• No results found

Worm Algorithm and Diagrammatic Monte Carlo

N/A
N/A
Protected

Academic year: 2022

Share "Worm Algorithm and Diagrammatic Monte Carlo"

Copied!
55
0
0

Loading.... (view fulltext now)

Full text

(1)

Boris Svistunov

University of Massachusetts, Amherst

Worm Algorithm and Diagrammatic Monte Carlo

Quantum Connections School

Högberga gård, Lidingö, June 10-22, 2019

(2)

Z = Tr e

βH

, β = 1/T (  = k

B

= 1 )

e

βH

≡ e

εH

e

εH

…e

εH

Tr e

βH

= { } ψ

0

e

εH

{ } ψ

1

{ } ψ

1

e

εH

{ } ψ

2

{ } ψ

m

e

εH

{ } ψ

0

(Pseudo-) classical representations of quantum statistics

(a) Feynman’s path integrals: mapping onto polymers in (d+1) dimensions (b) Functional integrals: mapping onto classical/grassmanian fields in (d+1) (c) Some other (d+1)-representations along qualitatively similar lines

An extra dimension—the “imaginary time”—appears.

(3)

Feynman’s path integral (worldline) representation of quantum statistics

spatial coordinate

(4)

Single-particle Matsubara Green’s Function

Ψ ˆ

α

( τ ,r) = e

τH

ψ ˆ

α

(r)e

τH

, Ψ ˆ

α

( τ ,r) = e

τH

ψ ˆ

α

(r)e

τH

G

αβ

1

,r

1

2

,r

2

) = −〈T

τ

Ψ ˆ

α

1

,r

1

) ˆ Ψ

β

2

,r

2

) 〉

〈(…)〉≡ Z

−1

Tr e

βH

( …), Z = Tr e

βH

G

αβ

( τ

1

,r

1

; τ

2

,r

2

) ≡ G

αβ

( τ ,r

1

,r

2

), τ = τ

1

− τ

2

n(r) = ±

α

G

αα

( τ = −0,r,r), p( µ,T )= n

−∞

µ

( µ ,T )d ′ µ

fermions/bosons

(5)

Two sectors of the configuration space

Z-sector G-sector

(6)

By Diagrammatic Monte Carlo we mean:

1. Metropolis-Hastings-type Monte Carlo sampling of series of (similar) integrals with variable number of integration variables.

2. The above technique applied to Feynman’s diagrams in the

thermodynamic limit, and especially in combination with analytic

diagrammatic tricks (e.g., Dyson’s and ladder, summation, skeleton

diagrams, etc.) and general re-summation techniques.

(7)

Traditional Quantum Monte Carlo:

1. Map a d-dimensional quantum system onto a (d+1)-dimensional classical counterpart.

2. Simulate the latter by Monte Carlo.

Diagrammatic Monte Carlo (DiagMC):

Samples diagrammatic series.

If applied to Feynman’s diagrammatics, DiagMC simulates an answer in

thermodynamic limit.

(8)

Generic structure of diagrammatic expansions:

Example:

These functions are visualized with diagrams.

= + + +

+ … + + …

+

Q y ( ) can be sampled by Monte Carlo

Feynman diagrams

(9)

Diagrammatic MC: Random walk in the diagrammatic space

The space = diagram order + topology + internal/external continuous variables Not to be confused with the diagram-by-diagram evaluation!

Diagram order

Diagram topology

Continuous variables

MC update

MC update MC

upd ate

(10)

Principles of stochastic sampling

(11)

Metropolis-Hastings Algorithm

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953)

current propose accept

current propose accept

current propose accept

f d l i h

configuration an update proposal with configuration an update proposal with

configuration p p oposa t

b bilit

ν ν → ν ' probability

ν ν → ν ' probability

ν ν → ν p y

ν R R

R

νν νν '

t ib t contribute contribute

if accepted

ν ν = if accepted

ν ν = if accepted

ν ν =

A p

A A A

ν

h i

ν

ν ν

otherwise

ν ν = otherwise ν ν = otherwise

to the sum ν ν

to the sum to the sum

Markov-type chain of updates transforming system configurations

(12)

Balancing: Metropolis Algorithm

N

a

P

a→b

− N

b

P

b→a

( )

b

= 0 generic balance equation for a Markovian process

P

ab

{ }

Continuum of solutions for .

W

a

P

a→b

= W

b

P

b→a

Confine ourselves with detailed balance:

Pa→b

{ }

Still continuum of solutions for , with a very natural one being:

We want { } P

a→b

such that: N

a

∝W

a

.

P

a→b

= 1, if W

b

≥ W

a

, W

b

/ W

a

, if W

b

< W

a

.

⎨ ⎪

⎩⎪

For details, see, e.g.: http://people.umass.edu/~bvs/Metr_alg.pdf

(13)

W

a

P

ab

= W

b

P

ba

P

ab

= P

a( propose)b

P

a( accept )b

W

a

P

a( propose)b

P

a( accept )b

= W

b

P

b( propose)a

P

b( accept )a

P

a→b( accept )

= 1, if R

ab

≥ 1,

R

ab

, if R

ab

< 1, R

a→b

= W

b

P

b( propose)a

W

a

P

a( propose)b

⎧ ⎨

⎩⎪

Metropolis-Hastings Algorithm

(14)

Ω !

( ) X

p

( addr )A

Ω ( ) X ! d X !

R

A

!

( ) X = New Diagram Old Diagram

p

B( addr )

p

A( addr )

1 Ω !

( ) X

R

B

!

( ) X = New Diagram Old Diagram

p

A( addr )

p

B( addr )

Ω !

( ) X

The updates related to changing the number of continuous variables always come as (complementary) pairs A-B. Update A involves creating new variables, and update B involves eliminating them. For update A, the proposal probability is a product of probability to address the update A and the probability to seed the new variables in a given element of corresponding space.

Here is an arbitrary distribution function for generating particular values of new continuous variables in the update A .

Acceptance ratios for the updates A and B

http://people.umass.edu/~bvs/Metropolis_walk.pdf http://people.umass.edu/~bvs/Scattering_length.pdf

For a tutorial, see:

(15)

Diagrammatic Monte Carlo for fermions:

Sign blessing rather than sign problem.

DiagMC simulates the answer in thermodynamic limit rather than a (d+1)-dimensional object.

(16)

Q. How can a series with factorially growing number of diagrams within a given order converge?

A. Fermionic sign blessing: Factorially accurate cancellation of different diagrams within a given order.

But why should we expect the sign blessing ?…

… Because of the absence of Dyson’s collapse (for

discrete and some other special systems).

(17)

Dyson’s collapse

Dyson’s argument (1952): A perturbative series has zero convergence radius if changing the sign of interaction renders the system pathological.

A conjecture: Finite convergence radius if no Dyson’s collapse.

Pauli principle protects lattice and momentum-truncated fermions from

Dyson’s collapse.

(18)

Q. Why necessarily fermions—how about, say, spins (also protected from collapse)?

A. For Feynman diagrammatics, we need Gaussian non-perturbed action.

That’s why fermions and fermionization.

More generally, Grassmannization.

Looks like one can fermionize/Grassmannize essentially any lattice system!

Pollet, Kiselev, Prokof'ev, and Svistunov, New J. Phys. 18, 113025 (2016)

(19)

Computational complexity of diagrammatic Monte Carlo

t( ε ) the computational time needed to achieve the relative accuracy ε

t( ε ) ∼ ε − # ln(ln ε

−1

)

t( ε ) ∼ ε

α

with standard DiagMC: quasi-polynomial

with Rossi’s determinant trick: polynomial

Rossi, Prokof'ev, Svistunov, Van Houcke, and Werner, EPL 118, 10004 (2017)

Rossi, PRL, 119, 045701 (2017)

(20)

Diagrammatic Monte Carlo for fermions:

Illustrative results

(21)

c ∼ n

1/ 3

∼ k

F

c = 0 ⇒

Model of Resonant Fermions

BCS regime

BEC regime

unitarity point: scale invariance

No explicit interactions—just the boundary conditions:

(In the two-body problem, the parameter c defines the s-scattering length: a = -1/c .) (from ultra-cold atoms to neutron stars)

Works whenever , where is the range of interaction.

the crossover

(22)

Diagram elements:

a polaron diagram

a molecule diagram

Resonant fermipolaron

One (spin-down) particle interacting

resonantly with an ideal (spin-up) Fermi sea.

The ground state:

A polaron, or a molecule (bound spin-up

+ spin-down state)

(23)

Energy Effective Mass

Prokof’ev and BS, 2008

Resonant Fermi polaron: energy and effective mass

(24)

Unitary Fermi gas: Number density equation of state

Bold DiagMC

MIT expt. (w/ systematic error)

Virial expansion (first 3 terms)

K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. W. Cheuk, A. Schirotzek, and M. W. Zwierlein, Nat. Phys. 8, 366 (2012); R. Rossi, T. Ohgoe, K. Van Houcke, and F. Werner, PRL 121, 130405 (2018).

(25)

Unitary Fermi gas: Momentum distribution and contact

T. Ohgoe, R. Rossi, E. Kozik, N. Prokof'ev, B. Svistunov, K. Van Houcke, and F. Werner, PRL 121, 130406 (2018)

0 0.1 0.2 0.3 0.4

0 2 4 6 8 10

βμ = 2.25 [T/TF = 0.19]

βμ = 0 [T/TF = 0.64]

0 1 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

unitary Fermi gas

ideal Fermi gas

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.5 1 1.5 2

βμ = 2.25 [T/TF = 0.19]

βμ = 1.5 [T/TF = 0.26]

βμ = 1 [T/TF = 0.34]

βμ = 0 [T/TF = 0.64]

(26)

Ground-State Phase Diagram of 2D Fermi-Hubbard Model in the Emergent BCS Regime

Youjin Deng, Evgeny Kozik, N. Prokof’ev and B.Svistunov, EPL 110, 57001 (2015)

0 1 2 3 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U

n

d

xy

d

x2-y2

p’

p

U/t

(27)

Extended crossover from Fermi liquid to quasi-antiferromagnet in the half-filled 2D Hubbard model

F. Simkovic, J. P. F. LeBlanc, A. J. Kim, Y. Deng, N. V. Prokof'ev, B. V. Svistunov, and E. Kozik, arXiv:1812.11503

(28)

Effective Coulomb coupling constant in 2D: [l]=e2/vF Q: How  [l=ln(L)] renormalizes with the scale of distance l=ln(L/a)?

Graphene-type systems: RG flow in Dirac liquids Graphene-type systems: RG flow in Dirac liquids

Asymptotic freedom Asymptotic freedom

I.S. Tupitsyn and N.V. Prokof’ev, Phys. Rev. Lett. 118, 026403 (2017)

Conclusion: In the infrared limit, the system is asymptotically free with divergent Fermi velocity.

(29)

C=0

MI C=1 BI

U

Mean‐Field Single‐site DMFT Exact diagonalization

Interacting topological materials: Phase diagram of the Haldane-Hubbard-Coulomb model Interacting topological materials: Phase diagram of the Haldane-Hubbard-Coulomb model

Approximate and finite‐size methods strongly disagree

(T.I. Vanhala et al, PRL 116, 225305 (2016))

0 1 2 3 4 5 6 7

0 1 2 3 4 5

C=0

C=2

U C=1

MI BI

(DMFT+ED+DCA)

2 4 6

1 2 3

Haldane-Hubbard U

(t1=1, t2=0.2, T=0.1)

Coulomb tail effect V(r)=U r,0+UC(b/r) UC=2

C=2 C=0

Diagrammatic result

t

1

|t

2

|e

+i

A

B

U

+

‐ Haldane‐Hubbard model

I.S. Tupitsyn and N.V. Prokof’ev, in progressPRB 99, 121113(R) (2019)

(30)

Fermionized spins

(31)

Popov-Fedotov fermionization trick

Heisenberg model

Dynamical--but not statistical--equivalent

Dynamical and statistical equivalent

(32)

Spin-1/2 on triangular lattice by BDMC

Kulagin, Prokof'ev, Starykh, BS, and Varney, PRL110, 070601 (2013); PRB 87, 024407 (2013).

(33)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

T/J=1

T/J=2 T/J=0.5

T/J=0.375

BZ

K M

Static magnetic response

(34)

T / J = 1.0 Tcl/ J = 1.45

0 1 2 3 4

1E-005 0.0001 0.001 0.01 0.1 1

-

-

- - +

+

+ +

+

+

0 1

2 3

4 5 6

7 8 9

10

0 1 2 3 4

0.001 0.01 0.1

1 TQ/ J = 0.375

TCl/ J = 0.675 -

- -

- - - +

+ +

+

0 0.5 1 1.5 2

0 0.5 1 1.5 2 2.5

cl y=4x/3

y=(4x2+Ax+B)/(3x+C)

0 0.5 1

0 0.5 1 1.5

Quantum-to-classical correspondence of the static magnetic response

for square lattice

(35)

Tao Wang, Xiansheng Cai, K. Chen, N. V. Prokof'ev, and B. V. Svistunov, arXiv:1904.10081.

0 2 4 6 8 10 12

10

1

10

2

10

3

10

4

Quantum Classical

0 1

2 3 4

5 6

7

9 8

10

11

12 13 14

| (r)|

| (0)|

label

Quantum-to-classical correspondence in the Heisenberg model on kagome lattice

T

Q

/J = 1

(36)

Worm Algorithm

(37)

Feynman’s path integral (worldline) representation of quantum statistics

spatial coordinate

(38)

Worldline winding numbers and superfluidity

Pollock and Ceperley, PRB 36, 8343 (1987).

superfluid density:

(39)

Two sectors of the configuration space

Z-sector G-sector

(40)

Worm algorithm: the idea

Prokof'ev, Svistunov, and Tupitsyn, JETP 87, 310 (1998)

Z-sector G- sector

1. Combine both sectors into a single configuration space.

2. Use G-sector for efficient updates.

(41)

Worm algorithm updates

Prokof'ev, Svistunov, and Tupitsyn, JETP 87, 310 (1998) [worm for lattice models]

Prokof’ev and Svistunov, PRL 87, 160601 (2001) [worm for classical models]

Boninsegni, Prokof'ev, and Svistunov, PRL 96, 070601 (2006) [worm for continuous space]

For a pedagogic introduction see:

Svistunov, Babaev, and Prokof'ev, Superfluid States of Matter, Taylor & Francis, 2015.

Prokof'ev and B. Svistunov, Worm Algorithm for Problems of Quantum and Classical Statistics,

chapter in the book: Understanding Quantum Phase Transitions, edited by L. D. Carr, Taylor & Francis, 2010.

(42)

Inserting/removing a short worldline piece

(43)

Opening/closing a worldline gap

(44)

Shifting the worm

(45)

Reconnection: the most efficient update

Instructive fact:

The (generic) worm algorithm for Ising-type models in 3D overperforms system-specific cluster algorithms.

(46)

Worm algorithm: illustrative applications

(47)

Superfluidity in the core of a screw dislocation in He-4 crystal

Boninsegni, Kuklov, Pollet, Prokof’ev, Svistunov, and Troyer, PRL 99, 035301 (2007)

(48)

Robert Hallock’s UMass Sandwich

Temperature gradient in Vycor rods does the job!

SF NF

HCP solid

superfluid liquid

Vycor rods

solid

For a review, see: “Is Solid Helium Supersolid” by R. Hallock in Physics Today, May 2015.

(49)

discovery:

isochoric compressibility (aka syringe effect)

theory

UMass sandwich

(50)

First validation of optical-lattice quantum emulator

experiment with ultracold atoms in optical lattice

simulation

by worm algorithm

(51)

H = −t a i +

i, j a j + U 2 n i

i ( n i −1 ) + ε i

i n i

ε

i

∈ −Δ, Δ [ ] ν ≡ n i = 1

Δ ≪ U, t

Bose Hubbard model with bounded disorder at a commensurate filling

random on-site potential (or other integer)

Mott insulator (MI) Bose glass (BG) Superfluid (SF)

Q1: Does disorder change the phase diagram at ?

compressible insulator gapped insulator

T. Giamarchi and H.J. Schulz, Europhys. Lett. 3, 1287 (1987).

M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).

Q2: Is disorder a relevant perturbation for SF-insulator transition?

(52)

3D and 2D: Essentially complete theoretical control

2D 3D

(Theorem of inclusions + worm algorithm simulations)

Gurarie, Pollet, Prokof'ev, Svistunov, and Troyer, PRB 80, 214519 (2009)

Soyler, Kiselev, Prokof'ev, and Svistunov, PRL 107, 185301 (2011)

(53)

1D case

phase diagram: Prokof’ev and Svistunov (1998)

New universality class:

“scratched 2D XY.”

Can preempt BKT-type transitions.

Pollet, Prokof'ev, and Svistunov, PRB 89, 054204 (2014)

1.0 2.0 3.0

0.0 1.0 2.0

U SF

BG

BG

MI

0.0

Yao, Pollet, Prokof'ev, and Svistunov, New J. Phys. 18, 045018 (2016)

(54)

H = −t a

i+

i, j

a

j

+ U 2 n

i

i

( n

i

−1 )

Bose Hubbard model: Emergent relativistic physics in the vicinity of the Mott transition

ν ≡ n

i

= 1

Emergence of particle-hole symmetry on the approach to the critical point from the Mott-insulator side

0.5

0.4

0.3

0.2

0.1

0.05 0.04

0.03 0.02

0.01 0

Jm±

t / U

J/U

m

*

particle hole

crit. point

Capogrosso-Sansone, Soyler, Prokof'ev, and Svistunov, Phys. Rev. A 77, 015602 (2008)

2D

(55)

The Halon: a quasiparticle featuring critical charge fractionalization

A static impurity in O(2) Wilson-Fisher conformal field theory in (2+1)

size of the halo: r

0

∼ V −V

c − "ν

, ν ! = 2.33(5)

Huang, Chen, Deng, and Svistunov, PRB 94, 220502(R) (2016); see also PRB 98, 214516 (2018) and PRB 98, 140503(R) (2018).

By particle-vortex duality, the theory also describes the net magnetic flux induced by a solenoid introduced into 3D superconductor at the critical temperature.

V

c

V

The halo charge is guaranteed by emergent particle-hole symmetry. ±1/ 2

strength of the repulsive center

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

Den här utvecklingen, att både Kina och Indien satsar för att öka antalet kliniska pröv- ningar kan potentiellt sett bidra till att minska antalet kliniska prövningar i Sverige.. Men

Av 2012 års danska handlingsplan för Indien framgår att det finns en ambition att även ingå ett samförståndsavtal avseende högre utbildning vilket skulle främja utbildnings-,

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

The EU exports of waste abroad have negative environmental and public health consequences in the countries of destination, while resources for the circular economy.. domestically