• No results found

CHIRAL PERTURBATION THEORY

N/A
N/A
Protected

Academic year: 2022

Share "CHIRAL PERTURBATION THEORY"

Copied!
32
0
0

Loading.... (view fulltext now)

Full text

(1)

K ℓ3 AT TWO LOOPS IN

CHIRAL PERTURBATION THEORY

Johan Bijnens Lund University

lavi

net

(2)

Overview

Motivation

Chiral Perturbation Theory K ℓ3

What is new when including isospin breaking?

First very preliminary results with isospin breaking at

two loops

(3)

Motivation

Basically two: Test ChPT and determine V us

From Moulson, hep-ex/0703013, Flavianet working group result

Mode ∆(SU (2)) ∆(EM ) Decay V us f + (0) K e3 0 0 +0.52% K Le3 0.21639(55) K µ3 0 0 +0.95% K 3 0.21649(68) K e3 ± 2.31% +0.52% K e3 ± 0.21844(101) K µ3 ± 2.31% +0.95% K µ3 ± 0.21809(125)

About 1% discrepancy: is this real or a fluke

(4)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown

Power counting: Dimensional counting

Expected breakdown scale: Resonances, so M ρ or higher

depending on the channel

(5)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown

Power counting: Dimensional counting

Expected breakdown scale: Resonances, so M ρ or higher depending on the channel

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: SU (3) V But L QCD = X

q=u,d,s

[i¯ q L D / q L + i¯ q R D / q R − m q (¯ q R q L + ¯ q L q R )]

So if m q = 0 then SU (3) L × SU(3) R .

(6)

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown

Power counting: Dimensional counting

Expected breakdown scale: Resonances, so M ρ or higher depending on the channel

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: SU (3) V But L QCD = X

q=u,d,s

[i¯ q L D / q L + i¯ q R D / q R − m q (¯ q R q L + ¯ q L q R )]

So if m q = 0 then SU (3) L × SU(3) R .

Can also see that via v < c , m q 6= 0 =⇒

v = c , m q = 0 =⇒ /

(7)

Chiral Perturbation Theory

h¯qqi = h¯q L q R + ¯ q R q L i 6= 0

SU (3) L × SU(3) R broken spontaneously to SU (3) V

8 generators broken =⇒ 8 massless degrees of freedom

and interaction vanishes at zero momentum

(8)

Chiral Perturbation Theory

h¯qqi = h¯q L q R + ¯ q R q L i 6= 0

SU (3) L × SU(3) R broken spontaneously to SU (3) V

8 generators broken =⇒ 8 massless degrees of freedom and interaction vanishes at zero momentum

Power counting in momenta:

p 2

1/p 2 R d 4 p p 4

(p 2 ) 2 (1/p 2 ) 2 p 4 = p 4

(p 2 ) (1/p 2 ) p 4 = p 4

(9)

Chiral Perturbation Theory

For lectures, review articles: see

http://www.thep.lu.se/ ∼ bijnens/chpt.html

Review paper on Two-Loops: JB, LU TP 06-16

hep-ph/0604043

(10)

Two Loop: Lagrangians

Lagrangian Structure:

2 flavour 3 flavour 3+3 PQChPT p 2 F, B 2 F 0 , B 0 2 F 0 , B 0 2 p 4 l i r , h r i 7+3 L r i , H i r 10+2 L ˆ r i , ˆ H i r 11+2 p 6 c r i 53+4 C i r 90+4 K i r 112+3 p 2 : Weinberg 1966

p 4 : Gasser, Leutwyler 84,85

p 6 : JB, Colangelo, Ecker 99,00

Note

 

 

➠ replica method =⇒ PQ obtained from N F flavour

➠ All infinities known

➠ 3 flavour is a special case of 3+3 PQ:

L ˆ r i , K i r → L r i , C i r

(11)

Long Expressions

=⇒

(12)

Long Expressions

=⇒

δ(6)22loops= π16Lr04/9 χηχ4− 1/2 χ1χ3+ χ213− 13/3 ¯χ1χ13− 35/18 ¯χ2 − 2 π16Lr1χ213

− π16Lr211/3 χηχ4+ χ213+ 13/3 ¯χ2 + π16Lr34/9 χηχ4− 7/12 χ1χ3+ 11/6 χ213− 17/6 ¯χ1χ13− 43/36 ¯χ2 + π162 −15/64 χηχ4− 59/384 χ1χ3+ 65/384 χ213− 1/2 ¯χ1χ13− 43/128 ¯χ2

− 48 Lr4Lr5χ¯1χ13− 72 Lr24χ¯21

− 8 Lr25χ213+ ¯A(χp) π16−1/24 χp+ 1/48 ¯χ1− 1/8 ¯χ1Rp+ 1/16 ¯χ1Rcp− 1/48 Rpχp− 1/16 Rpχq

+ 1/48 Rηppχη+ 1/16 Rcpχ13

+ ¯A(χp) Lr08/3 Rpχp+ 2/3 Rcpχp+ 2/3 Rdp + ¯A(χp) Lr32/3 Rpχp

+ 5/3 Rcpχp+ 5/3 Rdp + ¯A(χp) Lr4−2 ¯χ1χ¯ppηη0− 2 ¯χ1Rp+ 3 ¯χ1Rcp

+ ¯A(χp) Lr5−2/3 ¯χppηη1− Rpχp

+ 1/3 Rpχq+ 1/2 Rcpχp− 1/6 Rcpχq

+ ¯A(χp)21/16 + 1/72 (Rp)2− 1/72 RpRcp+ 1/288 (Rcp)2 + ¯A(χp) ¯A(χps)−1/36 Rp− 5/72 Rp+ 7/144 Rcp

− ¯A(χp) ¯A(χqs)1/36 Rp+ 1/24 Rp+ 1/48 Rcp

 + ¯A(χp) ¯A(χη)−1/72 RpRvη13+ 1/144 RpcRvη13+ 1/8 ¯A(χp) ¯A(χ13) + 1/12 ¯A(χp) ¯A(χ46) Rηpp + ¯A(χp) ¯B(χp, χp; 0)1/4 χp− 1/18 RpRpcχp− 1/72 RpRdp+ 1/18 (Rcp)2χp+ 1/144 RcpRdp

 + ¯A(χp) ¯B(χp, χη; 0)1/18 RηppRcpχp− 1/18 Rη13Rcpχp

+ ¯A(χp) ¯B(χq, χq; 0)−1/72 RpRdq+ 1/144 RcpRqd



− 1/12 ¯A(χp) ¯B(χps, χps; 0) Rpχps− 1/18 ¯A(χp) ¯B(χ1, χ3; 0) RqRcpχp

+ 1/18 ¯A(χp) ¯C(χp, χp, χp; 0) RcpRdpχp+ ¯A(χp; ε) π161/8 ¯χ1Rp− 1/16 ¯χ1Rcp− 1/16 Rcpχp− 1/16 Rdp

 + ¯A(χps) π16[1/16 χps− 3/16 χqs− 3/16 ¯χ1] − 2 ¯A(χps) Lr0χps− 5 ¯A(χps) Lr3χps− 3 ¯A(χps) Lr4χ¯1

+ ¯A(χps) Lr5χ13+ ¯A(χps) ¯A(χη)7/144 Rηpp− 5/72 Rηps− 1/48 Rηqq+ 5/72 Rηqs− 1/36 Rη13

 + ¯A(χps) ¯B(χp, χp; 0)1/24 Rpχp− 5/24 Rpχps + ¯A(χps) ¯B(χp, χη; 0)−1/18 RηpsRzqpηχp

− 1/9 RηpsRzqpηχps

− 1/48 ¯A(χps) ¯B(χq, χq; 0) Rdq+ 1/18 ¯A(χps) ¯B(χ1, χ3; 0) Rqχs

+ 1/9 ¯A(χps) ¯B(χ1, χ3; 0, k) Rq+ 3/16 ¯A(χps; ε) π16s+ ¯χ1] − 1/8 ¯A(χp4)2− 1/8 ¯A(χp4) ¯A(χp6) + 1/8 ¯A(χp4) ¯A(χq6) − 1/32 ¯A(χp6)2+ ¯A(χη) π161/16 ¯χ1Rvη13− 1/48 Rvη13χη+ 1/16 Rη13v χ13 + ¯A(χη) Lr04Rη13χη+ 2/3 Rvη13χη − 8 ¯A(χη) Lr1χη− 2 ¯A(χη) Lr2χη+ ¯A(χη) Lr34Rη13χη+ 5/3 Rvη13χη

 + ¯A(χη) Lr44 χη+ ¯χ1Rvη13 − ¯A(χη) Lr51/6 Rηppχq+ Rη13χ13+ 1/6 Rvη13χη

+ 1/288 ¯A(χη)2(Rη13v )2 + 1/12 ¯A(χη) ¯A(χ46) Rvη13+ ¯A(χη) ¯B(χp, χp; 0)−1/36 ¯χppηηη1− 1/18 RpRηppχp+ 1/18 RηppRcpχp

+ 1/144 RdpRvη13

+ ¯A(χη) ¯B(χp, χη; 0)−1/18 ¯χηpηpη1+ 1/18 ¯χηpηqη1+ 1/18 (Rppη)2Rqpηz χp

− 1/12 ¯A(χη) ¯B(χps, χps; 0) Rηpsχps− ¯A(χη) ¯B(χη, χη; 0)1/216 Rvη13χ4+ 1/27 Rvη13χ6

− 1/18 ¯A(χη) ¯B(χ1, χ3; 0) R1ηηRηη3χη+ 1/18 ¯A(χη) ¯C(χp, χp, χp; 0) RηppRpdχp+ ¯A(χη; ε) π16[1/8 χη

− 1/16 ¯χ1Rvη13− 1/8 R13ηχη− 1/16 Rvη13χη + ¯A(χ1) ¯A(χ3)−1/72 RpRcq+ 1/36 R1R3+ 1/144 Rc1R3c

− 4 ¯A(χ13) Lr1χ13− 10 ¯A(χ13) Lr2χ13+ 1/8 ¯A(χ13)2− 1/2 ¯A(χ13) ¯B(χ1, χ3; 0, k)

+ 1/4 ¯A(χ13; ε) π16χ13+ 1/4 ¯A(χ14) ¯A(χ34) + 1/16 ¯A(χ16) ¯A(χ36) − 24 ¯A(χ4) Lr1χ4− 6 ¯A(χ4) Lr2χ4

+ 12 ¯A(χ4) Lr4χ4+ 1/12 ¯A(χ4) ¯B(χp, χp; 0) (Rp)2χ4+ 1/6 ¯A(χ4) ¯B(χp, χη; 0)RpRηp4χ4− RpRηq4χ4

− 1/24 ¯A(χ4) ¯B(χη, χη; 0) Rvη13χ4− 1/6 ¯A(χ4) ¯B(χ1, χ3; 0) R1R3χ4+ 3/8 ¯A(χ4; ε) π16χ4

− 32 ¯A(χ46) Lr1χ46− 8 ¯A(χ46) Lr2χ46+ 16 ¯A(χ46) Lr4χ46+ ¯A(χ46) ¯B(χp, χp; 0)1/9 χ46+ 1/12 Rppηχp

+ 1/36 Rηppχ4+ 1/9 Rηp4χ6+ ¯A(χ46) ¯B(χp, χη; 0)−1/18 Rηppχ4− 1/9 Rp4ηχ6+ 1/9 Rq4ηχ6+ 1/18 Rη13χ4

− 1/6 ¯A(χ46) ¯B(χp, χη; 0, k)Rηpp− Rη13

+ 1/9 ¯A(χ46) ¯B(χη, χη; 0) Rvη13χ46− ¯A(χ46) ¯B(χ1, χ3; 0) [2/9 χ46

+ 1/9 Rηp4χ6+ 1/18 Rη13χ4] − 1/6 ¯A(χ46) ¯B(χ1, χ3; 0, k) Rη13+ 1/2 ¯A(χ46; ε) π16χ46

+ ¯B(χp, χp; 0) π161/16 ¯χ1Rdp+ 1/96 Rdpχp+ 1/32 Rdpχq

+ 2/3 ¯B(χp, χp; 0) Lr0Rdpχp

+ 5/3 ¯B(χp, χp; 0) Lr3Rdpχp+ ¯B(χp, χp; 0) Lr4−2 ¯χ1χ¯ppηη0χp− 4 ¯χ1Rpχp+ 4 ¯χ1Rcpχp+ 3 ¯χ1Rpd

 + ¯B(χp, χp; 0) Lr5−2/3 ¯χppηη1χp− 4/3 Rpχ2p+ 4/3 Rcpχ2p+ 1/2 Rpdχp− 1/6 Rpdχq

+ ¯B(χp, χp; 0) Lr64 ¯χ1χ¯ppηη1+ 8 ¯χ1Rpχp− 8 ¯χ1Rcpχp

+ 4 ¯B(χp, χp; 0) Lr7(Rdp)2

+ ¯B(χp, χp; 0) Lr84/3 ¯χppηη2+ 8/3 Rpχ2p− 8/3 Rcpχ2p + ¯B(χp, χp; 0)2−1/18 RpRdpχp+ 1/18 RcpRdpχp

+ 1/288 (Rdp)2+ 1/18 ¯B(χp, χp; 0) ¯B(χp, χη; 0)RηppRdpχp− Rη13Rdpχp

plus several more pages

(13)

Usual ChPT two-loop: A list

Two-Loop Two-Flavour

Bellucci-Gasser-Sainio: γγ → π 0 π 0 : 1994 Bürgi: γγ → π + π , F π , m π : 1996

JB-Colangelo-Ecker-Gasser-Sainio: ππ, F π , m π : 1996-97 JB-Colangelo-Talavera: F V π (t), F : 1998

JB-Talavera: π → ℓνγ : 1997

Gasser-Ivanov-Sainio: γγ → π 0 π 0 , γγ → π + π : 2005-2006 Two-Loops Three flavours

Π V V π , Π V V η , Π V V K Kambor, Golowich; Kambor, Dürr; Amorós, JB, Talavera

Π V V ρω Maltman

Π AAπ , Π AAη , F π , F η , m π , m η Kambor, Golowich; Amorós, JB, Talavera

Π SS Moussallam L r 4 , L r 6

(14)

Usual ChPT two-loop: A list

Π V V K , Π AAK , F K , m K Amorós, JB, Talavera K ℓ4 , hqqi Amorós, JB, Talavera L r 1 , L r 2 , L r 3

F M , m M , hqqi (m u 6= m d ) Amorós, JB, Talavera L r 5,7,8 , m u /m d

F V π , F V K + , F V K 0 Post, Schilcher; JB, Talavera L r 9

K ℓ3 Post, Schilcher; JB, Talavera V us

F Sπ , F SK (includes σ -terms) JB, Dhonte L r 4 , L r 6

K, π → ℓνγ Geng, Ho, Wu L r 10

ππ JB,Dhonte,Talavera

πK JB,Dhonte,Talavera

(15)

K ℓ3

H. Leutwyler and M. Roos, Z.Phys.C25:91,1984.

J. Gasser and H. Leutwyler,

Nucl.Phys.B250:517-538,1985.

J. Bijnens and P. Talavera, hep-ph/0303103, Nucl.

Phys. B669 (2003) 341-362

V. Cirigliano et al., hep-ph/0110153, Eur.Phys.J.C23:121-133,2002.

J. Bijnens and K. Ghorbani, to be published.

(16)

K ℓ3 Definitions

K ℓ3 + : K + (p) → π 0 (p )ℓ + (p (p ν ) K ℓ3 0 : K 0 (p) → π (p )ℓ + (p (p ν )

K ℓ3 + : T = G F

√ 2 V us µ F µ + (p , p) ℓ µ = ¯ u(p νµ (1 − γ 5 )v(p )

F µ + (p , p) = < π 0 (p ) | V µ 4−i5 (0) | K + (p) >

= 1

√ 2 [(p + p) µ f + K + π 0 (t) + (p − p ) µ f − K + π 0 (t)]

Isospin: f + K 0 π (t) = f + K + π 0 (t) = f + (t)

f − K 0 π (t) = f − K + π 0 (t) = f (t)

(17)

K ℓ3 Definitions and V us

Scalar formfactor: f 0 (t) = f + (t) + t

m 2 K − m 2 π

f (t)

Usual parametrization: f +,0 (t) = f + (0)



1 + λ +,0 t m 2 π



|V us | : Know theoretically f + (0) = 1 + · · ·

Short distance correction to G F from G µ

Marciano-Sirlin

Ademollo-Gatto-Behrends-Sirlin theorem:

(m s − ˆ m) 2

Isospin Breaking Leutwyler-Roos : see later

(18)

V us

PDG2002:

|V ud | = 0.9734 ± 0.0008 |V us | = 0.2196 ± 0.0026

|V ud | 2 + |V us | 2 = (0.9475 ± 0.0016) + (0.0482 ± 0.0011) = 0.9957 ± 0.0019

PDG2006:

|V ud | = 0.97377 ± 0.00027 |V us | = 0.2257 ± 0.0021

|V ud | 2 + |V us | 2 = (0.94823 ± 0.00054) + (0.05094 ± 0.00095) = 0.99917 ± 0.00110

Problems:

Ignores ∆(0) = 0.0113 from pure two-loop

Comparison between experiments: we’ll hear more next

week

(19)

K ℓ3 Diagrams

(a)



(b)

( )

(a) (b) ( )

• : p 2 vertex

4

(a)



(b) ( )



(d)



(e) (f) (g) (h)

(i) (j)



(k) (l)

(20)

f + (t) Theory

f + (t) = 1 + f + (4) (t) + f + (6) (t) f + (4) (t) = t

2F π 2 L r 9 + loops f + (6) (t) = − 8

F π 4 (C 12 r + C 34 r ) m 2 K − m 2 π

 2

+ t

F π 4 R +1 + t 2

F π 4 (−4C 88 r + 4C 90 r ) + loops (L r i )

(21)

ChPT fit to f + (t)

⇒R +1 =

−(4.7 ± 0.5) 10 −5 GeV 2

`c + = 3.2 GeV −4 ´

⇒a + = 1.009 ± 0.004

⇒λ + = 0.0170 ± 0.0015

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

0 0.02 0.04 0.06 0.08 0.1 0.12

2

f + (t)

CPLEAR

ChPT C i r =0

ChPT p 4

ChPT fit

λ + = 0.245

(22)

f 0 (t)

Main Result:

f 0 (t) = 1 − 8

F π 4 (C 12 r + C 34 r ) m 2 K − m 2 π

 2

+8 t

F π 4 (2C 12 r + C 34 r ) m 2 K + m 2 π  + t

m 2 K − m 2 π

(F K /F π − 1)

− 8

F π 4 t 2 C 12 r + ∆(t) + ∆(0) .

∆(t) and ∆(0) contain NO C i r and only depend on the L r i at order p 6

=⇒

All needed parameters can be determined experimentally

∆(0) = −0.0080 ± 0.0057[ loops ] ± 0.0028[L r i ] .

(23)

Experiment

 1 3σ 

' ( <>I".0,..!27





: λ″

+

≠0 !σ 



µ3

λ

0 1



 Κ

0µ3

3 3  

λ + ′3/ 1 λ + ′  3 /  1

' (

" ';-G

$%&

#)*

Q      = + 

,π+

&

,π

#)* 5





" ';-





λ″

+

≠0 ,σ 

Κ

µ3

V ( % λ

0 1

λ″

< 8180,..827

ChPT

(24)

New for isospin breaking at two loops

Two-point functions:

i j

+ i j

+ i j

+ i j

+ + i j

The diagrams for h 0 | φ i φ j | 0i ≡ G ij Problem: Mixing

Take LSZ into account properly

Amoros, JB, Talavera, 2001

(25)

Isospin Breaking

G = iP + iP (iΠiP ) + iP (iΠiP ) 2 + . . . = iP (1 + ΠP ) 1 . No mixing: Π , P and G all diagonal

det(G 1 ) = det (1 + ΠP ) P 1  = det P 1 + Π = 0 .

Zeros give particle masses, residues can also be obtained.

Solve perturbatively for our case of π 0 - η mixing.

Lowest order: π 0 ≡ cos(ǫ) π 0 + sin(ǫ) η

(26)

Isospin Breaking

Define lowest order diagonal basis P ij = δ ij p 2 − m 2 i0 Π starts at next-to-leading order

m 2 phys = m 2 0 + (m 2 ) (4) + (m 2 ) (6) + . . . m 2 0 = m 2 30 ,

(m 2 ) (4) = −Π (4) 33 (m 2 30 , m 2 i0 , F 0 ) ,

(m 2 ) (6) = −Π (4) 33 (m 2 30 , m 2 i0 , F 0 ) − (m 2 ) (4)

∂p 2 Π (4) 33 (p 2 , m 2 i0 , F 0 )

p 2 =m 2 30

+ 1

m 2 30 − m 2 80

 Π (4) 38 (m 2 30 , m 2 i0 , F 0 )  2

(27)

Matrix element

Matrix element: j i

A i 1 ...i n = (−i) n

pZ i 1 . . . Z i n

! n Y

i=1

k i 2 lim → m 2 i (k i 2 −m 2 i ) G i 1 ...i n (k 1 , . . . , k n )

(28)

Isospin Breaking

G 1 = −iP , P = P 1 + Π

Z 3 = 1

∂p 2 (det P(p 2 ))

p 2 =m 2 π

P 88 (m 2 π ) ,

Leading to A 3 = 1

q P 88 ∂p 2 P 33 P 88 − P 38 2  {P 88 G 3 − P 38 G 8 } .

Now expand in chiral orders and . . .

(29)

Isospin Breaking

A 3 = G 3 (2) +



G 3 (4) − 1

2 Z 33 (4) G 3 (2) − Π (4) 38

∆m 2 G 8 (2)



+



G 3 (6) − 1

2 Z 33 (6) G 3 (2) − 1

2 Z 33 (4) G 3 (4) + 3 8

 Z 33 (4)  2

G 3 (2)

+ Z 38 (4) Π (4) 38

∆m 2 G 3 (2) − 1 2

Π (4) 38

∆m 2

! 2

G 3 (2) − Π (4) 38

∆m 2 G 8 (4)

− Π (6) 38

∆m 2 G 8 (2) + Π (4) 38 Π (4) 88

∆m 2 G 8 (2) + 1

2 Z 33 (4) Π (4) 38

∆m 2 G 8 (2)



(30)

Isospin Breaking

A 3 = G 3 (2) +



G 3 (4) − 1

2 Z 33 (4) G 3 (2) − Π (4) 38

∆m 2 G 8 (2)



+



G 3 (6) − 1

2 Z 33 (6) G 3 (2) − 1

2 Z 33 (4) G 3 (4) + 3 8

 Z 33 (4)  2

G 3 (2)

+ Z 38 (4) Π (4) 38

∆m 2 G 3 (2) − 1 2

Π (4) 38

∆m 2

! 2

G 3 (2) − Π (4) 38

∆m 2 G 8 (4)

− Π (6) 38

∆m 2 G 8 (2) + Π (4) 38 Π (4) 88

∆m 2 G 8 (2) + 1

2 Z 33 (4) Π (4) 38

∆m 2 G 8 (2)



Compute all diagrams, produce numerical programs, . . .

(31)

Numerical results for f + (0)

VERY PRELIMINARY

Decay p 2 p 4 pure 2-loop L r i at p 6 C i r total Iso conserving calculation

K 0 1 −0.02266 0.01130 0.00332 ??? 0.99196 K + 1 −0.02276 0.01104 0.00320 ??? 0.99154

m u /m d = 0.45

K 0 1 −0.02310 0.01131 0.00325 ??? 0.99146 K + 1.02465 −0.01741 0.00379 0.00648 ??? 1.01751

ratio 1.02465 1.0311 1.0262

m u /m d = 0.58

K 0 1 −0.02299 0.01124 0.00325 ??? 0.99150 K + 1.01702 −0.01897 0.00657 0.00551 ??? 1.01013

ratio 1.0170 1.0215 1.0188

(32)

Some Comments

K 0 only again on C 12 r + C 34 r

Ademollo-Gatto + Callan-Treiman as in isoconserving case

but (m s − m u ) 2

Not checked yet whether C i r in K + decay can b determined

p 6 lowers the isospin breaking

p 6 fit has m u /m d = 0.45 and not 0.58

0.58 → 0.52 from p 6 and 0.52 → 0.45 from violation of Dashen’s theorem

Very preliminary numerics: decrease discrepancy by

about 0.5%.

References

Related documents

➠ with the lower degrees of freedom, build the most general effective Lagrangian..

So Luckily: can use the n flavour work in ChPT at two loop order to obtain for PQChPT: Lagrangians and infinities Very important note: ChPT is a limit of PQChPT. =⇒ LECs from ChPT

A mesonic ChPT program framework Determination of LECs in the continuum Charged Pion Polarizabilities Finite volume

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques.. Chiral

Older reviews Model independent ChPT η → 3π in ChPT η → π 0 γγ Conclusions. C

Chiral Perturbation Theory Determination of LECs in the continuum Hard pion ChPT Beyond QCD Leading logarithms.. CHIRAL PERTURBATION THEORY

These are the last fit of the order p 4 low-energy-constants L r i to data, hard pion ChPT, the recent two- loop work on EFT for QCD like theories and the high order leading

The main part is devoted to vector two-point functions where we discuss results for the disconnected and strange quark contributions and finite volume corrections at two-loop