• No results found

Removal  of  Arsenic  in  Ground  Water  from  Northern  Burkina   Faso  through  Adsorption  with  Granular  Ferric  Hydroxide

N/A
N/A
Protected

Academic year: 2021

Share "Removal  of  Arsenic  in  Ground  Water  from  Northern  Burkina   Faso  through  Adsorption  with  Granular  Ferric  Hydroxide"

Copied!
42
0
0

Loading.... (view fulltext now)

Full text

(1)

Removal  of  Arsenic  in  Ground  Water  from  Northern  Burkina   Faso  through  Adsorption  with  Granular  Ferric  Hydroxide

 

-­‐  A  SIDA  Minor  Field  Study  at  the  Department                                                                          

of  Chemistry,  University  of  Ouagadougou

 

 

Emma  Lundin  and  Hannes  Öckerman  

June  –  August  2013  

_______________________________________________  

Master  Programme  in  Environmental  and  Water  Engineering   Uppsala  University     Swedish  University  of  Agricultural  Sciences  

(2)

  Title:    

Removal  of  Arsenic  in  Ground  Water  from  Northern  Burkina  Faso  through  Adsorption  with  Granular   Ferric  Hydroxide  

 

Authors:  

Emma  Lundin  and  Hannes  Öckerman    

   

Supervisors:  

Prof.  Dr.  Samuel  Paré,  environmental  chemist,  Department  of  Chemistry,  University  of   Ouagadougou,  Burkina  Faso  

Prof.  Dr.  Ingmar  Persson,  Department  of  Chemistry,  Swedish  University  of  Agricultural  Sciences,   Uppsala,  Sweden  

Dr.  Johan  Mähler,  Department  of  Chemistry,  Swedish  University  of  Agricultural  Sciences,  Uppsala,   Sweden  

 

Granting  institution:  

International  Science  Programme,  Uppsala  University    

   

Course  title:  Project  work  in  environmental  and  water  engineering      

Course  code:  1TV009    

Credits:  15    

   

Key  words:  Burkina  Faso,  arsenic,  Granular  Ferric  Hydroxide,  adsorption,  column  test,  drinking  water,   ground  water,  self-­‐regeneration    

                                   

(3)

 

Acknowledgements

We   would   like   to   send   a   great   thanks   to   Samuel   Paré   for   welcoming   us   with   such   warmth   to   the   equally   warm   Burkina   Faso   and   Ouagadougou.   You   gave   great   guidance   and   expertise   in   the   laboratory  work  and  also  gave  us  the  possibility  to  explore  Ouagadougou  outside  of  the  university.  

Abdoul  Karim  Sakira,  your  patience  with  us  in  the  laboratory  was  magnificent.    

Joel,  thank  you  for  your  great  support  in  the  practical  work  every  day.  Bakouan,  that  you  kept  an  eye   on  us  and  checked  in  with  us  every  day  made  it  easier  to  keep  up  the  work.  Both  of  you  have  a  great   part  in  this  project  and  we  hope  to  see  that  you  continue  the  work  also  in  the  future.    

We  would  never  have  experienced  this  without  the  support  from  our  wonderful  supervisor  Ingmar   Persson.   Thank   you   so   much   for   wanting   us   to   get   this   opportunity   and   for   all   the   support   in   the   practicalities  around  the  project.  Johan   Mähler,   thank  you  for  your  dedication  to  the  experiments   and  the  valuable  never-­‐ending  inputs  of  scientific  knowledge  and  advice  in  the  laboratory  work.  

Knowing   the   importance   of   companies   investing   in   clean   water   for   everyone   we   are   very   thankful   and  happy  to  acknowledge  GEH  Wasserchemie  GmbH  &  Co.  KG  for  providing  the  adsorbent  free  of   charge.  

Finally,   the   financial   support   through   SIDA   has   made   this   possible.   Thank   you   Peter   Roth   and   the   International   Science   Programme   at   Uppsala   University   for   believing   in   the   necessity   and   importance  of  the  study  and  granting  us  the  MFS  scholarship.  

   

(4)

 

Abstract

The  need  of  making  arsenic  contaminated  ground  water  potable  is  urgent  in  parts  of  Burkina  Faso.  

An   implementation   of   a   treatment   design   using   Granular   Ferric   Hydroxide   (GFH)   is   under   development.  Water  from  a  tube-­‐well  in  Lilgomdé,  Yatenga  province,  Burkina  Faso,  has  been  treated   with   the   adsorbent   GFH   through   column   experiments.   The   water   had   an   arsenic   concentration   varying   between   99   and   215   μg/L   and   an   average   pH   of   7.9.   The   study   has   shown   that   arsenic,   predominantly   in   the   form   of   arsenate,   can   be   adsorbed   to   the   material   in   significant   amounts   despite  a  high  natural  pH  and  the  presence  of  ions  competing  with  arsenic  for  adsorption  sites  on  the   GFH.  

When  run  through  the  column,  the  pH  of  the  effluent  water  drastically  decreased  in  the  beginning.  

However,  the  low  pH  was  soon  followed  by  a  slower  readjustment  towards  the  pH  of  the  influent   water.  The  adsorption  of  phosphates  and  fluorides  was  also  studied.  Both  competitors  exist  in  higher   molar  quantities  than  arsenic  in  the  ground  water.  Even  though  arsenic  displays  a  higher  affinity  for   the  GFH,  an  average  44  %  of  total  phosphate  and  64  %  of  the  fluoride  were  adsorbed,  making  them  a   factor  affecting  the  results  of  the  study.  Hydrogen  carbonate  is  also  believed  to  affect  the  adsorption   process  but  this  could  not  be  confirmed.  The  empty  bed  contact  time  (EBCT),  describing  the  average   time  of  contact  between  the  adsorbent  and  the  water,  has  shown  to  be  of  importance.  Increasing   the   EBCT   resulted   in   notably   more   arsenic   being   adsorbed   per   volume   GFH.   When   increasing   the   contact   time,   the   study   showed   that   reducing   the   speed   of   the   flow   was   more   effective   than   increasing  the  volume  of  the  adsorbent.  

The  GFH  was  also  found  to  have  a  self-­‐regenerating  ability  to  a  certain  extent.  When  interrupting  the   experiment   and   leaving   the   column   material   in   the   aqueous   solution   for   several   days,   the   arsenic   adsorption   capacity   after   the   break   was   shown   to   be   higher   than   just   before   it.   A   13   %   increased   capacity  was  shown  in  one  experiment.  Conclusively,  the  results  of  this  study  suggest  no  hindrances   towards  developing  larger  scale  columns  and  prototypes  to  be  applied  at  tube-­‐well  pump  stations.  

Further   investigations   on   the   treatment   method   with   GFH,   on   arsenic   contaminated   water,   are   recommended.  

   

(5)

 

Table of contents

Acknowledgements   3  

Abstract   4  

1   Aim   7  

2   Introduction   8  

2.1   Problem  background   8  

2.2   Geology  of  the  region   9  

2.3   Earlier  studies   9  

3   Theory   11  

3.1   Arsenic   11  

3.2   Granular  Ferric  Hydroxide   12  

3.3   Surface  adsorption  on  mineral  surfaces   13  

3.4   Factors  affecting  adsorption   13  

3.4.1   pH   13  

3.4.2   Competition  from  other  anions   14  

4   Experimental   15  

4.1   Preparation  of  Column   15  

4.2   Summary  of  experimental  setup   16  

4.3   Analysis  methods   18  

5   Results  and  discussion   19  

5.1   Initial  Arsenic  Adsorption  Testing   19  

5.2   Impact  of  Empty  Bed  Contact  Time   20  

5.3   Self-­‐regeneration   22  

5.4   Adsorption  of  competitors   23  

5.4.1   Phosphates   23  

5.4.2   Fluorides   25  

5.4.3   Hydrogen  carbonates   26  

5.5   pH  changes   27  

5.6   Summary  of  results   29  

6   Conclusion   30  

Works  Cited   32  

7   Appendix   33  

(6)

 

7.1   Experiment  1   33  

7.2   Experiment  2   35  

7.3   Experiment  3   36  

7.4   Experiment  4   37  

7.5   Experiment  5   40  

7.6   Experiment  6   41  

7.7   pH  changes   42  

   

(7)

 

1 Aim

This   rapport   aims   to   present   a   complimentary   study   to   Competition   for   Adsorption   Sites   on   Iron   Oxyhydroxide  Based  Column  Adsorbents  for  the  Removal  of  Arsenic  Oxyacid  Species  (Mähler  et  al.,   2013)  where  Granular  Ferric  Hydroxide  (GFH)  has  been  proven  to  be  an  efficient  material  to  adsorb   arsenic  from  deionized  water  through  column  experiments.  This  study  aims  to  determine  whether   the  GFH  is  an  effective  adsorbent  on  natural  ground  water  from  the  Yatenga  Province  in  northern   Burkina   Faso   and   to   find   the   physical   and   chemical   parameters   affecting   the   efficiency   of   the   treatment  method.  

   

(8)

 

2 Introduction

Out  of  the  occurring  trace  elements  in  the  ground  water  of  northern  Burkina  Faso,  arsenic  has  the   greatest   impact   on   human   health.   Medical   problems   such   as   skin   lesions   and   cancer   are   widely   known   to   occur   as   a   consequence   of   chronic   arsenic   intake.   Skin   lesions   such   as   melanosis   and   keratosis  on  hands  and  feet  are  among  the  first  seen  effects,  usually  occurring  after  5-­‐15  years  of   arsenic   exposure   (Agusa   et   al.,   2009).   Observed   skin   lesions   among   a   study   population   in   the   northern   regions   of   Burkina   Faso,   West   Africa,   coincide   with   high   arsenic   concentrations   in   the   drinking  water  being  pumped  up  from  deep  boreholes  (Somé  et  al.,  2012).  In  these  regions  geological   sources   are   the   contaminating   factor   of   arsenic   in   the   ground   water   (Smedley   et   al.,   2007).   The   drilled   boreholes   are   specifically   exposed   to   arsenic   contamination   as   this   intrusion   increases   the   mobility   of   arsenic   through   the   natural   process   of   leaching   from   the   bedrock   (Somé   et   al.,   2012).  

Both  forms  of  arsenic  found  in  natural  waters,  penta-­‐  and  trivalent-­‐forms,  are  considered  toxic.  The   difficulty   to   find   suitable   drinking   water   in   the   arid   northern   parts   of   Burkina   Faso   has   led   to   the   initiative  of  both  local  and  international  scientific  studies  to  find  a  water  treatment  solution  for  the   arsenic  contamination  (Somé  et  al.,  2012;  Mähler  and  Persson,  2013b).  

The  problem  with  arsenic  contamination  is  feared  to  exist  throughout  West  Africa  due  to  the  spread   of  the  same  type  of  bedrock  (P.  Genthon  2013,  pers.  comm.,  15  July).  The  boreholes  have  become   essential  in  supplying  the  northern  villages  of  Burkina  Faso  with  water.  Tube-­‐well  water  is  used  by   approximately   87   %   of   the   villagers   in   the   Yatenga   province   (Somé   et   al.,   2012).   Among   the   first   recognized   consequences   from   chronic   exposure   to   arsenic   is   melanosis,   a   skin   disorder   of   hyperpigmentation   or   keratosis   where   the   skin   goes   rough   and   dry   with   skin   papules.   The   effect   arsenic  has  on  human  health  depends  on  dose  and  duration  of  exposure,  but  arsenic-­‐related  diseases   also  include  internal  types  of  cancer  (Somé  et  al.,  2012).  

 

2.1 Problem background

In  2012,  more  than  one  half  (52  %)  of  the  tube-­‐wells  studied  in  the  Yatenga  Province,  had  an  arsenic   concentration  exceeding  the  guideline  limit  on  drinking  water  by  the  World  Health  Organization  of   10   μg/L.   Out   of   the   examined   wells,   6   %   showed   a   concentration   above   100   μg/L.   High   concentrations  are  thought  to  reflect  the  oxidation/weathering  of  the  mineral  arsenopyrite  (FeAsS)   (Somé  et  al.,  2012).  Arsenic  concentration  in  the  urine  samples  of  the  residents  was  correlated  to  the   arsenic  concentration  of  the  water.  3  %  of  the  population  showed  an  arsenic  concentration  above  

(9)

 

one  half  (46  %),  respectively,  of  the  population  (Somé  et  al.,  2012).  A  positive  but  weak  correlation   between   the   prevalence   of   skin   lesions   and   the   arsenic   concentration   of   the   tube-­‐well   water   was   established.  It  is  considered  that  nutritional  intake  and  genetics  also  play  a  big  role  in  the  expression   of  arsenic  toxicity  (Somé  et  al.,  2012).  

 

2.2 Geology of the region

The   basement   rock   of   Burkina   Faso   consists   mainly   of   Birimian   (Lower   Proterozoic)   meta-­‐

sedimentary  metaigneous  rocks.  Arsenic  is  found  mainly  in  the  gold  rich  granite  veins  of  the  Birimian   volcano-­‐sedimentary  sequences  (Smedley  et  al.,  2007).  While  the  top  mineral  soil  layer  can  be  very   porous   but   the   pores   not   well   connected,   fractures   in   the   basement   rock   create   well-­‐connected   pores   for   ground   water   and   trace   element   movement   (P.   Genthon   2013,   pers.   comm.,   15   July).  

Therefore,  the  fracture  zones  create  good  conditions  to  find  drinking  water  but  there  is  also  a  severe   risk   of   the   water   being   contaminated   with   toxic   trace   elements.   One   of   these   is   arsenic   whose   presence   in   boreholes   is   linked   to   the   zones   of   gold,   primary   sulfide   minerals   and/or   iron   oxides   within  the  Birimian  basement  sequences.  

The  natural  flow  velocity  of  the  ground  water  aquifer  is  approximately  1  m/year  where  the  fracture   zones  contribute  to  the  majority  of  the  movement.  All  kind  of  activity  in  the  basement  rock,  such  as   drilling  of  boreholes  and  mining,  can  possibly  affect  and  change  the  movement  of  trace  elements,   such   as   arsenic.1  The   mobilization   of   trace   elements   in   the   ground   water   depends   on   pH,   redox   conditions,  mineral  solubility,  kinetics,  surface  reactions  (Smedley  et  al.,  2007)  as  well  as  the  seasons   (P.  Genthon  2013,  pers.  comm.,  15  July).  

 

2.3 Earlier studies

Over   the   past   ten   years,   research   on   the   ground   water   quality   has   been   carried   out   in   the   region   around   the   town   of   Ouahigouya   in   northern   Burkina   Faso   by   study   teams   such   as   Direction   de   l’Approvisionnement   en   Eau   Potable   et   de   L’Assainissement   (DAEPA)   in   collaboration   with   P.   L.  

                                                                                                                         

1  Arsenic  has  also  been  found  in  surface  water.  Through  mining,  the  minerals  are  taken  to  the  surface  and  can  through  precipitation  be   spread   to   near-­‐by   surface   waters.   In   Nakambe   River,   30   km   from   Ouahigouya,   Yatenga   Province,   arsenic   has   been   detected   at   concentrations  up  to  18  µg/l.  The  only  way  for  the  arsenic  to  reach  this  surface  water  is  through  mining  exploitation  (P.  Genthon  2013,   pers.  comm.,  15  July).  

(10)

 

Smedley  and  the  British  Geological  Survey  (2007).  Issa  T.  Somé  and  Abdoul  K.  Sakira,  at  the  University   of  Ouagadougou  have  also  analyzed  water  samples  from  the  country’s  different  boreholes  (2012).  

As   a   consequence   of   the   results   from   the   research,   boreholes   have   been   closed   due   to   extremely   high  arsenic  levels.  In  these  areas  the  dug  wells,  more  traditionally  used  for  domestic  water  supply,   return  to  play  an  important  roll.  As  the  contact  time  between  the  ground  water  and  trace  elements   in  a  dug  well  is  shorter  and  the  pH  lower,  arsenic,  if  present,  is  more  likely  to  be  adsorbed  to  metal   oxides  surfaces  in  the  ground.  However,  when  yields  are  low  such  as  during  dry  seasons  the  supply  is   not   always   sufficient   from   the   dug   wells   alone.   The   quality   of   the   water   may   also   be   poor   due   to   higher  levels  of  bacteria  growth  (Smedley  et  al.,  2007).  A  treatment  method  to  make  the  water  from   the  boreholes  drinkable  according  to  WHO’s  guidelines  is  therefore  desired.  

 

   

(11)

 

3 Theory

In  order  to  fully  understand  the  mechanisms  in  the  column  experiments,  the  properties  of  arsenic,   GFH  and  possible  competitors  in  the  adsorption  process  have  been  studied.  

 

3.1 Arsenic

The  commonly  occurring  arsenic  species  in  natural  ground  water  are  arsenate,  As(V),  and  arsenite,   As(III).  In  oxidized  environments  the  dominating  form  is  arsenate,  while  arsenite  on  the  contrary  is   generally   found   in   anaerobic   ground   water   (Saha   et   al.,   2005).   Studies   done   by   Smedley   (2002)   suggest  that  the  highest  concentrations  of  arsenic  in  ground  water  are  typically  found  together  with   a   dissolved   oxygen   (DO)   concentration   of   2   mg/l   or   less.   Also,   the   deeper   the   boreholes   are,   the   higher  the  arsenic  concentration  often  is,  since  the  ground  water  potentially  has  a  longer  residence   time  giving  a  higher  possibility  for  reaction  with  minerals  and  organic  matter  to  occur  (Smedley  and   Kinniburgh,  2002).  

In  the  focus  area  of  this  study,  the  ground  water  seems  to  be  mainly  oxic  and  the  dominating  arsenic   form  found  is  arsenic(V)  (Smedley  et  al.,  2007).  Since  arsenic(V)  is  an  ionic  species  within  the  range  of   pH  often  found  in  natural  groundwater,  it  is  more  readily  removed  than  the  neutral  arsenic(III)  form   (Saha  et  al.,  2005).  The  arsenic  speciation  is  mainly  a  result  of  the  variation  of  pH  (Table  1)  and  redox   potential  (Eh)  (Smedley  and  Kinniburgh,  2002).  

Due  to  the  variation  of  pH  within  water  the  dominating  species  of  the  dissolved  arsenate  will  either   be  H2AsO4-­‐  or  HAsO42-­‐,  where  an  equilibrium  between  the  two  species  is  expected  at  pH  7.10  =  pKa2   (Hall,  2003).  The  species  H3AsO4  and  AsO43-­‐  are  practically  nonexistent  within  the  natural  pH  range.  In   ground  water,  arsenic(III)  is  likely  to  be  found  in  its  neutral  form  As(OH)3  (Figure  1).  

(12)

 

 

Figure  1.  In  natural  water  the  pH  effect  on  the  forms  of  inorganic  arsenic  in  more  clearly  with  arsenic(V)  than  arsenic(III)  as   the  pH  usually  differs  between  6  and  8.  In  arsenic  enriched  ground  water,  taken  from  seven  boreholes  in  Northern  Burkina   Faso,  the  pH  ranges  from  6.91  to  7.72  (Smedley  et  al.,  2007).  Within  this  range  inorganic  arsenic  in  the  arsenic(III)  species  is   dominantly  found  as  As(OH)3  and  arsenic(V)  as  H2AsO4-­‐  (dominates  below  pH  7.10)  or  HAsO42-­‐(dominates  above  pH  7.10).  

The  figure  is  kindly  borrowed  from  Issa  et  al.  (2010).  

 

3.2 Granular Ferric Hydroxide

Research   on   Granular   Ferric   Hydroxide   (GFH)   has   been   carried   out   at   the   Technical   University   of   Berlin  (Saha  et  al.,  2005).  These  studies  showed  that  GFH  is  an  efficient  arsenic  adsorption  material,   utilizing  a  small  residual  mass  and  found  to  be  better  than  other  commonly  used  setups  for  similar   water  treatment.  The  following  summarized  description  of  GFH,  unless  stated  otherwise,  is  given  by   Saha   et   al.,   (2005).   GFH   is   a   poorly   crystallized   β-­‐FeOOH   containing   chloride,   with   the   active   components  being  Fe(OH)3  and  am-­‐FeOOH.  The  density  of  GFH  is  high  due  to  the  many  water  filled   pores,  which  increases  the  number  of  available  adsorption  sites.  GFH  has  a  point  of  zero  charge  at  pH   7.5   (pHpzc)   and   the   specific   surface   area   of   the   material   varies   between   250   –   350   m2/g   with   an   average  particle  size  of  500-­‐650  µm  in  diameter.  The  material  consists  of  a  varied  mix  between  fine   particles  on  the  surface  of  larger  grains.  

The  optimal  adsorption  of  arsenic,  as  arsenate,  onto  GFH  is  stated  by  Saha  et  al.  (2005)  to  be  at  pH  4.  

However,   this   is   also   the   lowest   solution   pH   at   which   the   uptake   capacity   was   tested   in   the   cited   study.   The   surface   charge   of   the   GFH   is   dependent   on   the   pH   and   the   degree   of   positive   surface   charge   on   the   GFH   increases   as   the   pH   decreases,   which   will   affect   the   adsorption   capacity   of   negatively  charged  ions  as  H2AsO4-­‐  and  HAsO42-­‐.  

 

(13)

 

3.3 Surface adsorption on mineral surfaces

This   chapter   is   based   on   the   theory   in   of   Chemistry   of   the   Solid-­‐water   Interface   by   Stumm   (1992)   unless  stated  otherwise.  

When  put  in  an  aqueous  solution  a  mineral  generally  forms  a  surface  of  neutral  and  stable  hydroxide   groups.  The  pH  of  the  solution  determines  the  net  electrical  charge  of  the  surface.  If  the  pH  is  below   pHpzc  of  the  mineral,  then  the  surface  will  have  a  positive  net  charge,  while  the  opposite  is  true  when   pH  is  above  pHpzc.  Thus,  at  pH  below  pHpzc  the  mineral  can  electrostatically  bind  anions  to  form  outer   sphere  complexes.  For  instance,  if  H2AsO4-­‐  were  to  form  an  outer  sphere  complex  with  the  GFH  in  a   solution  with  pH  below  7.5  (pHpzc  of  the  GFH),  an  OH-­‐  would  be  released  and  make  the  solution  more   alkaline.   On   the   other   hand,   at   pH   above   pHpzc   cations,   such   as   Pb2+,   could   form   outer   sphere   complexes  with  the  mineral  and  acidify  the  solution  since  an  H+  is  released  in  the  binding  process.  

A   mineral   in   an   aqueous   solution   may   also   form   inner   sphere   complexes   with   ions.   The   extent   to   which  these  are  formed  depend  on  “geometrical  availability”  (I.  Persson  2013,  pers.  comm.).  In  our   case,  arsenate  is  pH-­‐dependent.  Thus,  it  will  form  inner  sphere  complexes  on  the  surface  of  the  GFH   particles  independently  of  the  pH,  but  only  form  outer  sphere  complexes  when  the  pH  is  below  7.5.  

Arsenic(III),   on   the   other   hand,   is   pH-­‐independent   and   will   only   form   inner   sphere   complexes   at   which   an   OH-­‐   molecule   is   released   from   the   surface   and   an   H+   from   the   molecule,   As(OH)3.   This   results  in  no  change  of  the  pH.  

 

3.4 Factors affecting adsorption

The  chemical  water  properties  are  expected  to  affect  the  adsorption  capacity  of  solved  arsenic  onto   GFH.  In  a  former  study  on  GFH’s  arsenic  adsorption  capacity,  done  by  Mähler  and  Persson  (2013b),   deionized  water  contaminated  by  arsenic  was  used.  It  is  feasible  to  believe  that  in  natural  waters  the   adsorption  would  be  interfered  by  other  ions  likely  to  be  adsorbed  onto  the  GFH  as  well.  The  species   of   the   interfering   ions   is   shown   to   influence   the   likeliness   of   adsorption   occurring   and   the   ions   affinity  to  the  adsorption  material  (Mähler  et  al.,  2013).  

3.4.1 pH

Arsenate   is   adsorbed   more   easily   onto   the   positively   charged   surface   of   GFH   than   arsenite   since   arsenate  exists  as  an  ion  within  the  pH  range  of  typical  water  environments,  and  arsenite  as  a  neutral   molecule.   Arsenate   can   be   removed   from   the   solution   both   through   ion   exchange   and   surface   adsorption  through  bonds  of  partly  covalent  character.  The  affinity  to  adsorb  differs  on  the  material’s  

(14)

 

surface,   with   the   strong   binding   sites   firstly   occupied   followed   by   the   weaker   binding   sites.   The   internal  surface  charge  also  varies.  It  is,  however,  more  negatively  charged  than  the  external  surface   (Saha  et  al.,  2005).  

A  batch  test  reported  by  Saha  et  al.  (2005),  showed  that  the  uptake  of  arsenate  decreased  from  its   maxima  of  170  µmol/g  to  about  140  µmol/g  as  pH  increased  from  4  to  9,  when  the  initial  arsenate   concentration  was  400  µg/L.  The  attractive  force  towards  the  anion  is  reduced  with  increasing  pH.  

However,  arsenate  is  still  adsorbed  despite  the  negatively  charged  GFH  surfaces  showing  that  strong   inner-­‐sphere  complexes  are  formed.  The  surface  hydroxyl-­‐groups  on  the  GFH  pick  up  a  proton  from   the  un-­‐dissociated  acid  (i.e.  H2AsO4-­‐)  to  form  water  and  leaves  a  site  for  the  created  anion  to  attach   (Saha   et   al.,   2007).   The   affinity   to   form   inner-­‐sphere   complexes   depends   on   the   chemical   binding   procedure  rather  than  on  the  charge  of  the  anion.  

3.4.2 Competition from other anions

The  similarity  in  pKa-­‐values  between  arsenic  acid  and  phosphorous  acid  leads  one  to  believe  similar   behavior  in  adsorption  processes  can  occur  for  arsenate  and  phosphate  (Table  1).  Phosphate  has  in   fact  been  proven  to  be  an  adsorbent  competitor  with  arsenic,  through  both  batch  and  column  testing   (Mähler  and  Persson,  2013a;  Driehaus  et  al.,  1998).  Phosphate  is  adsorbed  to  a  comparable  extent,   within  the  same  pH  range,  as  arsenate  (Saha  et  al.,  2005).  The  affinity  for  adsorption  onto  the  surface   of   the   GFH   depends   on   the   ion   charge.   Phosphates   should   thus   be   considered   a   competing   ion.  

However,  in  the  study  presented  by  Saha  et  al.  (2005),  the  GFH  has  been  found  to  prefer  to  adsorb   arsenate  over  phosphate.  Mähler  and  Persson  (2013a)  have  also  shown  that  fluoride  and  hydrogen   carbonate,  if  present  in  high  concentration,  are  possible  competing  ions.  

Table  1.  The  form  of  arsenate  found  as  arsenic  acid  depending  on  pH  and  the  correlating  phosphoric  acid.  pKa  values  taken   from  Hall  (2003).  

    pKa1   pKa2   pKa3   Arsenic  acid   H3AsO4   2.30   7.10   11.53   Phosphoric  acid   H3PO4   2.12   7.21   12.32  

   

(15)

 

4 Experimental

GFH  was  evaluated  regarding  its  ability  to  adsorb  arsenic  from  ground  water.  The  water  used  in  the   research  came  from  a  tube-­‐well  in  Lilgomdé,  in  the  Yatenga  Province  of  northern  Burkina  Faso,  which   according  to  the  Department  of  Health  held  an  arsenic  concentration  of  85  μg/L  (S.  Paré  2013,  pers.  

comm.).  The  study  was  conducted  during  an  eight-­‐week  period  in  a  laboratory  at  the  Department  of   Chemistry  at  the  University  of  Ouagadougou,  Burkina  Faso.  

Six  sets   of   column   experiments   were   conducted   on   the   water   in   order   to   find   the   treated   bed   volume2  and  the  amount  of  arsenic  added  per  volume  GFH,  before  the  residual  arsenic  concentration   exceeded  10  µg/l  in  the  effluent;  this  will  be  referred  to  as  the  breakthrough.  The  concentrations  of   probable  competing  ions  were  measured  in  the  influent  and  effluent.  A  glass  ion  exchange  tube  with   inner   diameter   of   15   mm   was   primarily   used   to   test   the   treatment   efficiency   on   arsenic   contaminated  water  with  GFH.  

 

4.1 Preparation of Column

The  GFH  was  washed  with  water  to  remove  small  particles  prior  to  use  to  prevent  clogging  of  the   column.  A  hydrogravimetrical  method  was  used  where  GFH  in  an  aqueous  solution  was  stirred  and   the   smaller   particles   floating   up   to   the   top   discarded.   This   was   repeated   until   a   relatively   clear   solution   was   formed.   It   was   then   packed   in   the   ion   exchange   tube   to   a   height   of   five   times   the   diameter  as  in  the  original  experiment  carried  out  by  Mähler  and  Persson  (2013b).  Later  in  the  study   the  height  of  the  column  bed  material  was  changed  in  order  to  evaluate  the  impact  of  the  empty  bed   contact  time  (EBCT)3.  The  material  rested  on  an  approximately  10  mm  high  bed  of  glass  wool  and  4   mm  of  glass  beads.  The  packing  was  made  through  adding  GFH  with  a  spatula,  a  spoonful  at  a  time  to   the  column.  In  order  to  prevent  interfering  air  bubbles  and  to  make  sure  that  the  packing  was  made   with  an  even  density,  the  tube  was  filled  up  with  distilled  water,  which  was  let  to  drain  out  half  way   between  every  other  spoonful.  

                                                                                                                         

2  Bed  volume  =  volume  of  water  added  /  volume  of  adsorbent  

3  EBCT  =  volume  of  adsorbent  /  flow  of  water  

(16)

 

An  electric  pump  was  installed  to  steadily  pump   water   from   an   inlet   tank   to   the   top   of   the   column  (Figure  2).  Stroke  length  and  rate  were   adjusted   to   reach   a   steady   state   flow   through   the   column.   Nonetheless,   variations   occurred   over   time   due   to   the   human   imperfection   and   small  fluctuations  of  flow  in  the  column  due  to   the   adsorbent   becoming   more   and   more   saturated.   The   flow   rate   through   the   column   was  measured  by  placing  a  40  mL  beaker  below   the   tap   of   the   column   and   filling   up   with   effluent   water   while   timing   with   a   stopwatch.  

Outflow  samples  for  analysis  of  concentrations   of   arsenic   and   competing   ions   were   taken   periodically,   more   frequently   when   an   arsenic   break   through   was   expected.   In   order   to   evaluate   the   treatment   efficiency,   samples   of   the  incoming  water  prior  treatment  were  taken   for   analysis.   All   samples   were   collected   in   approximately   30   mL   plastic   beakers   in   the   beginning   of   the   study   and   replaced   by   50   mL   and   100   mL   glass   flasks   by   the   end.   All   water   samples  were  stored  in  a  fridge  until  analysis.  

Figure  2.   The  basic  setup  of  the  column  experiments.  The   inlet  water  of  the  plastic  tank  was  pumped  with  an  electric   pump  to  the  ion  exchange  column  where  the  water  passed   through   the   GFH   material   resting   on   a   bed   of   glass   wool   and  glass  pearls.  Photo  by  Emma  Lundin.  

 

4.2 Summary of experimental setup

In   experiment   1   the   GFH   was   washed   with   tap   water   while   stirring   it   in   a   high-­‐sided   beaker   and   pouring   off   the   colored   water.   This   was   done   repeatedly   until   the   water   became   fairly   clear.   In   experiments  2,  3,  4  and  5  the  washing  procedure  was  made  with  distilled  water  and  using  a  magnetic   stirrer.  In  experiment  6  the  procedure  was  made  with  tap  water  and  a  magnetic  stirrer.  

(17)

 

Each  experiment  setup  differed  from  one  another  (Table  2).  In  experiment  1,  samples  of  influent  and   effluent  water  were  taken  for  analysis  of  arsenic  concentration.  In  experiments  2  and  3,  arsenic  as   well   as   the   concentration   of   phosphate   was   analyzed   in   order   to   evaluate   a   potential   adsorption   competition.  For  experiments  4  and  5  the  analyses  also  included  fluoride  and  hydrogen  carbonate.  

Experiment  2  was  performed  to  closer  specify  the  column  capacity  before  breakthrough,  considering   results  from  experiment  1.  In  experiments  3  and  4,  the  height  of  the  GFH  column  was  increased  to   185  mm  while  keeping  approximately  the  same  flow  velocity  as  in  experiment  2,  in  order  to  study  the   impact  of  the  EBCT  on  the  treatment  efficiency.  Experiment  4  was  a  replicate  of  experiment  3,  which   ran  dry  during  an  electrical  blackout.  In  experiment  5  the  EBCT  was  kept  the  same  as  in  experiment  4.  

However,  this  time  the  column  height  was  the  same  as  in  experiment  1  and  2  while  the  flow  velocity   was  kept  low.  In  an  attempt  to  up-­‐scale  the  method  a  1.5  L  plastic  bottle  was  used  as  a  column  in   experiment  6.  After  a  while  it  was  unintentionally  aborted  when  the  GFH  fell  out  of  the  bottle  during   an  attempt  to  pause  the  experiment.  

Table   2.   Each   experiment   setup   aimed   to   give   more   information   about   when   the   breakthrough   occurs   and   what   factors   affect  the  adsorption  capacity.  Note  that  experiment  1-­‐6  all  used  GFH  as  the  adsorbing  material.  experiment  3  and  6  were   canceled  due  to  unforeseen  circumstances.  

Experiment   1   2   3   4   5   6  

Height  of  glass  wool  (mm)   9   11   14   12   12   20  

Height  of  glass  pearls  (mm)   4   5   8   7   4   6  

Column  height  (mm)   74   75   185   185   75   39  

Column  diameter  (mm)   15   15   15   15   15   Upper:  84  

Lower:  22  

Average  flow  (L/h)   2.68   2.38   2.44   2.31   0.94   5.72  

Conducted  analyses   [As]   [As],   [PO43-­‐]  

[As],   [PO43-­‐]  

[As],  [PO43-­‐],   [F-­‐],  [HCO3-­‐]  

[As],  [PO43-­‐],  

[F-­‐],  [HCO3-­‐]   -­‐  

     

(18)

 

4.3 Analysis methods

Temperature   and   pH   was   measured   with   a   pH-­‐meter,   Martini   Instruments   MI806,   which   was   calibrated  with  Martini  Instruments  4.01  and  7.01  buffer  solutions.  

One  influent  and  four  effluent  samples  from  experiment  1  were  analyzed  for  arsenic  concentration   with   a   fast   sequential   atomic   absorption   spectrophotometer   (AA240FS)   with   a   lamp   with   the   wavelength   193.7   nm.   Samples   from   experiments   2-­‐5   were   analyzed   for   arsenic   externally   at   Le   Laboratoire   National   d’Analyse   des   Eaux   (The   National   Laboratory   for   Water   Analyses,   LNAE).   The   equipment  used  was  a  Wagtech  Arsenator.  The  expected  breakthrough  could  be  estimated  through   knowledge  from  earlier  test  rounds  and  this  was  taken  into  account  when  choosing  the  samples  to   be  analyzed.  

Analysis  of  the  phosphate  concentration  was  conducted  with  a  Wagtech  WTD  Automatic  Wavelength   Selection  Photometer  7100,  in  the  range  0-­‐4  mg/L.  Two  tablets  of  Wagtech  WTD  Phosphate  LR  were   added  to  a  5  mL  sample  in  a  glass  cuvette.  Phosphate  first  reacts  with  ammonium  molybdate  to  form   phosphor-­‐molybdic   acid   under   acidic   conditions.   The   acid   is   reduced   by   ascorbic   acid   to   form   the   colored  “molybdenum  blue”  complex  (Lenoble  et  al.,  2005).  The  samples  rested  10  minutes  to  let  the   complexes   form.   The   intensity   of   the   color   is   proportional   to   the   phosphate   concentration.  

Phosphate   was   measured   with   a   colorimetric   method   using   a   photometer.   Note   that   arsenic   may   interfere   with   this   method   as   arsenic   may   also   form   a   blue   complex   under   these   conditions   (J.  

Mähler  2013,  pers.  comm.).

The  fluoride  analysis  was  also  carried  out  using  the  Wagtech  Photometer  7100,  this  time  within  the   range   0-­‐1.5   mg/L   and   one   tablet   was   added.   Zirconyl   chloride   and   Eriochrome   Cyanine   R   in   acid   solution  form  a  red  colored  complex.  The  color  is  destroyed  by  fluoride,  which  gives  a  pale  yellow   color  of  Eriochrome  Cyanine.  Different  amounts  of  fluoride  produce  a  color  range  from  red  to  yellow.  

Potentially   interference   by   calcium   and   phosphates   could   affect   the   results   but   should   not   be   significant  at  levels  found  in  drinking  water.  

The  hydrogen  carbonate  concentrations  were  calculated  from  measurements  of  the  alkalinity  in  the   samples,   which   similarly   were   measured   with   the   Wagtech   Photometer   7100,   in   the   range   0-­‐500   mg/L   CaCO3.   One   tablet   was   added   to   the   water,   which   produced   a   range   from   yellow,   through   green,  to  blue.  The  color  indicated  the  alkalinity  and  was  measured  using  the  photometer.  The  CaCO3   concentration  was  multiplied  with  1.22  to  get  the  HCO3-­‐  concentration.  

   

(19)

 

5 Results and discussion

During   the   six   experiments,   several   conditions   were   kept   constant   when   studying   the   arsenic   adsorption   efficiency   onto   GFH.   The   preparation   of   the   column   was   carried   out   in   the   same   way   every   time   in   the   same   laboratory.   Air   conditioning   in   the   laboratory   kept   the   temperature   of   the   water  relatively  stable  at  around  25-­‐26  °C.  During  the  overnight  breaks  the  air  condition  was  turned   off  causing  the  temperature  to  have  increased  slightly  in  the  beginning  of  the  day.  However,  no  large   effects  in  the  results  could  be  seen  from  these  variations  in  temperature.  

The  average  inlet  concentration  on  the  water  differed  quite  noticeably  from  the  official  value  in  the   well   given   by   the   Department   of   health   (85   μg/L).   The   average   inlet   concentration   during   the   six   experiments  was  168  μg/L  (N  =  14),  with  single  values  ranging  from  99  to  215  μg/L.  The  variations   might   be   explained   by   imprecise   analyses   method,   performed   with   an   Arsenator   where   samples   containing   more   than   100   μg   As/L   had   to   be   diluted.   The   large   interval   in   which   the   arsenic   concentration  fall  into  might  also  be  due  to   that  outtake  volumes  from  the  well  were  collected  at   two  different  times,  with  approximately  one  month  in-­‐between.  

 

5.1 Initial Arsenic Adsorption Testing

Experiment   1   and   2   aimed   to   have   the   same   flow   and   volume   of   adsorbent.   The   EBCT   for   the   experiments  were  17  and  20  seconds  respectively.  788  (experiment  1)  and  785  (experiment  2)  bed   volumes   were   treated   before   the   limit   of   10   μg   As/L   was   exceeded.   In   experiment   1   the   breakthrough  occurred  after  106  μg  Asadded/cm3adsorbent,  and  in  experiment  2  the  figure  was  121  μg   Asadded/cm3adsorbent.   However,   samples   were   taken   seldom   within   the   time   span   of   the   occurring   breakthrough  since  the  breakthrough  was  initially  thought  to  occur  later.    

Previous  experiments  by  Mähler  and  Persson  (2013b)  have  shown  that  the  arsenic  concentration  in   the   effluent   exhibits   a   sharp   increase   when   the   breakthrough   is   approaching.   The   extrapolations   between  data  points  have  been  done  with  straight  lines  in  order  to  not  overestimate  the  adsorption   capacities.  Experiment  2,  where  the  EBCT  is  short  and  the  pH  naturally  high,  also  suggests  that  the   curve   might   actually   be   more   linear   under   these   conditions   (Figure   3).   In   conclusion,   the   first   two   experiments  showed  that  the  GFH  has  the  capacity  to  adsorb  arsenic  from  natural  ground  water  but   not   as   efficiently   as   desired  for   a   practical   tube   well   pump   device.   A   longer   contact   time   with   the   adsorbent  was  thus  investigated.  

(20)

 

 

Figure   3.   The   concentrations   of   arsenic   in   the   effluent   water   of   experiments   1   and   2,   which   were   run   under   similar   conditions.   Red   dotted   line   is   the   WHO   guideline   value   of   10   μg   As/L.   In   experiment   1,   four   of   the   water   samples   were   analyzed  using  an  Arsenator,  and  another  four  with  Atomic  Absorption  Spectroscopy.  One  of  the  results  from  the  AAS  was   considered  an  anomaly  and  has  not  been  included  in  the  graph.  1)  A  break  over  the  weekend  was  done  in  the  experiment.  2)   The  concentration  of  arsenic  in  these  two  samples  were  measured  from  two  water  samples  which  were  diluted  1:8  and  1:9   respectively.  

 

5.2 Impact of Empty Bed Contact Time

The  following  experiments  focused  on  the  effects  from  changing  the  EBCT.  Experiment  3  intended  to   answer  this  question  but  was  abruptly  ruined  by  an  electricity  blackout.  Experiment  4  and  5  however   showed   different   results   from   the   initial   experiments.   In   experiment   4   the   EBCT   was   increased,   roughly  keeping  the  same  flow  as  in  experiments  1  and  2,  but  increasing  the  volume  of  the  GFH  by  a   factor   of   2.5.   In   experiment   5   the   same   volume   of   GFH   was   used   as   in   experiments   1   and   2   but   instead  the  flow  was  decreased  by  a  factor  of  2.5.  In  both  cases  the  EBCT  ended  up  being  51  seconds,   therefore  generating  comparable  results.  

In  both  experiment  4  and  5  numerous  bed  volumes,  2160  and  2369  respectively,  were  successfully   treated  before  the  breakthrough  was  reached.4  A  longer  EBCT  also  resulted  in  an  increased  efficiency   in  the  amount  of  arsenic  being  treated  per  volume  unit  of  GFH  before  breakthrough  was  reached;  

356  μg  Asadded/cm3adsorbent  in  experiment  4  and  463  μg  Asadded/cm3adsorbent  in  experiment  55.  Previous   literature  (Mähler  and  Persson,  2013)  suggests  that  the  height  of  the  adsorbent  should  be  around   five   times   the   diameter   of   the   column.   In   experiment   4,   this   height/diameter   ratio   was   12.3.  

                                                                                                                         

(21)

 

Comparing   increased   volume   of   adsorbent   with   decreased   flow;   the   latter   one   seems   to   be   more   efficient,   as   around   30   %   more   arsenic   was   adsorbed   per   volume   GFH   in   experiment   5   compared   with  experiment  4  (Figure  4).  

Since   the   exact   speciation   of   the   arsenic   in   the   tube-­‐well   water   from   Lilgomdé   is   unknown6,   it   is   difficult  to  compare  the  results  with  previous  studies  (Mähler  and  Persson,  2013b;  Driehaus  et  al.,   1998)   where   distilled   water   was   polluted   with   arsenous   acid   and   arsenate   separately.   However,   it   can   be   concluded   that   the   adsorption   efficiency   in   natural   water   is   significantly   lower   than   that   achieved  under  laboratory  conditions  by  Mähler  and  Persson  (2013b).  

The  EBCT  strongly  influences  the  arsenic  adsorption  capacity.  Even  though  the  EBCT  in  experiments  4   and  5  were  2.9  times  longer  than  in  experiment  1  and  2.6  times  longer  than  in  experiment  2,  the   amounts   of   arsenic   adsorbed   per   volume   GFH   were   3.4   and   2.9   times   higher   for   experiment   4   compared  to  experiment  1  and  2,  respectively.  The  same  figures  for  experiment  5  were  4.4  and  3.8,   respectively.  

 

Figure  4.  Concentration  of  arsenic  in  the  effluent  water  of  experiments  4  and  5,  which  were  run  with  the  same  EBCT.  The   EBCT  was  higher  than  in  experiments  1  and  2.  In  experiment  4,  a  larger  volume  GFH  was  used  than  in  experiments  1  and  2   while  the  flow  was  decreased  in  experiment  5  compared  to  experiments  1  and  2.  Red  dotted  line  is  the  WHO  guideline  value   of  10  μg  As/L.  3),  4)  Breaks  were  done  in  both  experiments  over  a  weekend.    

 

                                                                                                                         

6  Though  it  is  assumed  that  the  dominant  form  is  As(V)  (Smedley  et  al.,  2007).  

(22)

 

5.3 Self-regeneration

In  experiment  1  the  effluent  arsenic  concentration  suddenly  goes  from  32  to  <  2  μg/L  within  a  short   time  span  after  nearly  200  μg  Asadded/cm3adsorbent  (Figure  3).  Samples  were  taken  3  minutes  before  and   10  minutes  after  pausing  the  experiment  over  a  weekend,  suggesting  that  the  64-­‐hour  break  affects   the  adsorption  capacity  in  the  column.  The  adsorbent  has  potentially  undergone  self-­‐regeneration.  

Having   the   water   in   the   column   stationary   during   a   certain   time   period   increases   the   adsorption   capacity  of  the  GFH.  

Experiments   4   and   5   were   also   paused   over   weekends   and   showed   proof   of   the   self-­‐regeneration   property.  After  30.5  hours  the  breakthrough  concentration  of  10  μg/L  was  reached  in  experiment  4.  

The  column  was  then  let  to  rest  during  70  hours  before  once  again  being  operated  for  another  hour   (Figure  4).  Two  following  water  samples  of  the  effluent,  taken  12  minutes  and  55  minutes  after  the   breakthrough,  showed  an  arsenic  concentration  below  1  μg/L.  In  experiment  5,  the  concentration  in   the  effluent  was  7  μg  As/L  after  letting  27.5  liters  of  water  pass  through  the  column.  It  was  then  let   to   rest   for   66   hours.   When   restarting   the   experiment   it   could   be   calculated,   using   linear   extrapolation,   that   another   3.5   liters   of   water   passed   through   the   column   before   the   same   concentration   was   reached   once   again.   This   corresponds   to   an   increased   efficiency   of   13   %   and   suggests  that  self-­‐regeneration  plays  a  significant  role  in  GFH’s  arsenic  adsorption  capacity  (Figure  5).  

 

Figure  5.  The  effect  of  self-­‐regeneration  in  experiment  5.  Black  line  is  the  total  amount  of  arsenic  added  per  volume  GFH.  

Blue   line   is   the   effluent   concentration   of   arsenic.   Both   are   plotted   against   the   total   time   of   the   experiment   (including   breaks).  Red  dotted  line  is  the  WHO  guideline  value  of  10  μg  As/L.  (With  kind  permission  from  Johan  Mähler)    

 

0   100   200   300   400   500   600   700  

0   5   10   15   20   25   30   35   40  

0   24   48   72   96   120   144   168   192  

µg  Asadded/cm3 adsorbent  

[As]  (µg/L)  

Total  time  (hrs)  

(23)

 

It  is  hypothesized  that  when  GFH  is  left  in  an  aqueous  solution  to  rest  for  several  days  the  adsorbed   anions,  arsenic  compounds  as  well  as  its  competitors,  free  previously  occupied  sites  and  make  them   available   for   adsorption   once   again.   This   could   happen   in   two   ways   (Figure   6).   During   this   resting   period  the  anions  could  (1)  move  to  more  unavailable  adsorptions  sites  that  are  located  further  into   the  pores  of  the  GFH  since  the  adsorbent  has  a  documented  large  surface  area.  The  other  possibility   is  that  (2)  the  material  absorbs  the  anions,  actually  incorporating  them  into  the  GHF  particles.  This  

“migration”  of  anions  occurs  continuously  throughout  the  experiment.  It  is  not  until  the  column  is   stationary  and  adsorption  no  longer  occurs,  however,  that  the  effect  is  noticeable.  

 

Figure  6.  When  the  material  self-­‐regenerate,  it  is  hypothesized  that  the  adsorbed  particle  (mostly  anions;  arsenic  acid,   phosphoric  acid,  fluorides,  hydrogen  carbonates)  can  either  (1)  move  further  into  the  pores  of  the  Granular  Ferric  Hydroxide   or  (2)  be  absorbed  by  the  material  and  thus  incorporated  into  the  structure  of  the  GFH.  

 

5.4 Adsorption of competitors

Since  arsenate  occurs  as  an  anion  in  the  range  of  natural  pH,  competition  from  other  anions  can  play   an   important   role   in   the   arsenic   adsorption   efficiency   of   the   GFH.   Phosphates   are   known   to   significantly   affect   the   adsorption   of   arsenic   (Driehaus   et   al.,   1998;   Saha   et   al.,   2005;   Mähler   and   Persson,  2013b),  as  well  as  fluorides  and  hydrogen  carbonates  (Mähler  et  al.,  2013).  

5.4.1 Phosphates

The  initial  molar  ratios  (IMR)  of  phosphate  to  arsenic  in  the  influent  water  ranged  between  2.1  to  1   and  3.5  to  1  in  experiments  2-­‐5.  The  pattern  of  how  phosphates  are  adsorbed  is  more  complex  than   that  of  arsenic  (Figure  7).  Studying  experiment,  4  two  peaks  can  be  identified.  The  first  peak,  after   259   μg   Asadded/cm3adsorbent,   corresponding   to   21   hours   and   40   minutes   of   running   the   experiment,  

References

Related documents

evapotranspiration process caused by the vegetation at this time 11. During daytime, temperature differences were much smaller. The open water of a centrally located reservoir

Studien visar att specialpedagogen ofta intar en central roll på skolan, oberoende av hur uppdraget är utformat, vilket talar för att det är särskilt intressant att lyssna till

The traditional gender roles in Burkina Faso are strong and the divi- sion between men and the rest of the family is clear, resulting in children not knowing their fathers and

Hence, the conclusion was that the natural lateritic soil had some potential to remove arsenic, but that the removal capacity was too low for natural lateritic soil to

shows the desorption curve for arsenic containing Chitosan with a solid to liquid (S/L) ratio of 42.. Desorption of arsenic containing Chitosan with a 1M sodium hydroxide solution.

The dimensionless log K d value (adsorbed As/dissolved As) for As adsorption on ferrihydrite as a function of pH, in the absence and presence of different surface coverages of

perceptions of poverty worldwide. While the analysis of the large material, from 50 countries, makes important policy recornmenda- tions, it is not clear how 'the

Such 'local movements to local frontiers' have been common in the region of northern Ghana, northern Ivory Coast and southern Burkina Faso.. Settlement histories as well as