• No results found

In  Situ  RNA  Quality  Control

N/A
N/A
Protected

Academic year: 2021

Share "In  Situ  RNA  Quality  Control"

Copied!
45
0
0

Loading.... (view fulltext now)

Full text

(1)

 

 

  In  Situ  RNA  Quality  Control    

    A   spatial  heat  map  of  RNA  integrity    with  single  cell  resolution  

     

     

    DEGREE  PROJECT  IN  MEDICAL  BIOTECHNOLOGY     BY  KONSTANTIN  CARLBERG  

 

           

Supervisor:  Professor  Joakim  Lundeberg,  Royal  Institute  of  Technology  

Co-­‐supervisor:  PhD  student  Linda  Kvastad,  Royal  Institute  of  Technology

     

(2)

Abstract    

The   quality   of   RNA   is   of   great   importance   in   gene   expression   studies.   It   is   mostly   measured   using  the  RNA  integrity  number  (RIN).  Lately  it  has  been  shown  that  samples  with  low  RIN  and   different   fragmentation   patterns   could   affect   quality   of   sequencing   data.   For   such   low   RIN   samples  a  new  approach  has  been  developed  by  Illumina  called  the  DV200  metric,  which  is  the   percentage  of  fragments  >200  nucleotides.  For  samples  with  low  RIN,  DV200  has  proved  to  be  a   better  method  to  predict  if  good  quality  data  from  RNA  sequencing  can  be  generated.  However,   neither   RIN   nor   DV200   provide   spatial   information   on   the   RNA   integrity.   Thus,   tissues   with   areas   of   heterogeneous   RNA   integrity,   where   regions   of   good   quality   RNA   sequencing   data   could  be  generated  from  are  missed.  We  have  designed  a  method  to  spatially  evaluate  the  RNA   integrity  in  tissue,  which  we  named  in  situ  RNA  QC.  The  method  uses  three  probes  with  three   different   fluorophores,   each   bound   to   three   specific   cDNA   regions   synthesized   from   the   high   abundant  and  well  conserved  18S  rRNA.    

With  the  help  of  in-­‐house  technology  from  the  Spatial  Transcriptomics  (ST)  group  at  SciLifeLab,   we  enable  creation  of  heat  maps  over  the  RNA  integrity  to  show  spatial  fragmentation  patterns   of   RNA   in   tissue.   This   could   reveal   the   regional   quality   of   transcripts   in  situ,   which   is   crucial   knowledge  when  selecting  samples  for  further  RNA  sequencing.    

The   assay   has   been   tried   using   different   tissue   fixation   methods   in   order   to   show   a   proof   of   concept   that   formalin   gives   shorter   cDNA   fragments   than   acetone.   The   generated   heat-­‐map   provides  a  visual  overview  of  RNA  integrity  in  situ;  hence  this  method  could  be  used  to  select   samples  for  sequencing  by  evaluating  the  spatial  quality  of  RNA.  For  instance  from  fresh  frozen   and  formalin  fixated  paraffin  embedded  (FFPE)  tissue  (biobanks  contain  large  number  of  long-­‐

term  storage  FFPE  samples).  With  this  assay  we  will  be  able  to  determine  which  samples  are   suitable  for  sequencing.  

                                 

(3)

Contents  

ABSTRACT  ...  1  

1  INTRODUCTION  ...  3  

1.1  Problem  statement  ...  3  

1.2  Aim  of  study  ...  6  

2  BACKGROUND  ...  8  

2.1  Fixation  agents  ...  10  

2.2  CodeLink  slides  ...  10  

2.3  Probes  with  fluorophores  ...  11  

2.4  Full-­‐length  cDNA  synthesis  ...  11  

2.5  Removal  of  rRNA  strand  ...  12  

2.6  Hybridization  ...  12  

3  MATERIALS  AND  METHODS  ...  12  

3.1  Primer  design  ...  12  

3.2  Evaluation  of  probes  using  qPCR  ...  14  

3.3  Printing  of  activated  slides  ...  14  

3.4  RNA  QC  ...  15  

3.5  Scanning  and  microscope  use  ...  17  

3.6  Total  RNA  control  ...  17  

3.7  qPCR  on  released  material  ...  18  

4  RESULTS  ...  18  

4.1  Primers  ...  18  

4.2  qPCR  results  ...  19  

4.3  qPCR  after  release  ...  21  

4.4  Bright  field  images  ...  21  

4.5  Quality  control  assay  ...  23  

4.6  Total  RNA  experiments  ...  27  

5  DISCUSSION  ...  29  

5.1  Spatial  heat  map  ...  29  

5.2  Alternative  methods  ...  31  

5.3  Further  tests  ...  32  

6  REFERENCES  ...  33  

7  APPENDIX  ...  36  

7.1  Sequences  ...  36  

7.2  Melt  curve  results  ...  41  

7.3  Tables  over  scanning  intensities  ...  43  

ACKNOWLEDGEMENTS  ...  44    

   

   

   

   

   

(4)

1  Introduction         1.1 Problem  statement  

Ribosomal  RNA  is  the  most  abundant  RNA  species  in  human  cells  and  corresponds  to  >80  %  of   the   total   RNA   content   [1].   Ribosomal   RNA   (rRNA)   is   a   collection   of   RNA   components   of   the   ribosomes   essential   for   the   protein   synthesis   during   the   translation   where   messenger   RNA   (mRNA)  is  decoded  into  polypeptides.  One  of  these  rRNA,  18S  ribosomal  RNA  (18S  rRNA)  is  an   rRNA   subunit   with   a   highly   conserved   sequence,   frequently   used   in   phylogenetic   studies   [2].  

According   to   the   NCBI   database   human   18S   rRNA   is   1869   bases   in   length   and   has   evident   secondary   structure   characteristics   [3].   Various   conformations   of   18S   rRNA   have   been   advocated   with   some   conformations   favored   depending   on   the   surrounding   environmental   conditions  [4].  One  of  the  suggested  conformations  presented  by  Apollo  Chemistry  in  Georgia   Institute  of  Technology  can  be  seen  in  Figure  1  [5].    

 

Figure  1.  Representation  of  one  conformation  of  human  18S  rRNA  with  the  clearly    

folded  nature,  presented  by  Apollo  Chemistry  of  Georgia  Institute  of  Technology  [5].  

(5)

Due   to   the   high   abundance   of   18S   rRNA   compared   to   mRNA,   18S   rRNA   has   been   used   as   an   indicator  of  the  overall  RNA  status  in  cells  and  tissue,  for  instance  the  overall  degradation  of   RNA   [6].   The   single   stranded   nature   of   RNA   molecules   and   the   highly   reactive   carbon   (C2)   hydroxyl  group  on  the  ribose  unit  makes  RNA  more  sensitive  to  degradation  than  DNA.  Some   RNA-­‐mediated  enzymatic  events  act  on  the  C2  hydroxyl  group,  for  instance  RNase  A,  an  enzyme   in  the  RNase  family  which  are  nucleases  that   catalyzes  the  degradation  of  RNA  [7].  RNase  H,   another   enzyme   in   the   RNase   family   degrades   RNA   hybridized   to   DNA   by   breaking   the   3’-­‐

phosphodiester  bond  on  the  RNA  strand  [7].  RNases  are  very  ubiquitous  and  hard  to  eliminate   i.e.   RNA   is   vulnerable   to   chemical   degradation   [7].   RNA   is   in   general   more   sensitive   to   heat   degradation   than   DNA.   Single   stranded   RNA,   depending   on   environmental   conditions   for   instance   type   of   buffer,   might   decay   from   temperatures   >65°C,   whilst   double   stranded   RNA   forming   secondary   structures   heat   denatures   at   around   70-­‐75°C   [8-­‐9].   Fragmented   RNA   eventually  leads  to  loss  of  function  and  a  way  to  measure  RNA  integrity  is  to  calculate  the  RNA   Integrity  Number  (RIN)  [6].  Degraded  mRNA  is  a  major  concern  in  genomic  research  since  the   loss  of  the  full  RNA  sequences  leads  to  difficulties  in  obtaining  information  on  gene  isoforms   (splice   variants)   and   Single   Nucleotide   Polymorphism   (SNPs),   thus   the   knowledge   of   RIN   is   valuable  for  gene  expression  studies  [10].  The  RNA  quality  has  traditionally  been  calculated  by   evaluating   the   28S   rRNA   to   18S   rRNA   ratio   on   agarose   gel.   Nowadays   the   RIN   algorithm   is   based   on   results   derived   from   an   electropherogram.   The   RNA   molecules   are   stained   with   a   nucleotide   binding   dye   and   are   exposed   to   an   electrical   current   and   migrate   through   the   gel   with  different  speed  depending  on  size.  The  electropherogram  measures  the  fluorescent  signal   from  the  dyed  RNA  over  time,  giving  different  electropherogram  patterns  of  the  fragmentation   ratio  with  RIN  scores  from  1  to  10,  where  1  is  completely  degraded  RNA  while  10  is  completely   intact   RNA.   Agilent   2100   bioanalyzer   is   an   instrument   that   uses   this   electropherogram   technology  that  is  built  on  a  machine-­‐learning  algorithm.  Thus,  it  solves  the  drawbacks  with  the   traditional  subjective  interpretation  of  the  RNA  quality  and  offers  a  quantitative  non-­‐subjective   score  [6].    

 

The  RNA  quality  is  crucial  in  single  cell  studies  but  there  is  a  certain  loss  of  information  when   using  RIN  to  determine  RNA  integrity.  The  importance  of  the  RNA  quality  for  single  cell  studies   has  been  mentioned  in  articles,  like  Pietersen’s  et  al.  article  on  Human  postmortem  brain  tissue   using  Laser  Capture  Microdissection  (LCM)  [11].  Similar  methods  have  been  discussed  in  other   articles  [12].    

 

Because  most  of  the  studies  on  RNA  are  solution  based  the  spatial  information  of  expression  in   tissue   is   lost   during   the   sample   preparation.   Concerning   RNA   quality,   spatial   information   of   tissue  may  show  if  certain  cells  and  regions  of  the  tissue  are  more  prone  to  be  affected  by  RNA   degradation   than   other.   At   SciLifeLab   (Stockholm,   Sweden)   Professor   Joakim   Lundeberg’s   group   in   collaboration   with   Professor   Jonas   Frisén   of   Karolinska   Institute   have   developed   a   method   that   enables   the   determination   of   gene   expression   spatially   on   tissue   sections.   This   method  is  called  Spatial  Transcriptomics  (ST)  and  is  a  technology  that  allows  the  integration  of   gene   expression   information   with   tissue   morphology.   The   method   provides   a   better   understanding   of   the   diversity   within   tissue   and   between   cells.   Spatial   Transcriptomics   is   a   sequencing-­‐based  method  which  uses  poly-­‐T  probes  on  an  Arrayit®  slide  to  capture  mRNA.  The   probes  are  printed  like  dots  covering  the  active  surface  of  the  slide  with  features  that  makes  it   possible  to  trace  the  origin  of  each  sequenced  transcript  from  the  tissue  with  the  aim  to  reach  

(6)

single  cell  resolution.  The  mRNA  is  vertically  diffused  to  its  corresponding  featured  dot  in  order   to   recreate   a   spatial   genetic   expression   profile   of   the   tissue.   In   articles   to   come   this   groundbreaking  technology  will  be  presented  in  detail.  The  possibility  to  study  multiple  genes   simultaneously  and  trace  the  origin  of  the  transcript  and  the  level  of  expression  on  tissue  will   make   ST   a   complement   to   the   Human   Protein   Atlas   (HPA).   This   technology   will   allow   for   studies  on  differences  between  mRNA  expression  and  protein  expression,  since  not  all  mRNA   translates   into   protein.   It   will   also   provide   information   on   diseased   tissue,   some   interesting   features  on  different  areas  of  tissue  and  further  the  information  on  development  of  diseases  at   cellular  level.  

In  medical  research,  before  further  investigations,  tissues  are  fixated.  Fixation  is  a  step  where   the  histological  sections  are  treated  to  prevent  decay  of  the  tissue.   The  fixation  is  most  often   performed  with  various  chemical  detergents  but  heat  and  immersion  are  also  utilized  methods.  

The   most   widely   used   fixation   method   is   formaldehyde   fixation   (commercial   name   formalin)   where  tissues  are  fixated  in  10%  Neutral  Buffered  Formalin  (NBF),  that  is  approximately  4%  

formaldehyde  in  Phosphate  Buffered  Saline  (PBS)  [13].  Formalin  is  a  beneficial  fixation  method   for   keeping   tissue   morphology.   Formalin   makes   the   tissue   more   rigid   by   creating   crosslinks   between  tissue,  proteins  and  nucleic  acids.  This  however  makes  DNA,  RNA  and  protein  studies   on   tissue   more   challenging   [14].   These   challenges   can   be   exemplified   when   performing   full-­‐

length   complementary   DNA   (cDNA)   synthesis   from   RNA.   The   reverse   transcriptase   (RT)   enzyme  that  acts  on  the  RNA  strand  during  cDNA  synthesis  is  affected  by  steric  hindrance  from   the   protein-­‐RNA   crosslinks.   This   fact   complicates   the   detection   of   full-­‐length   rRNA   using   formalin  fixation  and  furthermore  the  measurement  of  RNA  integrity.  Other  fixation  reagents   denature  the  proteins  in  the  tissue  by  disrupting  the  hydrophobic  interactions  that  keeps  the   tertiary   structures   of   the   proteins.   This   further   leads   to   aggregation   (precipitation)   of   the   proteins,  the  solubility  of  the  proteins  decreases  and  the  morphology  of  the  tissue  is  preserved.  

Those  reagents  are  usually  alcohols  or  ketones  like  methanol  and  acetone.  Acetone  also  has  a   permeabilizing  effect  on  the  tissue  [13-­‐14].  With  these  differences  between  the  ketone  based   methods   compared   to   formalin,   ketone   based   methods   may   have   advantages   studying   full-­‐

length  RNA  sequences  on  tissue  as  the  nucleic  acids  are  exempt  from  protein  cross-­‐linking.    

 

The  study  of  cancer  tissue  has  been  highly  important  using  spatial  methods.  The  heterogenous   nature  of  cancer  makes  array  based  technologies  like  the  study  of  spatial  expression  of  genes  a   research   method   for   cancer.   These   array-­‐based   methods   provide   information   on   the   spatial   expression  of  genes  between  different  cancer  tissue  and  different  cells  inside  the  same  cancer   tissue  may  show  unique  features.  Not  only  is  heterogenousity  revealed  between  cancer  cells,   but  also  knowledge  of  the  activity  of  surrounding  cells.  The  same  methods  can  be  applied  on   other  heterogenous  diseases  like  Reumatoid  arthritis  in  order  to  gain  essential  information  on   the   disease.   Some   of   these   spatial   methods   use   barcoding,   microfluidics   and   different   tracebacking   algorithms   in   order   to   gain   the   spatial   information,   as   in   Rahul   Satija’s   study   about   spatial   reconstruction   of   single-­‐cell   gene   expression   data   [15].   Other   studies   have   evaluated  spatial  gene  expression  and  the  field  is  a  hot  topic  presently  [16-­‐18].    

 

The  RNA  integrity  number  may  be  the  same  for  a  vast  variety  of  RNA  integrity  patterns  among   low  RIN  samples.  Thus  RIN  may  not  be  the  ultimate  method  to  evaluate  RNA  quality  of  tissue.  

An   Illumina®   protocol   using   another   metric   system   for   RNA   quality   called   DV200   has   been  

(7)

suggested.  This  method  uses  the  percentage  of  RNA  fragments  >200  nucleotides  to  determine   the  RNA  quality  [19].    

 

As  the  genetic  studies  on  tissue  improves,  the  demand  for  RNA  quality  control  methods  for  the   tissue  increases  rapidly.  The  drawbacks  with  total  RNA  studies  signify  the  importance  of  spatial   RNA   integrity   measurement   methods.   Fresh   frozen   tissue   and   Formalin-­‐Fixed   Paraffin-­‐

Embedded   (FFPE)   tissue   may   show   different   patterns   of   degradation   around   the   surface   compared  to  the  interior  of  the  tissue.  Some  spatial  integrity  patterns  may  arise  from  different   fixation  methods  and  the  biopsy  (the  sampling  of  tissue).  Spatial  information  of  the  RNA  quality   could   provide   information   on   which   areas   of   the   tissue   biopsies   beneficial   RNA   sequencing   results  could  lead  to.  If  cells  adjacent  to  tumor  cells  have  intact  RNA  while  other  parts  of  the   tissue   have   cells   with   low   RNA   integrity,   sequencing   of   the   tissue   could   still   hypothetically   provide  informative  sequencing  data  about  the  tumor  cells.    

 

New  methods  to  obtain  the  spatial  information  of  RNA  integrity  could  in  other  words  act  as  a   quality   control   for   the   biopsy,   for   the   fixation   method   and   for   the   research   of   cancerous   or   other  disease  affected  tissue  as  well  as  for  tissues  stored  in  biobanks  prior  conducting  further   gene  expression  studies.    

1.2  Aim  of  study    

This  thesis  aims  to  create  a  quality  control  assay  for  evaluating  RNA  integrity  on  tissue.    

The  quality  control  assay  will  be  based  on  the  study  of  18s  rRNA  degradation  in  tissue  by   creating   a   heat-­‐map   using   fluorescently   dyed   oligonucleotides   (probes).   The   fluorescently   dyed  probes  will  bind  on  specific  locations  on  the  captured  and  full-­‐length  cDNA-­‐synthesized   18s   rRNA   from   tissue.   The   information   gained   from   the   spatial   heat-­‐map   will   provide   information   about   the   degree   of   fragmentation   of   the   tissue.   For   instance   which   tissues   actually   provide   satisfying   RNA   sequencing   information   or   if   different   fixation   methods   affect  the  overall  quality  of  the  tissue.    

 

The   purpose   is   to   capture   18S   rRNA   from   sectioned   tissue   on   an   activated   glass   slide,   synthesize  cDNA  from  RNA  and  use  three  differently  fluorescently  dyed  probes  binding  to  three   different  regions  of  the  cDNA  sequence,  one  close  to  the  5’-­‐end,  one  in  the  middle  and  one  in   the  3’-­‐end  and  by  that  evaluate  the  integrity  of  RNA  based  on  the  binding  of  the  probes.  The   fluorophores  used  for  the  study  are  Fluorescein  isothiocyanate  (FITC)  with  emission  maximum   at   519   nm,   Cyanine   3   (Cy3)   with   emission   maximum   at   523   nm   and   Cyanine   5   (Cy5)   with   emission  maximum  at  635  nm  [20].  A  schematic  representation  of  the  workflow  can  be  seen  in   Figure  2.    

             

 

(8)

 

                         

     

                             

Figure  2.  Representation  of  the  workflow  for  the  in  situ  RNA  QC.  1.  Cryosectioning:  Tissue  sections  and  capture   probes  specific  to  a  region  close  to  the  3’  site  of  the  18s  rRNA.  In  reality  the  tissue  and  the  probes  are  stringently   stuck  on  the  glass  surface.  2.  Permeabilization:  This  step  allows  diffusion  through  the  cells.  RNA  and  the  capture   probes  diffuse  through  the  cell  membrane  and  can  interact.  The  RNA  diffuses  vertically  and  attaches  to  the  probe   right  under  it.  3.  cDNA  synthesis:  after  the  rRNA  is  attached  to  the  capture  probes,  cDNA  synthesis  is  executed.  4.  

Tissue  removal:  tissue  is  removed.  5.  rRNA  removal:  the  rRNA  is  removed  from  the  cDNA  strand  using  RNase  H   that  degrades  the  rRNA  strand.  6.  Hybridization  of  detection  probes:  Three  different  fluorescently  dyed  probes   bind  to  specific  regions  of  the  cDNA.  Each  fluorophore  has  its  specific  site  on  the  RNA.  The  yellow  circles  represent   FITC,  the  green  Cy3  and  the  red  Cy5.  The  excess  probes  are  washed  away.  And  thereafter  imaging  of  the  heat-­‐map   is  performed.    

 

The  probe  bound  to  FITC  were  closest  to  the  3’-­‐site  on  the  rRNA  molecule;  the  probe  bound  to   Cy3  were  in  the  middle  region  of  the  rRNA  molecule  and  the  probe  bound  to  Cy5  were  closest   to  the  5’-­‐site  of  the  rRNA  molecule.  The  hypothesis  is  that  FITC  would  be  visible  all  over  the   tissue  while  Cy5  would  be  visible  only  in  the  intact  regions  and  should  therefore  not  be  hard  to   distinguish  from  the  rest  of  the  tissue  while  Cy3  would  be  intermediately  visible.    

 

For  studying  fresh  frozen  tissue  a  long  probe  panel  (long-­‐range)  is  used  where  the  probes  are   spread  over  the  whole  cDNA  molecule  synthesized  from  the  18S  rRNA.  For  FFPE  tissue  a  short   probe   panel   (short-­‐range)   is   used   with   probes   binding   a   smaller   span   of   the   cDNA   molecule   synthesized   from   the   18S   rRNA,   see   Figure   3   for   a   representation   on   the   probe   panels.   The   short  probe  panel  was  not  experimentally  tested  on  tissue  in  this  thesis.      

 

②    

    ③

   

    ⑤     ⑥    

(9)

Figure  3.  Representation  of  the  long  panel  and  the  short  panel.  Note  that  the    

probes  with  the  same  name  has  identical  sequences  but  have  different   fluorophores  depending  on  the  panel.    

 

Furthermore   this   is   a   visual   sequencing-­‐free   method   that   evades   time   consuming   and   demanding  library  preparation.  Some  methods  implement  algorithms  for  quality  control  of  the   RNA   after   the   sequencing   step.   The   in   situ   RNA   quality   control   assay   circumvents   data   processing   and   data   analysis   steps.   The   results   are   easy   to   interpret,   offering   the   user   a   desirable  method  to  study  RNA  quality  spatially  on  tissue  in  order  to  decide  whether  the  tissue   is  suitable  for  RNA  sequencing  or  not.    

2  Background  

Below  in  Figure  4  is  a  representation  of  the  workflow  and  the  experimental  setup  of  the  quality   control  assay.  The  quality  control  assay  was  performed  on  mouse  brain  tissue.    

 

(10)

   

Figure  4.  Flowchart  over  the  method.  The  optimization  of  the  method  is  visualized.  

Each  step  represents  critical  points  in  the  assay  where  optimization  was  executed.  

The  reason  for  the  Hematoxylin  and  Eosin  staining  (H&E)  being  detoured  is   because  it  was  performed  on  different  tissue  sections  than  the  ones  that  the  rest  of   the  assay  was  performed  on.    The  H&E  staining  is  an  optimal  step,  allowing  tissue   morphology  with  spatial  manifestation  of  RNA  integrity.    

         

     

Sectioning

Formalin Methanol

Acetone

H&E  staining

Permeabilization

RNA  removal

cDNA   synthesis

Tissue   removal

Hybridization

Scanning

Fixation

(11)

2.1  Fixation  agents  

In   a   proof   of   concept   study   of   spatial   RNA   integrity,   comparison   between   formalin   fixation,   acetone  fixation  and  methanol  fixation  was  executed.  The  formalin  fixation  should  in  theory  not   generate  signal  from  fluorophores  bound  far  away  from  the  capture  site  on  the  rRNA  because   of  the  protein-­‐RNA  crosslinks.  Methanol  could  act  as  a  comparison  towards  acetone  in  order  to   evaluate   which   of   the   method   that   is   superior.   There   are   a   vast   number   of   other   fixation   detergents   that   can   be   evaluated   including   combination   of   methods,   for   instance   mixing   of   methanol  and  acetone.  

2.2  CodeLink  slides  

The   RNA   capture   step   requires   probes   complementary   to   the   RNA   sequence   bound   to   a   2-­‐

dimensional   transparent   surface   to   enable   scanning   on   microscopes   and   laser   scanners.  

CodeLink®   provides   activated   glass   slides   with   hydrophilic   polymers   containing   N-­‐

hydroxysuccinimide  ester  groups  that  covalently  bind  amine-­‐modified  DNA,  see  Figure  5  [21].  

The  covalent  amine-­‐ester  bond  between  the  DNA  probes  needs  a  5’-­‐amine  6  carbon  chain  (C6)   modification  in  order  to  bind  the  activated  slide.  The  activated  surface  disrupts  at  temperature   above   55°C   during   exposures   over   24   hours   [22].   Due   to   that   it   is   necessary   to   keep   temperatures  below  55°C  throughout  most  of  the  experiment.    

   

Figure  5.  Representation  of  the  chemistry  on  the  surface  of  the  activated    

CodeLink  slides.  The  picture  is  taken  from  ParaBioSys  of  Harvard  Medical   School  [21].  

(12)

2.3  Probes  with  fluorophores  

The   use   of   fluorescently   dyed   probes   in   order   to   evaluate   integrity   of   RNA   enables   the   visualization   of   degradation   on   a   2-­‐dimensional   surface.   The   probes   were   designed   with   around  50  %  Guanine-­‐Cytosine  (GC)  content  since  that  increases  the  chances  for  the  probes  to   bind  sufficiently  enough.  The  melting  temperature  Tm,  where  50%  of  the  oligonucleotides  are   hybridized,  will  be  below  50°C  for  the  probes.  The  amine-­‐ester  do  not  disrupt  on  the  chip  and   the  Tm  for  the  capture  probe  will  have  its  optimum  at  42°C,  the  temperature  the  cDNA  synthesis   is  set.    

The   ideal   probe   lengths   for   reducing   the   risk   of   unspecific   binding   are   between   18-­‐22   nucleotides  with  optimum  at  20.  The  free  energy  (∆G)  is  an  important  factor  to  consider  when   designing   probes.   If   the   free   energy   of   the   probe   has   a   negative   number   some   reactions   like   folding  can  occur  spontaneously.  Too  high  negative  numbers  on  the  free  energy  of  the  probes   may  result  in  undesirable  hairpin  structures,  therefore  a  good  rule  of  thumb  when  designing   hybridization  probes  is  to  exclude  probes  that  have  secondary  structures  at  free  energies  with   greater  negative  numbers  than  -­‐6  kcal/mol  [23].    

2.4  Full-­‐length  cDNA  synthesis  

Mouse   18S   rRNA   is   1870   nucleotides   with   similar   secondary   structure   characteristics   of   the   human  sequence.  Since  18S  rRNA  is  highly  conserved  the  quality  control  method  for  evaluating   the   RNA   integration   supposedly   works   for   both   species.   The   sequence   similarity   between   human   18S   rRNA   (NCBI   reference   NR_003286.2)   and   mouse   18S   rRNA   (NCBI   reference   NR_003278.3)  is  99%  with  1857/1872  matches  and  7/1872  gaps  [3,  24].  The  sequences  can  be   seen  in  appendix  1,  2  and  3.    

In   order   for   the   cDNA   synthesis   to   cover   the   whole   span   of   the   sequence   the   reverse   transcriptase  needs  to  give  rise  to  product  sizes  of  at  least  1870  bases  (1.87  kb).  Thermo  Fisher   Scientific   claims   that   SuperScript®   III   Reverse   Transcriptase   has   the   ability   to   transcribe   sequences  up  to  12.3  kb.  It  also  has  strand  displacement  activity,  which  means  that  the  enzyme   has  the  ability  to  loosen  up  secondary  structures  during  the  transcription  [25-­‐26].    

The   cDNA   synthesis   can   be   enhanced   in   different   ways   for   instance   by   adding   additional   amount  of  nucleotides.  Also  adding  Betaine  to  the  reaction,  which  reduce  secondary  structure   formation  in  GC-­‐rich  regions  and  thereby  decreases  its  melting  temperature  and  enhances  the   cDNA   synthesis.   Adding   extra   MgCl2   act   as   a   catalyst   to   the   enzyme  and   additional   Dimethyl   Sulfoxide   (DMSO)   to   decrease   thermostability   and   inhibit   secondary   structures   will   also   improve  the  cDNA  synthesis  [27-­‐28].    

(13)

2.5  Removal  of  rRNA  strand  

In  order  to  leave  room  for  the  fluorescently  dyed  probes  to  bind  to  the  cDNA,  the  RNA  strand   needs  to  be  removed.  Removal  of  RNA  can  occur  in  different  ways  for  instance  by  denaturation,   but  the  DNA/RNA  hybrid  denatures  in  temperatures  above  95°C  [23].  This  is  not  the  optimal   way  of  removing  RNA  since  the  amine-­‐ester  bind  on  the  CodeLink®  will  disrupt  and  a  lot  of   signal   will   get   lost.   RNase   H   cleaves   and   degrades   the   DNA/RNA   hybrid   [29].   The   enzyme   leaves  some  un-­‐cleaved  gaps  on  the  molecule,  which  is  a  drawback.  In  order  to  remove  as  much   RNA   as   possible   the   RNase   H   treatment   can   be   executed   for   longer   durations.   Short   rRNA   leftovers   on   the   cDNA   strand   may   dehybridize   easier   since   the   Tm   is   lower   for   shorter   fragments.    

The  removal  of  rRNA  is  a  critical  step  for  the  assay  to  work  and  the  RNA  strand  needs  to  be   completely   removed   to   allow   proper   hybridization   of   the   fluorescently   dyed   probes   for   the   assay  to  work  optimally.    

2.6  Hybridization  

The  hybridization  temperature  is  usually  set  between  5-­‐10°C  below  Tm.  Too  low  temperatures   will  result  in  unspecific  bindings  and  higher  temperatures  than  Tm  will  result  in  the  melting  of   the  DNA  hybrids  [23].  The  optimal  hybridization  solution  depends  on  the  probe  structure  and   the  target  [30].  It  can  be  calculated  using  databases  as  the  OligoAnalyzer  3.1  from  Integrated   DNA  Technologies®  (IDT)  [31-­‐32].    

3  Materials  and  methods   3.1  Primer  design  

3.1.1  Capture  probes  

Capture  probes  were  designed  to  bind  in  the  area  close  to  the  3’-­‐end  of  18S  rRNA.    

The  assay  was  constructed  to  work  for  both  mouse  and  human  tissue.  The  sequences  used   for  finding  optimal  primers  had  the  NCBI  Reference  Sequence  number  NR_003286.2  (human   18S  rRNA)  and  NR_003278.3  (mouse  18S  rRNA)  [3,  24].  The  primer3web  database  (version   4.0.0)  was  used  for  finding  primers  [33-­‐35].    

The   primer   conditions   were   a   sequence   length   of   between   18-­‐23   nucleotides   with   20   as   optimal  length,  a  Tm  between  38-­‐50°C  with  optimal  temperature  at  42°C,  and  a  content  of   guanine  and  cytosine  (GC-­‐content)  of  30-­‐60  %  with  an  optimum  at  50  %.  The  first  five  bases   of  the  3’-­‐ends  of  the  primers  were  set  to  include  two  of  either  guanine  or  cytosine  or  one  of   each.   The   primers   were   then   controlled   in   the   mfold   web   server   for   determination   of   secondary  structures  [36-­‐37].  The  free  energy  of  the  formed  secondary  structures  was  set  to   not  have  any  larger  negative  number  than  -­‐6  kcal/mol.    

Primer   dimers   (self-­‐complementarity   of   the   primers)   were   also   evaluated   using   the   Oligo   Calc:  Oligonucleotide  Properties  Calculator  [38-­‐39].  Primers  that  gave  rise  to  primer  dimers   in  the  databases  were  excluded.    

 

Each   probe   was   checked   in   the   Basic   Local   Alignment   Search   Tool   BLAST®   database   for   complementarity,  in  order  to  see  if  any  unspecific  binding  could  occur.  Probes  that  had  off-­‐

target  bindings  were  excluded.    

(14)

3.1.2  Hybridization  probes  

Hybridization  probes  complementary  to  cDNA  from  18S  rRNA  were  designed.    

The  purpose  of  the  hybridization  probes  was  to  bind  the  cDNA  synthesized  from  rRNA.    

Four  hybridization  probes  were  designed  for  the  long-­‐range  experiment  and  for  the  short-­‐

range   experiment.   The   conditions   set   in   primer3web,   mfold   and   Calc:   Oligonucleotide   Properties  Calculator  was  identical  to  the  ones  for  the  capture  probes.  

The  probes  were  set  as  left  primers  (forward  primers)  from  the  original  18s  rRNA  sequence.    

The  probes  were  named  Probe  1,  Probe  2,  Probe  3  and  Probe  4.  The  probes  were  ordered  in   a  way  so  that  the  capture  probe  designed  as  a  right  primer  (reverse  primer)  was  closest  to   the  3’-­‐end  of  the  18s  rRNA,  thereafter  the  Probe  1  designed  as  a  left  primer  second  closest  to   the  3’-­‐end,  Probe  2  third,  Probe  3  fourth  and  Probe  4  fifth.  Thus  Probe  1  was  set  to  bind  close   to  the  5’-­‐end  of  the  cDNA,  Probe  2  and  Probe  3  in  the  middle  region  and  Probe  4  close  to  the   3’-­‐end.  Probe  1,  2  and  3  was  used  for  the  short-­‐range  probe  panel  and  Probe  2,  3  and  4  for   the   long-­‐range   probe   panel   that   was   experimentally   tested.   Thus   the   short-­‐range   probe   setup  had  no  probes  close  to  the  3’-­‐end  of  the  cDNA.  For  the  capture  probes  and  each  probe   help  primers  were  designed.  For  the  capture  probes  the  help  primers  act  as  forward  primers   and  for  Probe  1,  Probe  2,  Probe  3  and  Probe  4  help  primers  acts  as  a  reverse  primers,  see   Figure  6.    

From  a  pool  of  probes  a  panel  of  one  capture  probe,  named  Capture  probe,  and  one  of  each;  

Probe  1,  Probe  2  and  Probe  3  and  Probe  4  were  selected  for  the  in  situ  RNA  QC  procedure.    

Each  probe  was  checked  in  the  BLAST®  database  for  complementarity,  in  order  to  see  if  any   unspecific  binding  could  occur.  

Figure  6.  Representation  of  the  theory  behind  the  qPCR  runs  on  the    

selected  probes  with  the  example  of  Probe  1  and  Help  primer  1  seen  in  the  

(15)

picture.  Probe  2  and  Probe  3  bind  to  areas  to  the  right  of  Probe  1  on  the   cDNA  strand.  NOTE:  the  picture  is  not  in  scale.  

3.2  Evaluation  of  probes  using  qPCR  

From  the  pool  of  several  candidate  probes,  evaluation  of  probes  for  further  studies  using  qPCR   was   performed.   The   evaluation   of   probes   was   performed   on   human   total   RNA.   After   the   evaluation  probes  with  5’-­‐attached  fluorophores  were  ordered  from  IDT®.  

3.2.1  Reverse  transcription  

For   each   reaction   a   mixture   was   prepared   containing   a   final   concentration   of   1x   5xSuper   script  III  First  strand  buffer  (250  mM  Tris-­‐HCl,  375  mM,  KCl,  15  mM  MgCl2),  5  mM  DTT,  1  M   Betaine,  6  µM  MgCl2,  0.25  µM  Capture  primer,  4x1  mM  dNTPs,  0.2  mg/ml  BSA,  10  %  DMSO,   20   U/µl   SuperScript®   III   Reverse   Transcriptase,   2   U/µl   RNaseOUT™   Recombinant   Ribonuclease   Inhibitor.   All   reaction   were   carried   out   at   a   total   volume   of   20µl.   Total   RNA   was   added   to   each   PCR   tube   to   a   final   amount   of   10   ng   in   each   tube.   The   reverse   transcription  was  run  at  42°C  for  50  minutes,  and  thereafter  kept  in  10°C.  The  samples  were   stored  in  -­‐20°C.    

3.2.2  qPCR  

A  reaction  mixture  of  1x  iQTM  SYBR®  Green  supermix  (2x  concentration),  500  nM  reverse   primers   (hybridization   probes),   500   nM   forward   primers   (help   primers)   were   prepared.  

Thereafter  the  cDNA  was  added  to  a  final  amount  of  1  ng  in  each  well.  The  qPCR  reaction   was  done  using  a  white-­‐coated  96  well  PCR  plate,  and  the  total  volume  used  in  each  well  was   20   µl.   The   qPCR   program   used   started   with   3   minutes   preheating   at   95°C,   10   seconds   of   denaturation  at  95°C,  30  seconds  of  annealing  in  55°C,  30  seconds  of  extension  in  72°C.  The   denaturation,  annealing  and  extension  steps  were  run  in  50  cycles,  thereafter  a  melt  curve   between  55-­‐95°C  was  run.    

3.3  Printing  of  activated  slides    

One   Capture   probe   was   selected   for   printing   on   a   CodeLink®   Activated   Slide.   An   amine   C6   modified   version   of   the   Capture   probe   was   ordered   from   IDT.   Printing   was   done   using   Arrayit®  SuperMask™  16  Substrate  Slides  and  holders.  Each  well  of  the  mask  was  printed  with   a  mix  containing  20  µM  of  the  Capture  probe  and  1x  of  2x  Printing  buffer  (containing  100mM   Sodium   Phosphate,   0.12   %   Sarkosyl).   Each   well   was   treated   with   the   printing   mix   for   one   minute  before  it  was  removed  by  pipetting.  Once  the  Printing  mix  was  removed  from  each  well   the  masks  were  dried  in  room  temperature  for  5  hours.    

After  drying  the  slides  were  put  in  a  rack  and  placed  in  a  humidity  chamber  over  night.  

(16)

The   next   day   the   slides   were   treated   in   a   chamber   with   50°C   pre-­‐warmed   blocking   solution   (containing   0.1   %   Tris,   50   mM   ethanolamine)   for   30   minutes   with   100   rpm   shake   and   protected   from   light.   Thereafter   the   slides   were   quickly   washed   in   deionized   water.   After   washing   with   deionized   water   the   slides   were   treated   in   a   chamber   with   50°C   prewarmed   washing   solution   (containing   4x   SSC,   0.1   %   SDS)   for   30   minutes   with   100   rpm   shake.   After   washing  the  slides,  they  were  quickly  washed  in  deionized  water  and  spun  dry.    

3.4  RNA  QC  

3.4.1  Tissue  sectioning  

Mouse   brain   tissues   embedded   in   optimal   cutting   temperature   compound   (OCT)   were   sectioned   using   a   CryoStar   NX50   Cryostat.   The   sectioning   conditions   set   in   the   cryostat   where  -­‐20°C  for  the  cutting  blade  and  -­‐20°C  for  the  tissue  holder.  The  tissues  were  sectioned   in   10   µm   sections.   After   sectioning   the   tissues   were   attached   to   the   active   wells   of   the   activated  slides.  After  the  attachment  of  the  tissues  they  were  further  adhered  to  the  slides   by  heating  to  37°C  for  1  minute.    

3.4.2  Fixation  

After  sectioning,  fixation  was  done  by  treating  each  tissue  with  different  fixation  methods.  

Acetone  fixation  was  done  using  100  %  pre-­‐cooled  (-­‐20°C)  acetone  for  10  minutes  in  -­‐20°C.  

Thereafter  the  acetone  was  removed  by  pipetting  and  the  slides  were  washed  in  1xPBS  and   incubated  in  37°C  until  the  slides  were  dry.  The  methanol  fixation  was  carried  out  exactly   the  same  way  as  the  acetone  fixation.  The  concentration  of  methanol  used  was  100%.    

For   the   formalin   fixation   4%   formalin   diluted   in   1xPBS   was   used   for   10   minutes   in   room   temperature.   Thereafter   the   slides   were   washed   in   1xPBS   and   incubated   in   37°C   until   the   slides  were  dry.      

3.4.3  Hematoxylin  and  Eosin  staining  

The   staining   was   performed   by   initially   adding   100%   Isopropanol   (2-­‐propanol)   to   cover   the   whole  tissue.  After  the  Isopropanol  evaporated  a  Mayer’s  Hematoxylin  solution  was  added  to   each  tissue  and  incubated  at  room  temperature  for  7  minutes.  After  staining  with  Hematoxylin   the  slides  were  washed  in  nuclease  free  water  and  thereafter  a  Dako  Bluing  Buffer  was  added   to   the   tissue   and   incubated   at   room   temperature   for   2   minutes.   The   slides   were   washed   in   nuclease  free  water  after  the  Bluing  buffer  treatment.  Subsequently  the  tissue  was  treated  with   1:20   Eosin   (diluted   in   Tris-­‐acrylamide)   for   10   seconds   after   being   washed   in   nuclease   free   water.  The  slides  were  dried  in  room  temperature  and  then  incubated  in  37°C  for  5  minutes.  

After  the  Hematoxylin  and  Eosin  staining  the  slides  were  scanned  in  a  Zeiss  Imager.Z2  with  the   Vslide   and   Metafer   software   from   MetaSystems.   The   slides   were   treated   with   85%   glycerol   before   the   scan   and   the   settings   in   the   microscope   were   set   at   LED   intensity   10   with   white   panel,  a  20x  intensity  bright  field  classifier,  camera  gain  1  and  integration  time  0.0015  seconds.    

(17)

After   the   bright   field   microscopy   the   slides   were   washed   from   the   glycerol   in   nuclease   free   water,   and   after   that   washed   in   80%   ethanol.   Thereafter   the   slides   were   washed   in   room   temperature  and  after  that  incubated  in  37°C  for  1  minute.      

3.4.4  Permeabilization    

Permeabilization  was  performed  by  treating  each  well  containing  tissue  with  0.1  M  pepsin  in   0.1  %  HCl.  It  was  performed  in  37°C  for  5  minutes,  thereafter  the  permeabilization  mixture   was  removed  from  each  well  by  pipetting  and  the  slides  were  washed  by  pipetting  0.1xSSC   in  and  out  of  each  well.      

3.4.5  cDNA  synthesis  

A  cDNA  synthesis  mixture  was  prepared  containing  1x  5xSuper  script  III  First  strand  buffer   (250  mM  Tris-­‐HCl,  375  mM,  KCl,  15  mM  MgCl2),  5  mM  DTT,  50  ng/µl  Actinomycin  D  (500   ng/µl  in  10  %  DMSO),  1  M  Betaine,  6  µM  MgCl2,  0.2  mg/ml  BSA,  10  %  DMSO,  4x1  mM  dNTPs.  

The  cDNA  synthesis  mixture  was  preheated  to  42°C  before  the  addition  of  SuperScript®  III   Reverse  Transcriptase  with  a  final  concentration  of  20  U/µl  and  RNaseOUT™  Recombinant   Ribonuclease  Inhibitor  final  concentration  of  2  U/µl.  

Thereafter  the  cDNA  synthesis  mixture  was  added  to  each  well  with  tissue  and  incubated  in   42°C  over  night.    

After  the  incubation  the  cDNA  synthesis  mixture  was  removed  from  each  well  by  pipetting  and   the  wells  were  washed  by  pipetting  0.1xSSC  in  and  out  of  each  well.      

3.4.6  Tissue  removal  

Tissue  removal  was  done  using  40  mAU/ml  QIAGEN®  Proteinase  K  in  Proteinase  K  digest   buffer  (PKD  buffer).  The  tissues  were  treated  with  the  tissue  removal  mixture  for  1  hour  in   56°C   using   300   rpm   interval   mix   (6   seconds   mixing   3   seconds   rest).   After   incubation   the   tissue  removal  mixture  was  removed  from  each  well  by  pipetting  and  the  wells  were  washed   by  pipetting  0.1xSSC  in  and  out  of  each  well.  The  slides  were  checked  for  absence  of  tissue   before  proceeding  to  the  denaturation  step.    

3.4.7  rRNA  removal  

The   rRNA   was   removed   from   the   cDNA   using   a   reaction   mixture   containing   1x   5xSuper   script  III  First  strand  buffer  (250  mM  Tris-­‐HCl,  375  mM,  KCl,  15  mM  MgCl2),  0.2  mg/ml  BSA,   40  U/ml  RNase  H.    

The  reaction  was  executed  at  37°C  for  1  hour.  After  incubation  the  tissue  removal  mixture   was  removed  from  each  well  by  pipetting  and  the  wells  were  washed  by  pipetting  0.1xSSC  in   and  out  on  each  well.  

3.4.8  Hybridization  of  probes  

Hybridization   of   fluorescently   dyed   probes   was   done   using   a   mixture   containing   1x   2xHybridization   buffer   (20mM   Tris-­‐HCl,   2mM   EDTA   100mM   NaCl),   0.5   µM   of   each   fluorescently  dyed  probes.  The  hybridization  solution  was  preheated  to  42°C  before   being   added  to  each  well.  The  hybridization  was  executed  at  42°C  for  30  minutes  protected  from   light.  The  hybridization  mix  was  removed  by  pipetting  and  thereafter  washing  of  the  plates   was  performed.      

(18)

3.4.9  Plate  Wash  

The  slides  were  washed  in  42°C  heated  washing  solution  1  (containing  2xSSC  and  0.1%  SDS)   for  10  minutes  with  300  rpm  shake.  The  slides  were  thereafter  washed  in  room  temperature   with  washing  solution  2  (0.2xSSC)  for  1  minute  with  300  rpm  shake.  Lastly  the  slides  where   washed   in   room   temperature   in   washing   solution   3   (0.1xSSC)   for   1   minute   with   300   rpm   shake,  and  thereafter  the  slides  where  spun  dry.    

3.5  Scanning  and  microscope  use     3.5.1  Control  scan  

The  slides  were  scanned  with  an  Agilent  G2565CA  DNA  Microarray  Scanner.  Both  red  (for  Cy5)   and  green  (for  Cy3)  lasers  were  used  and  the  resolution  was  set  to  5  µm  and  the  intensity  for   both  lasers  was  set  to  50  %.    

3.5.2  Microscope  scan  

After  the  control  scan  SlowFade®  Gold  Antifade  Reagent  was  added  to  cover  all  active  wells.    

Thereafter  a  glass  cover  was  put  on  top  of  the  antifade  reagent  and  the  slides  were  scanned  in  a   Zeiss  Imager.Z2  with  the  Vslide  and  Metafer  software  from  MetaSystems.  The  laser  source  was   an   X-­‐cite®   exacte   with   the   intensity   set   to   100.   The   classifier   used   in   Metafer   was   a   three   fluorophore  classier  that  scanned  for  FITC,  Cy3,  and  Cy5.  The  camera  gain  was  set  to  6  and  the   integration  time  was  set  to  0.02.  

3.6  Total  RNA  control    

3.6.1  Fragmentation  of  total  RNA  

An   amount   of   9   µg   of   total   RNA   was   used   for   fragmentation   with   the   NEBNext®   Magnesium   RNA  Fragmentation  Module  Protocol.  The  fragmentation  mix  contained  2x  RNA  Fragmentation   Buffer  (10X)  together  with  the  total  RNA.  The  sample  volume  was  20  µl  and  the  fragmentation   was  executed  at  94°C.  To  gain  a  length  of  1000  nucleotides  for  the  fragments  the  total  RNA  was   heated  for  1  minute  until  stopped  with  x2.2  10X  RNA  Fragmentation  Stop  Solution.  To  gain  a   length   of   300   nucleotides   for   the   fragments   the   total   RNA   was   heated   for   3   minutes   until   stopped  with  x2.2  10X  RNA  Fragmentation  Stop  Solution.        

After  the  fragmentation,  the  fragmented  total  RNA  samples  were  purified  using  the  RNeasy®  

MinElute®  Cleanup  Kit  from  QIAGEN.    

3.6.2  Purification  of  fragmented  RNA  

The  RNeasy®  MinElute®  Cleanup  Kit  protocol  was  followed  using  the  starting  volume  of  100   μl   [40].   Thereafter   the   samples   were   analyzed   for   fragment   sizes   in   a   2100   Bioanalyzer   Instrument  from  Agilent  Technologies.    

3.6.3  Bioanalyzer  run  

A  Bioanalyzer  run  was  performed  on  the  fragmented  samples  using  the  Agilent  RNA  6000  Nano   Kit  Guide  [41].    

3.6.4  RNA  QC    

The   RNA   QC   protocol   was   run   on   total   RNA   in   a   similar   fashion   as   for   the   tissue.   After   the   Bioanalyzer  run  the  samples  were  treated  as  in  3.4.5  cDNA  synthesis  to  3.5.2  Microscope  scan,   excluding  the  3.4.6  Tissue  removal  step.    

(19)

3.7  qPCR  on  released  material     3.7.1  PolyU-­‐Capture  probe    

A   poly-­‐uracil   modified   capture   probe   with   5   uracils   in   the   5’-­‐site   of   the   probe   was   designed.  

The  poly-­‐U  capture  probe  had  the  amine  C6  modification  as  well  in  order  to  be  printed  on  a   CodeLink   slide.   The   probe   was   printed   as   in   3.3   Printing   of   activated   slides.   Thereafter   the   quality  control  assay  was  executed  from  3.4.1  Tissue  sectioning  to  3.4.6  Tissue  removal.  After   the   tissue   removal   step   a   release   step   was   executed   were   the   captured   material   from   the   surface  of  the  CodeLink  slide  were  released.  The  release  was  executed  using  a  mix  diluted  in   nuclease  free  water  of  100  U/ml  USER™  Enzyme  and  1XCutSmart®  Buffer.  The  mix  was  added   to  the  wells  on  the  slide  and  a  one-­‐hour  treatment  in  300  rpm  shake  and  37°C  was  performed.  

After  the  treatment  the  liquid  from  the  wells  was  pipetted  out  and  a  qPCR  as  in  step  3.2.2  was   performed  on  the  released  material.    

4  Results   4.1  Primers  

The  sequence  of  the  cDNA  from  18s  rRNA  from  human  and  mouse  with  the  positions  of  each   probe  can  be  seen  in  appendix.  The  information  about  the  sequence  similarity  between  the   sequences  from  mouse  and  human  can  be  seen  in  appendix.  The  panels  of  chosen  probes  can   be   seen   in   Table   1   and   2.   For   the   qPCR   the   capture   probe   was   used   as   a   primer   for   the   reverse   transcriptase   of   the   total   RNA.   Each   probe   without   its   associated   fluorophore   and   with  a  help  probe  was  used  for  the  qPCR.    

Table  1.  The  panel  of  long-­‐range  probes  with  positions  counted  from  the  3’  end  on  human  18S   rRNA  

Probe  name   Fluorophore   Sequence  5’-­‐3’   Tm   rRNA  position  3’-­‐5’  

Capture  probe   None   TTTACTTCCTCTAGATAGTC    47.92   45  

Probe  2   Help  primer  2   Probe  3   Help  primer  3   Probe  4     Help  primer  4  

FITC*   None   Cy3*   None   Cy5*   None  

GAGATTGAGCAATAACAG   AATCAACGCAAGCTTATGAC   GTAGTTCCGACCATAAAC   GTGTTGAGTCAAATTAAG   GGTGACTCTAGATAACCT   CGAAAGAGTCCTGTATTG  

 47.77    54.69    49.75    45.93    48.95    49.77  

396   192   801   615   1581   1325  

*The  primers  did  not  have  the  associated  fluorophore  during  the  qPCR  experiment  

Table  2.  The  panel  of  short-­‐range  probes  with  positions  counted  from  the  3’  end  on  human  18S   rRNA  

Probe  name   Fluorophore   Sequence  5’-­‐3’   Tm   rRNA  position  3’-­‐5’  

Capture  probe   None   TTTACTTCCTCTAGATAGTC    47.92   45  

Probe  1   Help  primer  1   Probe  2   Help  primer  2   Probe  3   Help  primer  3  

FITC*   None   Cy3*   None   Cy5*   None  

GAGGAATTCCCAGTAAGT TCCTCTAGATAGTCAAGTTC   GAGATTGAGCAATAACAG   AATCAACGCAAGCTTATGAC   GTAGTTCCGACCATAAAC   GTGTTGAGTCAAATTAAG  

 48.62    45.74    47.77    54.69    49.75    45.93  

233   51   396   192   801   615  

*The  primers  did  not  have  the  associated  fluorophore  during  the  qPCR  experiment  

References

Related documents

hassan Is tearIng doWn the last section of the stone wall surrounding the family farm in the so-called coral rag area stretching beyond the village of Jambiani on the southeas-

[r]

In this study, an available sample of molybdenite from the Kingsgate mineral field was used as a test material to be able to develop the final method, but tablets of

Stroke is acknowledged as a long-term condition, however most studies concerning participation after stroke are short-term or cross-sectional, and less is known

Correlation during the 56-hour blood stage time course between PfGDV1 sense and antisense transcript levels was the highest of any predicted P.. falciparum sense-antisense pair (ρ

DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression.. Caroline Bäreclev abc ,

Tidskrift för Schack är officiellt organ och medlemsblad för Sveriges Schackförbund, Ägare: Sveriges Schackförbund. SSF:s TfS-kommitté: Ingvar Persson, Bo Plato,

The project aims to evaluate and optimize assays that could be used in Companion Diagnostics relevant for colorectal cancer. The other part was to validate new