• No results found

PYTHIA RecentProgressin

N/A
N/A
Protected

Academic year: 2022

Share "PYTHIA RecentProgressin"

Copied!
38
0
0

Loading.... (view fulltext now)

Full text

(1)

QCD and Weak Boson Physics workshop Fermilab 4–6 March 1999

Recent

Progress in





































































































































         

                                                                                                                                                                                                                                                                                                                                                                                           

                                                                                                                                                                                                                                                                                                                                                                                           

ll

   













































PYTHIA

lh

hh

Torbj ¨orn Sj ¨ostrand Lund University Introduction

current Subprocesses W p spectrum

Charm & bottom asymmetries Multiple interactions

future Interconnection effects Improved parton showers Matching to matrix elements On to C++!

(2)

Introduction

JETSET 7.4 PYTHIA 5.7 SPYTHIA

4 March 1997 : PYTHIA 6.1

General-purpose generator:

• Hard subprocess “library”

• Convolution with parton distributions (cross sections, kinematics)

• Resonance decays (process-dependent)

• Initial-state QCD (& QED) showers

• Final-state QCD & QED showers

• Multiple parton–parton interactions

• Beam remnants

• Hadronization (string fragmentation)

• Decay chains

• Analysis & utility routines

Currently PYTHIA 6.125 of 21 February 1999

∼ 46.800 lines Fortran 77

Code, manuals, sample main programs:

http://www.thep.lu.se/∼torbjorn/Pythia.html

(3)

PYTHIA 6.1 main news

• JETSET routines renamed:

LUxxxx → PYxxxx + some more

• All real variables in DOUBLE PRECISION

• New SUSY processes and improved SUSY simu- lation; new PDG codes for sparticles

• New processes for Higgs, technicolour, . . .

• Alternative Higgs mass shape

• Newer parton distributions (but . . . )

• Several improved resonance decays

• Initial-state showers matched to (some) matrix el- ements

• QED radiation off an incoming muon

• New machinery to handle real and virtual photon fluxes and cross sections

• Energy-dependent p⊥min in multiple interactions

• Colour rearrangement options for W+W

• Expanded Bose-Einstein algorithm

• New baryon production scheme (optional)

• One-dimensional histograms (GBOOK)

(4)

Subprocesses (1)

No. Subprocess W/Z production:

1 fifi → γ/Z0 2 fifj → W± 22 fifi → Z0Z0 23 fifj → Z0W± 25 fifi → W+W 15 fifi → gZ0 16 fifj → gW± 30 fig → fiZ0 31 fig → fkW± 19 fifi → γZ0 20 fifj → γW± 35 fiγ → fiZ0 36 fiγ → fkW± 69 γγ → W+W 70 γW± → Z0W± Hard QCD processes:

11 fifj → fifj 12 fifi → fkfk 13 fifi → gg 28 fig → fig 53 gg → fkfk 68 gg → gg Soft QCD processes:

91 elastic scattering

92 single diffraction (XB) 93 single diffraction (AX) 94 double diffraction 95 low-p production Open heavy flavour:

(also fourth generation) 81 fifi → QkQk 82 gg → QkQk 83 qifj → Qkfl 84 gγ → QkQk 85 γγ → FkFk

No. Subprocess Closed heavy flavour:

86 gg → J/ψg 87 gg → χ0cg 88 gg → χ1cg 89 gg → χ2cg 104 gg → χ0c 105 gg → χ2c 106 gg → J/ψγ 107 gγ → J/ψg 108 γγ → J/ψγ Prompt-photon production:

14 fifi → gγ 18 fifi → γγ 29 fig → fiγ 114 gg → γγ 115 gg → gγ

Deep inelastic scattering 10 fifj → fifj

Photon-induced processes:

33 fiγ → fig 34 fiγ → fiγ 54 gγ → fkfk 58 γγ → fkfk 80 qiγ → qkπ± 131 fiγT → fig 132 fiγL → fig 133 fiγT → fiγ 134 fiγL → fiγ 135 T → fifi 136 L → fifi 137 γTγT → fifi 138 γTγL → fifi 139 γLγT → fifi 140 γLγL → fifi

(5)

Subprocesses (2)

No. Subprocess Light SM Higgs:

3 fifi → h0 24 fifi → Z0h0 26 fifj → W±h0 102 gg → h0 103 γγ → h0 110 fifi → γh0 121 gg → QkQkh0 122 qiqi → QkQkh0 123 fifj → fifjh0 124 fifj → fkflh0 Heavy SM Higgs:

5 Z0Z0 → H0 8 W+W → H0 71 Z0LZ0L → Z0LZ0L 72 Z0LZ0L → WL+WL 73 Z0LWL± → Z0LW±L 76 W+LWL → Z0LZ0L 77 W±LWL± → W±LW±L BSM Neutral Higgses:

151 fifi → H0 152 gg → H0 153 γγ → H0 171 fifi → Z0H0 172 fifj → W±H0 173 fifj → fifjH0 174 fifj → fkflH0 181 gg → QkQkH0 182 qiqi → QkQkH0 156 fifi → A0

157 gg → A0 158 γγ → A0 176 fifi → Z0A0 177 fifj → W±A0 178 fifj → fifjA0 179 fifj → fkflA0 186 gg → QkQkA0 187 qiqi → QkQkA0

No. Subprocess Charged Higgs:

143 fifj → H+ 161 fig → fkH+ Higgs pairs:

297 fifj → H±h0 298 fifj → H±H0 299 fifi → A0h0 300 fifi → A0H0 301 fifi → H+H Doubly-charged Higgs:

341 `i`j → H±±L 342 `i`j → H±±R 343 `±i γ → H±±L e 344 `±i γ → H±±R e 345 `±i γ → H±±L µ 346 `±i γ → H±±R µ 347 `±i γ → H±±L τ 348 `±i γ → H±±R τ 349 fifi → H++L H−−L 350 fifi → H++R H−−R 351 fifj → fkflH±±L 352 fifj → fkflH±±R

(6)

Subprocesses (3)

No. Subprocess Technicolour:

149 gg → ηtechni

191 fifi → ρ0techni 192 fifj → ρ+techni 193 fifi → ωtechni0

194 fifi(→ ρ0technitechni0 )

→ fkfk New gauge bosons:

141 fifi → γ/Z0/Z00 142 fifj → W0+

144 fifj → R Compositeness:

147 dg → d 148 ug → u 167 qiqj → dqk 168 qiqj → uqk

165 fifi(→ γ/Z0) → fkfk 166 fifj(→ W±) → fkfl Leptoquarks:

145 qi`j → LQ 162 qg → `LQ 163 gg → LQLQ 164 qiqi → LQLQ

No. Subprocess SUSY:

201 fifi → ˜eL˜eL 202 fifi → ˜eR˜eR

203 fifi → ˜eL˜eR+ ˜eL˜eR 204 fifi → ˜µLµ˜L

205 fifi → ˜µRµ˜R

206 fifi → ˜µLµ˜R + ˜µL˜µR

207 fifi → ˜τ1˜τ1 208 fifi → ˜τ2˜τ2

209 fifi → ˜τ1˜τ2 + ˜τ1˜τ2

210 fifj → ˜`L˜ν`+ ˜`L˜ν`

211 fifj → ˜τ1˜ντ + ˜τ1ν˜τ

212 fifj → ˜τ2˜ντ + ˜τ2ν˜τ

213 fifi → ˜ν`ν˜`

214 fifi → ˜ντν˜τ 216 fifi → ˜χ1χ˜1

217 fifi → ˜χ2χ˜2

218 fifi → ˜χ3χ˜3

219 fifi → ˜χ4χ˜4

220 fifi → ˜χ1χ˜2

221 fifi → ˜χ1χ˜3

222 fifi → ˜χ1χ˜4

223 fifi → ˜χ2χ˜3

224 fifi → ˜χ2χ˜4

225 fifi → ˜χ3χ˜4

226 fifi → ˜χ±1χ˜1 227 fifi → ˜χ±2χ˜2 228 fifi → ˜χ±1χ˜2 229 fifj → ˜χ1χ˜±1 230 fifj → ˜χ2χ˜±1 231 fifj → ˜χ3χ˜±1 232 fifj → ˜χ4χ˜±1 233 fifj → ˜χ1χ˜±2 234 fifj → ˜χ2χ˜±2 235 fifj → ˜χ3χ˜±2 236 fifj → ˜χ4χ˜±2

(7)

Subprocesses (4)

No. Subprocess SUSY:

237 fifi → ˜χ1

238 fifi → ˜χ2

239 fifi → ˜χ3

240 fifi → ˜χ4

241 fifj → ˜χ±1 242 fifj → ˜χ±2 243 fifi → ˜g 244 gg → ˜g 246 fig → ˜qiLχ˜1

247 fig → ˜qiRχ˜1

248 fig → ˜qiLχ˜2

249 fig → ˜qiRχ˜2

250 fig → ˜qiLχ˜3

251 fig → ˜qiRχ˜3

252 fig → ˜qiLχ˜4

253 fig → ˜qiRχ˜4

254 fig → ˜qjLχ˜±1 256 fig → ˜qjLχ˜±2 258 fig → ˜qiL˜g 259 fig → ˜qiR˜g 261 fifi → ˜t1˜t1 262 fifi → ˜t2˜t2

263 fifi → ˜t1˜t2 + ˜t1˜t2 264 gg → ˜t1˜t1

265 gg → ˜t2˜t2 271 fifj → ˜qiL˜qjL 272 fifj → ˜qiR˜qjR

273 fifj → ˜qiL˜qjR + ˜qiR˜qjL 274 fifj → ˜qiL˜qj L

275 fifj → ˜qiR˜qj R

276 fifj → ˜qiL˜qj R + ˜qiR˜qj L 277 fifi → ˜qjL˜qj L

278 fifi → ˜qjR˜qj R 279 gg → ˜qiL˜qi L 280 gg → ˜qiR˜qi R

No. Subprocess SUSY:

281 bqi → ˜b1˜qiL 282 bqi → ˜b2˜qiR 283 bqi → ˜b1˜qiR+

˜b2˜qiL 284 bqi → ˜b1˜qi L 285 bqi → ˜b2˜qi R 286 bqi → ˜b1˜qi R+

˜b2˜qi L 287 qiqi → ˜b1˜b1 288 qiqi → ˜b2˜b2 289 gg → ˜b1˜b1 290 gg → ˜b2˜b2 291 bb → ˜b1˜b1 292 bb → ˜b2˜b2 293 bb → ˜b1˜b2 294 bg → ˜b1˜g 295 bg → ˜b2˜g 296 bb → ˜b1˜b2+

˜b2˜b1

(8)

W p spectrum

(G. Miu & TS, hep-ph/9812455 PLB)

Alternative descriptions:

1. Order-by-order matrix elements (ME) + systematic expansion in αs

+ powerful for multiparton Born level – loop calculations tough

– messy cancellations (jet substructure) 2. Resummed matrix elements

+ good p⊥W predictivity

– no exclusive accompanying event 3. Parton showers (PS)

– only leading logs (and some NLL) – approximate exclusive multijet rates

± process-independent

+ event classes smoothly blend

(Sudakovs, physical collinear regions) + natural match to hadronization

Merging strategy: correct hardest emissions in show- ers so as to reproduce one order higher matrix ele- ments

(9)

2 → 1 process q(1) + q0(2) → W(0) starting point for backwards shower evolution:

3

4

1 5

6 2 0

2 → 2 process q(3) + q0(2) → g(4) + W(0): ˆs = (p3 + p2)2 = (p1 + p2)2

z = m2W z ˆt = (p3 − p4)2 = p21 = −Q2

u = mˆ 2W − ˆs − ˆt = Q2 − 1 − z

z m2W Relate ME and PS rates:

dˆσ dˆt

ME = σ0

ˆs αs

2π 4 3

ˆt2 + ˆu2 + 2m2Wˆs ˆtˆu

Q2→0

−→ σ0 αs

2π 4 3

1 + z2 1 − z

1

Q2 = dˆσ dQ2

PS1

dˆσ dˆt

PS1 = σ0

ˆs αs

2π 4 3

ˆs2 + m4W ˆt(ˆt + ˆu)

Add mirror q(1) + q0(5) → g(6) + W(0): dˆσ

dˆt

PS = dˆσ dˆt

PS1 + dˆσ dˆt

PS2 = σ0 ˆs

αs

2π 4 3

ˆs2 + m4W ˆtˆu

(10)

Rqq0→gW(ˆs, ˆt) = (dˆσ/dˆt)ME

(dˆσ/dˆt)PS = ˆt2 + ˆu2 + 2m2Wˆs ˆs2 + m4W

1

2 < Rqq0→gW(ˆs, ˆt) ≤ 1

Similarly for q(1) + g(5) → q0(6) + W(0):

dˆσ dˆt

ME = σ0

ˆs αs

2π 1 2

ˆs2 + ˆu2 + 2m2Wˆt

−ˆsˆu

Q2→0

−→ σ0 αs

2π 1

2 (z2 + (1 − z)2) 1

Q2 = dˆσ dQ2

PS

dˆσ dˆt

PS = σ0 ˆs

αs

2π 1 2

ˆs2 + 2m2W(ˆt + ˆu)

−ˆsˆu Rqg→q0W(ˆs, ˆt) = (dˆσ/dˆt)ME

(dˆσ/dˆt)PS = ˆs2 + ˆu2 + 2m2Wˆt (ˆs − m2W)2 + m4W 1 ≤ Rqg→q0W(ˆs, ˆt) ≤

√5 − 1 2(√

5 − 2) < 3 (?) Larger Rqg than Rqq0

since PS misses s-channel graph of ME:

“resonance decay”,

“final-state radiation”

q g

q

q0 W

(11)

Improve PS:

• Q2max = s, not Q2max ≈ m2W (intermediate)

• MC correction by R(ˆs, ˆt) for first (≈ hardest) emission on each side (new)

Toy simulation at 1.8 TeV:

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

0 50 100 150 200 250 300 350 dσ/dpW(nb/GeV)

pW(GeV) PS old PS intermediate PS new ME

qq0 → gW

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

0 50 100 150 200 250 300 350 dσ/dpW(nb/GeV)

pW(GeV) PS old PS intermediate PS new ME

qg → q0W

1 10 100 1000 10000 100000 1e+06

0.5 1 1.5 2 2.5 3

dN/dR(s,t)

R(s,t)

PS similar to qq’->gW PS similar to qg->q’W

dN/dR

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 50 100 150 200 250 300 350

R(s,t)

pW(GeV) PS similar to qq’->gW PS similar to qg->q’W

hRi(p⊥W)

(12)

Complete simulation at 1.8 TeV:

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

0 10 20 30 40 50 60 70 80 90 100 110

(1/N)(dN/dpW)(GeV-1 )

pW(GeV)

PS,k =0.44 GeV PS,k=4 GeV D0 data

Primordial k reduced in shower: input 4 GeV gives

qhp2⊥Wi = 2.1 GeV.

Large value in line with resummation descriptions, prompt photons, charm, . . .

Solved by better understanding of soft part of show- ers: BFKL, CCFM, . . . ?

In summary:

• economical (complete events)

• promising (cf. data)

• extensible (same for all colourless vector gauge bosons: γ, Z0, Z00, W, . . . )

(13)

Charm & bottom asymmetries

(E. Norrbin & TS, PLB442 (1998) 407)

Sizeable D/D asymmetries observed in πp, in dis- agreement with perturbative c/c predictions.

A = A(xF, p) = σ(D) − σ(D+) σ(D) + σ(D+) Asymmetry in xF and p, new model:

−0.5 0 0.5 1

−1

−0.5 0 0.5 1

(a)

X WA82@340 GeV + E769@250 GeV o E791@500 GeV

xF A(x F)

0 2 4 6 8 10

−0.2

−0.1 0 0.1 0.2 0.3 0.4 0.5 (b)

o E791@500 GeV

pt2 A(p t

2 )

xF spectra of D and D+, old and new model:

0 0.2 0.4 0.6 0.8 1

100 101 102 103 104

(c) D+

xF

dN/dx F (arbitrary units)

0 0.2 0.4 0.6 0.8 1

100 101 102 103 104

(d) D

xF

dN/dx F (arbitrary units)

(14)

PYTHIA predicted qualitative behaviour.

Quantitative one sensitive to details

⇒ develop model & tune (6= E791)

Three hadronization mechanisms (regions):

1. Normal string fragmentation:

continuum of phase-space states.

2. Cluster decay:

low mass ⇒ exclusive two-body state.

3. Cluster collapse:

very low mass ⇒ only one hadron.

p+ π

u u

c c

ud d





If collapse:

cd: D, D∗−, . . .

cud: Λ+c , Σ+c , Σ∗+c , . . .

⇒ flavour asymmetries Can give D “drag” to larger xF than c quark.

Buildup of D and D+ xF distributions:

−0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5

xF

dN/dx F

(i) (ii)

(iii) (iv) (v)

−0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5

xF

dN/dx F

(iii) (iv)

(v)

(15)

But also normal string fragmentation:

c d z

p± = E ± pz

p−D = zp−c 0 < z < 1

⇒ p+D = m2⊥D

p−D = m2⊥D zp−c

normally

> m2⊥c

zp−c = p+c z i.e. again drag.

Technical components of modelling:

• Charm mass: c cross section (mc = 1.5)

• Light-quark masses: threshold for cluster mass spectrum, together with mc

(mu = md = 0.33, ms = 0.50)

• Beam remnant distribution function:

(p − g = ud0 + u in colour octet state) hadron asymmetries also without collapse

(uneven sharing, but not extremely so)

• Primordial k: collapse rate at large p (Gaussian width 1 GeV)

• Threshold behaviour for non-collapse:

all at Dπ or gradually at Dπ, Dπ, Dρ, . . . (intermediate)

• Collapse energy–momentum conservation:

practical solution to mass δ function

(several models tried; not very sensitive)

(16)

Inclusive rapidity distribution:

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-8 -6 -4 -2 0 2 4 6 8

(1/N)dN/dy

y Bottom

Charm

Bottom hadrons Bottom quarks Charm hadrons Charm quarks

Pair rapidity separation:

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0 1 2 3 4 5 6

(1/N)dN/dy

y=|yquark - yantiquark| b-hadrons

c-hadrons

b-hadrons b-quarks c-hadrons c-quarks

Average hadronization rapidity shift:

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-4 -2 0 2 4

<y>=<yHadron - yQuark>

y Bottom

Charm

1.8 TeV pp. So far: qq, gg → QQ only

(17)

Asymmetry (B0 − B0)/(B0 + B0):

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

xF

Asymmetry (B0s − B0s)/(B0s + B0s):

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

xF

Asymmetry (D+ − D)/(D+ + D):

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

xF

Note: horizontal scale xF, not y

(18)

Multiple interactions

(TS & M. van Zijl, PRD36 (1987) 2019)

Consequence of composite nature of hadrons:

Evidence:

• direct observation: AFS, UA1, CDF

• implied by width of multiplicity distribution + jet universality: UA5

• forward–backward correlations: UA5

• pedestal effect: UA1, H1

One free parameter: p⊥min 1

jet =

Z s/4

p2⊥min

dp2 dp2

Z s/4

0

dσ dp2

p4

(p2⊥0 + p2)2 dp2

Measure of colour screening length d in hadron p⊥min hdi ≈ 1(= ¯h)

(19)

r r

d

resolved

r r

d

screened

λ ∼ 1/p

hdi ∼ rp

qNpartons no correlations

∼ rp

Npartons with correlations?

Npartons ∼ Ng =

Z 1

∼4p2⊥min/s g(x, ∼ p2⊥min) dx Olden days:

xg(x, Q20) → const. for x → 0

⇒ Npartons ∼ ln s

4p2⊥min ∼ const.

Post-HERA:

xg(x, Q20) ∼ x− for x → 0, ∼ 0.08>

⇒ Npartons ∼ s 4p2⊥min

!

⇒ p⊥min ∼ 1

hdi ∼ Npartons ∼ s

(20)

Mean charged multiplicity in inelastic non-diffractive “minimum bias”:

New PYTHIA default:

p⊥min = (1.9 GeV)

 s 1 TeV2

0.08

Importance:

• comparison of data at 630 GeV & 1.8 TeV

• extrapolations to LHC

(21)

Interconnection effects

(V.A. Khoze & TS, ZPC62 (1994) 281, PLB328 (1994) 466, EPJC6 (1999) 271;

L. L ¨onnblad & TS, EPJC2 (1998) 165)

ΓW, ΓZ, Γt ≈ 2 GeV

Γh > 1.5 GeV for mh > 200 GeV ΓSUSY ∼ GeV (often)

τ = 1

Γ ≈ 0.2 GeV fm

2 GeV = 0.1 fm  rhad ≈ 1 fm

⇒ hadronic decay systems overlap, between pairs of resonances & with underlying events

⇒ cannot be considered separate systems!

Three main eras for interconnection:

1. Perturbative: suppressed for ω > Γ by propaga- tors/timescales ⇒ only soft gluons.

2. Nonperturbative, hadronization process:

colour rearrangement.

B0

d

b c

W c

s





B0

d b

c

W

c gs



K0S



J/ψ

3. Nonperturbative, hadronic phase:

Bose–Einstein.

References

Related documents

One way of assessing the system for regional distribu- tion of farm implements is to look at the level of stocks in regional RTC central godowns. An efficient distribution

school has planned out a spectacular show with many students participating, doing different acts.. Some people sing, other do magic tricks and

Lärarna i min underökning beskriver att de möblerar i rader men använder samlingsring som en metod för gemensamma övningar eller diskussioner. Deras sätt att se på

Studien syftar till att utvärdera Show me the money som metod för att nå de mål och syften som finns för fritidsgårdarna i kommunen och för att uppnå en ökad delaktighet

168 Sport Development Peace International Working Group, 2008. 169 This again raises the question why women are not looked at in greater depth and detail in other literature. There

Secondly, in order to enhance a trade show performance, our research shows that booth location and booth staff training is more important than expending size

This essay, however, will be limited by examining three different aspects of evil occurring in the Chronicles of Narnia: pure evil, evil within those who are good-natured and evil

The herein presented RBEU concept, methods and results take these route based aspects of electrification utility and its use in network optimization