U .T V D S L

+ - VD D D R IV E R

A 1 5V

1 0 V

0 2 0 0 4 0 0 6 0 0 8 0 0

2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5

J E , Single Pulse Avalanche Energy (mJ)AS

A Starting T , Junction Temperature (°C)

I TOP 7.3A 13A BOTTOM 18A D

(7)

P.W. Period

di/dt Diode Recovery

dv/dt

Ripple ≤5%

Body Diode Forward Drop Re-Applied

Voltage Reverse Recovery Current

Body Diode Forward Current

VGS=10V

VDD

ISD Driver Gate Drive

D.U.T. ISDWaveform

D.U.T. VDSWaveform

Inductor Curent

D = P.W.

Period

+ - +

+

- + -

-

Fig 14. For N-Channel HEXFETS

*

VGS = 5V for Logic Level Devices

Peak Diode Recovery dv/dt Test Circuit

ƒ

‚ „

RG

VDD

• dv/dt controlled by RG

• Driver same type as D.U.T.

• ISD controlled by Duty Factor "D"

• D.U.T. - Device Under Test D.U.T Circuit Layout Considerations

• Low Stray Inductance • Ground Plane

• Low Leakage Inductance Current Transformer



*

(8)

IRL540N

P A R T N U M B E R IN T E R N A T IO N A L

R E C T IF IE R L O G O E X A M P L E : T H IS IS A N IR F 1 0 1 0

W IT H A S S E M B L Y L O T C O D E 9 B 1M

A S S E M B L Y L O T C O D E

D A T E C O D E (Y Y W W ) Y Y = Y E A R W W = W E E K 9 2 4 6

IR F 1 0 10 9B 1 M

A

Part Marking Information

TO-220AB

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

P A R T N U M B E R IN T E R N A T IO N A L

R E C T IF IE R L O G O E X A M P L E : T H IS IS A N IR F 1 0 1 0

W IT H A S S E M B L Y L O T C O D E 9 B 1 M

A S S E M B L Y L O T C O D E

D A T E C O D E (Y Y W W ) Y Y = Y E A R W W = W E E K 9 2 4 6

IR F 10 1 0 9B 1 M

A

L E A D A S S IG NM E NT S 1 - G A T E 2 - D R A IN 3 - S O U RC E 4 - D R A IN - B -

1 .32 (.05 2) 1 .22 (.04 8)

3 X0.55 (.02 2) 0.46 (.01 8)

2 .92 (.11 5) 2 .64 (.10 4) 4.69 ( .18 5 )

4.20 ( .16 5 )

3X 0.93 (.03 7) 0.69 (.02 7) 4.06 (.16 0) 3.55 (.14 0) 1.15 (.04 5) M IN 6.47 (.25 5) 6.10 (.24 0)

3 .7 8 (.149 ) 3 .5 4 (.139 ) - A - 10 .54 (.4 15)

10 .29 (.4 05) 2.87 (.11 3)

2.62 (.10 3)

1 5.24 (.60 0) 1 4.84 (.58 4)

1 4.09 (.55 5) 1 3.47 (.53 0)

3 X1 .4 0 (.0 55 ) 1 .1 5 (.0 45 )

2.54 (.10 0) 2 X

0 .3 6 (.01 4) M B A M 4

1 2 3

N O TE S :

1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B . 2 C O N TR O L LIN G D IM E N S IO N : IN C H 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 5/98

(9)

References

Related documents

There it was showed that sequential accident models promote a passive, retrospective approach to prevention, whereas systemic models promote a more integrated approach with a

Enligt Andersson (2009) kan good governance ses som ett “helhetskoncept för samhällsstyrning” (s. 60) och vi menar att UNDP avser att bekämpa korruption just genom ett

när han visar hur alkemistisk färgsymbolik går igen i romanen (s. Och hans tolkning av alkemiens roll i boken är säkert riktigare än både Ekners och En­

The rate constant has been found decrease exponentially with the driving force (energy gap law [40]). In the M.I.R., nuclear tunnelling between the reactant and product state

We conduct large-scale cellular trace-driven experiments com- paring different opportunistic network coded data dissemi- nation strategies and different cache seeding strategies

För att förstå och kunna bemöta dem på ett värdigt sätt är det viktigt att ha kunskap om vilka följder långvarig smärta kan ha på människors aktivitet i det dagliga

The aim of the study is twofold: first and foremost to gain a deeper understanding of how multilingual children perceive the functions of their mother tongue and the

För Top-5% divideras I:s andel dokument bland de 5% högst citerade dokumenten, med avseende de ämneskategorier till vilka I:s dokument hör, med en förväntad andel (approximativt 0,05,