• No results found

Chiral Perturbation Theory for η → 3π and η → π 0 γγ

N/A
N/A
Protected

Academic year: 2023

Share "Chiral Perturbation Theory for η → 3π and η → π 0 γγ"

Copied!
60
0
0

Loading.... (view fulltext now)

Full text

(1)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Chiral Perturbation Theory for η → 3π and η → π

0

γγ

Johan Bijnens

Lund University

bijnens@thep.lu.se http://www.thep.lu.se/∼bijnens http://www.thep.lu.se/∼bijnens/chpt.html

Hadronic Probes of Fundamental Symmetries, Amherst, 6-8 March 2014

(2)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

ChPT aspects of η → 3π and η → π

0

γγ

1 Older reviews

2 η → 3π: Some model independent comments/results Definitions

Experiment Why?

3 ChPT

4 η → 3π in ChPT LO

LO and NLO NNLO

5 η → π0γγ p4

Experiment Loops at p6, p8 All else

Distributions

6 Conclusions

(3)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Eta Physics Handbook: ETA01

(4)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

ETA05: Acta Phys.Slov. 56(2006) No 3

Acta Physica Slovaca 56(2006) C. Hanhart

Hadronic production of eta-mesons: Recent results and open questions , 193 (2006) C. Wilkin, U. Tengblad, G. Faldt

The p d -> p d eta reaction near threshold , 205 (2006)

J. Smyrski, H.-H. Adam, A. Budzanowski, E. Czerwinski, R. Czyzykiewicz, D. Gil, D.

Grzonka, A. Heczko, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, J.

Majewski, P. Moskal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rozek, R. Santo, T. Sefzick, M. Siemaszko, A. Taschner, P. Winter, M. Wolke, P. Wustner, Z.

Zhang, W. Zipper

Study of the 3He-eta system in d-p collisions at COSY-11 , 213 (2006) M. Doring, E. Oset, D. Strottman

Chiral dynamics in gamma p -> pi0 eta p and related reactions , 221 (2006) H. Machner, M. Abdel-Bary, A. Budzanowski, A. Chatterjee, J. Ernst, P. Hawranek, R.

Jahn, V. Jha, K. Kilian, S. Kliczewski, Da. Kirillov, Di. Kirillov, D. Kolev, M. Kravcikova, T. Kutsarova, M. Lesiak, J. Lieb, H. Machner, A. Magiera, R. Maier, G. Martinska, S.

Nedev, N. Pisku\-nov, D. Prasuhn, D. Protic, P. von Rossen, B. J. Roy, I. Sitnik, R.

Siudak, R. Tsenov, M. Ulicny, J. Urban, G. Vankova, C. Wilkin The eta meson physics program at GEM , 227 (2006) K. Nakayama, H. Haberzettl

Photo- and Hadro-production of eta' meson , 237 (2006) S.D. Bass

Gluonic effects in eta and eta' nucleon and nucleus interactions , 245 (2006) P. Klaja, P. Moskal, H.-H. Adam, A. Budzanowski, E. Czerwinski, R. Czyzykiewicz, D.

Gil, D. Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, J. Majewski, W.

Migdal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rozek, R. Santo, T.

Sefzick, M. Siemaszko, J. Smyrski, A. Taschner, P. Winter, M. Wolke, P. Wustner, Z.

Zhang, W. Zipper

Correlation femtoscopy for studying eta meson production mechanism , 251 (2006) M.T. Pena, H. Garcilazo

Study of the np -> eta d reaction within a three-body model , 261 (2006) A. Gillitzer

Search for nuclear eta states at COSY and GSI , 269 (2006) A. Wronska, V. Hejny, C. Wilkin

Near threshold eta meson production in the dd -> 4He eta reaction , 279 (2006) M. Bashkanov, T. Skorodko, C. Bargholtz, D. Bogoslawsky, H. Calen, F. Cappellaro, H.

Clem\-ent, L. Demiroers, E. Doroshkevich, C. Ekstrom, K. Fransson, L. Geren, J.

Greiff, L. Gustafsson, B. Hoistad, G. Ivanov, M. Jacewicz, E. Jiganov, T. Johansson, M.M. Kaskulov, S. Keleta, O. Khakimova, I. Koch, F. Kren, S. Kullander, A. Kupsc, A. Kuznetsov, K. Lindberg, P. Marciniewski, R. Meier, B. Morosov, W. Oelert, C.

Pauly, Y. Petukhov, A. Povtorejko, R.J.M.Y. Ruber, W. Scobel, R. Shafigullin, B.

Shwartz, V. Sopov, J. Stepaniak, P.-E. Tegner, V. Tchernyshev, P.

Thorngren-Engblom, V. Tikhomirov, A. Turowiecki, G.J. Wagner, M. Wolke, A.

Yamamoto, J. Zabierowski, I. Zartova, J. Zlomanczuk

On the pi pi production in free and in-medium NN-collisions: sigma-channel low-mass

enhancement and pi0 pi0 / pi+ pi- asymmetry , 285 (2006) K. Schonning for the CELSIUS/WASA collaboration Production of omega in pd -> 3He omega at kinematic threshold , 299 (2006) J. Bijnens

Decays of eta and eta' and what can we learn from them? , 305 (2006) B. Borasoy, R. Nissler

Decays of eta and eta' within a chiral unitary approach , 319 (2006) E. Oset, J. R. Pelaez, L. Roca

Discussion of the eta -> pi0 gamma gamma decay within a chiral unitary approach , 327 (2006)

C. Bloise on behalf of the KLOE collaboration Perspectives on Hadron Physics at KLOE with 2.5 fb^-1 , 335 (2006) T.Capussela for the KLOE collaboration

Dalitz plot analysis of eta into 3pi final state , 341 (2006) A. Starostin

The eta and eta' physics with crystal ball , 345 (2006) S. Schadmand for the WASA at COSY collaboration WASA at COSY , 351 (2006)

M. Lang for the A2- and GDH-collaborations

Double-polarization observables, eta-meson and two-pion photoproduction , 357 (2006) M. Jacewicz, A. Kupsc for CELSIUS/WASA collaboration

Analysis of eta decay into pi+ pi- e+ e- in the pd -> 3He eta reaction , 367 (2006) F. Kleefeld

Coulomb scattering and the eta-eta' mixing angle , 373 (2006) C. Pauly, L. Demirors, W. Scobel for the CELSIUS-WASA collaboration Production of 3pi0 in pp reactions above the eta threshold and the slope parameter alpha , 381 (2006)

R. Czyzykiewicz, P. Moskal, H.-H. Adam, A. Budzanowski, E. Czerwinski, D. Gil, D.

Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, B. Lorentz, J.

Majewski, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, H. Rohdjess, T. Rozek, R. Santo, T. Sefzick, M. Siemaszko, J. Smyrski, A. Taschner, K. Ulbrich, P. Winter, M.

Wolke, P. Wustner, Z. Zhang, Z. Zipper

The analysing power for the pp -> pp eta reaction at Q=10 MeV , 387 (2006) A. Nikolaev for the A2 and Crystal Ball at MAMI collaborations Status of the eta mass measurement with the Crystal Ball at MAMI , 397 (2006) B. Di Micco for the CLOE collaboration

The eta -> pi0 gamma gamma, eta/eta' mixing angle and status of eta mass measurement at KLOE , 403 (2006)

(5)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Definitions: η → 3π

Reviews: JB, Gasser, Phys.Scripta T99(2002)34 [hep-ph/0202242]

JB, Acta Phys. Slov. 56(2005)305 [hep-ph/0511076]

η pη

π+pπ+ πpπ

π0 pπ0

s = (pπ++ pπ)2= (pη− pπ0)2 t = (pπ+ pπ0)2 = (pη− pπ+)2 u = (pπ++ pπ0)2= (pη − pπ)2 s+ t + u = m2η+ 2mπ2+ + mπ20 ≡ 3s0.

0π+πout|ηi = i (2π)4δ4(pη− pπ+− pπ− pπ0) A(s, t, u) . hπ0π0π0out|ηi = i (2π)4 δ4(pη− p1− p2− p3) A(s1, s2, s3) A(s1, s2, s3) = A(s1, s2, s3) + A(s2, s3, s1) + A(s3, s1, s2) Obervables: Γ(η → π+ππ0) and r = Γ(η→π0π0π0)

(6)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Definitions: Dalitz plot

x = √

3T+− T

Qη =

√3

2mηQη(u − t) y = 3T0

Qη − 1 = 3 ((mη− mπo)2− s)

2mηQη − 1iso= 3

2mηQη (s0− s) Qη = mη − 2mπ+− mπ0

Ti is the kinetic energy of pion πi z = 2

3 X

i=1,3

 3Ei − mη mη− 3mπ0

2

Ei is the energy of pion πi

|M|2 = A20 1 + ay + by2+ dx2+ fy3+ gx2y+ · · ·

|M|2 = A20(1 + 2αz + · · · )

Note: neutral, next order: x and y appear separately

(7)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Relations

Expand amplitudes and use isospin: JB, Ghorbani, arXiv:0709.0230

M(s, t, u) = A

1 + ˜a(s − s0) + ˜b(s − s0)2+ ˜d(u − t)2+ · · · M(s, t, u) = A

3 + (˜b+ 3˜d)

(s − s0)2+ (t − s0)2+ (u − s0)2

Gives relations (Rη = (2mηQη)/3) a = −2RηRe(˜a) , b= Rη2

|˜a|2+ 2Re(˜b)

, d = 6Rη2Re(˜d) . α = 1

2Rη2Re˜b + 3˜d = 1

4 d + b − Rη2|˜a|2 ≤ 1 4



d+ b −1 4a2



equality if Im(˜a) = 0

(8)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Relations

Consequences:

Relations between the charged and neutral decay Relations between r and Dalitz plot

(see alsoGasser, Leutwyler, Nucl. Phys. B 250 (1985) 539) If you can calculate Im(˜a) then relation:

nonrelativistic pion EFT

Schneider, Kubis and Ditsche, JHEP 1102 (2011) 028 [1010.3946].

(9)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Definitions: Dalitz plot

0.08 0.1 0.12 0.14 0.16

t [GeV2]

mpiav mpidiff u=t s=u t-threshold u theshold s threshold x=y=0

x variation:

vertical y variation:

parallel to t = u

(10)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Experiment: Decay rates

Width: determined from Γ(η → γγ) and Branching ratios Using the PDG12 partial update 2013 numbers

Γ(η → π+ππ0) = 300 ± 12 eV (inJB,Ghorbani 295 ± 17 eV)

r: 1.426 ± 0.026 (our fit) 1.48 ± 0.05 (our average)

(11)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Experiment: charged

Exp. a b d f

WASA (prel) −1.104(3) 0.144(3) 0.073(3) 0.153(6) KLOE (prel) −1.074(23)(3) 0.179(27)(8) 0.059(25)(10) 0.089(58)

KLOE −1.090(5)(+8−19) 0.124(6)(10) 0.057(6)(

+7

−16) 0.14(1)(2) Crystal Barrel −1.22(7) 0.22(11) 0.06(4) (input)

Layter et al. −1.08(14) 0.034(27) 0.046(31) Gormley et al. −1.17(2)(21) 0.21(3) 0.06(4)

Crystal Barrel: d input, but a and b insensitive to d

Large correlations: KLOE:

a b d f

a 1 −0.226 −0.405 −0.795

b 1 0.358 0.261

d 1 0.113

f 1

(12)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Experiment: charged

But very good agreement:

-1 -0.8 -0.6

-0.4 -0.2 0

0.2 0.4

0.6 0.8 1 -1 -0.5

0 0.5

1 0

0.5 1 1.5 2 2.5 3

KLOE 08 KLOE prel WASA prel

y

x

(13)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Experiment: neutral

See talks by Kupsc and Unverzagt

Exp. α

GAMS2000 −0.022 ± 0.023

SND −0.010 ± 0.021 ± 0.010 Crystal Barrel −0.052 ± 0.017 ± 0.010 Crystal Ball (BNL) −0.031 ± 0.004

WASA/CELSIUS −0.026 ± 0.010 ± 0.010 KLOE −0.0301 ± 0.0035+0.0022−0.0035 WASA@COSY −0.027 ± 0.008 ± 0.005 Crystal Ball (MAMI-B) −0.032 ± 0.002 ± 0.002 Crystal Ball (MAMI-C) −0.032 ± 0.003 All experiments in good agreement

(14)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent

Definitions Experiment Why?

ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Why is η → 3π interesting?

Pions are in I = 1 state =⇒ A∼ (mu− md) or αem

αem effect is small

but is there via (mπ+− mπ0) in kinematics Lowest order vanishes (current algebra) α ˆmand αms small

Baur, Kambor, Wyler, Nucl. Phys. B 460 (1996) 127

η → π+ππ0γ needs to be included directly

Ditsche, Kubis, Meissner, Eur. Phys. J. C 60 (2009) 83 [0812.0344]

Estimates the corrections of α(mu− md) as well Conclusion: at the precision I will discuss not relevant Exception: Cusps and Coulomb at π+π thresholds So η → 3π gives a handle on mu− md

(15)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral

Symmetry Spontaneous Breakdown (without η) Power counting: Dimensional counting in momenta/masses Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel

Power counting in momenta: Meson loops

p2

1/p2

R d4p p4

(p2)2(1/p2)2p4 = p4

(p2) (1/p2) p4 = p4

(16)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Lagrangians

U(φ) = exp(i√

2Φ/F0)parametrizes Goldstone Bosons

Φ(x) =

π0

2 + η8

6 π+ K+

π π0

2 + η8

6 K0

K K¯0 2 η8

6

.

LO Lagrangian: L2 = F402{hDµUDµUi + hχU+ χUi} , DµU = ∂µU− irµU + iUlµ,

left and right external currents: r (l )µ= vµ+ (−)aµ

Scalar and pseudoscalar external densities: χ = 2B0(s + ip) quark masses via scalar density: s = M + · · ·

hAi = TrF(A)

(17)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Lagrangians

L4= L1hDµUDµUi2+ L2hDµUDνUihDµUDνUi +L3hDµUDµUDνUDνUi + L4hDµUDµUihχU + χUi +L5hDµUDµU(χU + Uχ)i + L6U+ χUi2

+L7U− χUi2+ L8U + χUχUi

−iL9hFµνRDµUDνU+ FµνL DµUDνUi

+L10hUFµνRUFLµνi + H1hFµνR FRµν+ FµνL FLµνi + H2χi Li: Low-energy-constants (LECs)

Hi: Values depend on definition of currents/densities These absorb the divergences of loop diagrams: Li → Lri

Renormalization: order by order in the powercounting

(18)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Lagrangians

Lagrangian Structure:

2 flavour 3 flavour 3+3 PQChPT p2 F, B 2 F0, B0 2 F0, B0 2 p4 lir, hri 7+3 Lri, Hir 10+2 ˆLri, ˆHir 11+2 p6 cir 52+4 Cir 90+4 Kir 112+3 p2: Weinberg 1966

p4: Gasser, Leutwyler 84,85

p6: JB, Colangelo, Ecker 99,00

(19)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Chiral Logarithms

The main predictions of ChPT:

Relates processes with different numbers of pseudoscalars Chiral logarithms (and perturbative FSI,. . . )

mπ2 = 2B ˆm+ 2B ˆm F

2 1

32π2log(2B ˆm)

µ2 + 2l3r(µ)

 + · · ·

M2 = 2B ˆm

B 6= B0, F 6= F0 (two versus three-flavour)

(20)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

LECs and µ

l3r(µ)

¯li = 32π2

γi lir(µ) − logMπ2 µ2 . Independent of the scale µ.

For 3 and more flavours, some of the γi = 0: Lri(µ) µ :

mπ, mK: chiral logs vanish pick larger scale

1 GeV then Lr5(µ) ≈ 0 large Nc arguments????

compromise: µ = mρ= 0.77 GeV

(21)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Expand in what quantities?

Expansion is in momenta and masses But is not unique: relations between masses (Gell-Mann–Okubo) exists

Express orders in terms of physical masses and quantities (Fπ, FK)?

Express orders in terms of lowest order masses?

E.g. s + t + u = 2m2π+ 2m2K in πK scattering

Relative sizes of order p2, p2, p4,. . . can vary considerably I prefer physical masses

Thresholds correct

Chiral logs are from physical particles propagating

(22)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

Expand in what quantities?

Expansion is in momenta and masses But is not unique: relations between masses (Gell-Mann–Okubo) exists

Express orders in terms of physical masses and quantities (Fπ, FK)?

Express orders in terms of lowest order masses?

E.g. s + t + u = 2m2π+ 2m2K in πK scattering

Relative sizes of order p2, p2, p4,. . . can vary considerably I prefer physical masses

Thresholds correct

Chiral logs are from physical particles propagating

(23)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

LECs

Some combinations of order p6 LECs are known as well:

curvature of the scalar and vector formfactor, two more combinations from ππ scattering (implicit in b5 and b6) General observation:

Obtainable from kinematical dependences: known Only via quark-mass dependence: poorely known

(24)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

C

ir

Most analysis use (i.e. almost all of mine):

Cir from (single) resonance approximation

π π

ρ, S

→ q2 π π

|q2| << m2ρ, m2S

=⇒

Cir

Motivated by large Nc: large effort goes in this

Ananthanarayan, JB, Cirigliano, Donoghue, Ecker, Gamiz, Golterman, Kaiser, Knecht, Peris, Pich, Prades, Portoles, de Rafael,. . .

(25)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

C

ir

LV = 1

4hVµνVµνi +1

2m2VhVµVµi − fV

2

2hVµνf+µνi

igV

2

2hVµν[uµ, uν]i + fχhVµ[uµ, χ]i LA = 1

4hAµνAµνi +1

2m2AhAµAµi − fA

2

2hAµνfµνi LS = 1

2h∇µSµS− MS2S2i + cdhSuµuµi + cmhSχ+i Lη = 1

2µP1µP11

2Mη2P12+ i ˜dmP1i .

fV = 0.20, fχ= −0.025, gV = 0.09, cm= 42 MeV, cd= 32 MeV,

˜dm= 20 MeV, mV = mρ= 0.77 GeV, mA = ma1= 1.23 GeV, mS = 0.98 GeV, mP1 = 0.958 GeV

fV, gV, fχ, fA: experiment

(26)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

C

ir

Problems:

Weakest point in the numerics

However not all results presented depend on this Unknown so far: Cir in the masses/decay constants and how these effects correlate into the rest

No µ dependence: obviously only estimate What we do/did about it:

Vary resonance estimate by factor of two

Vary the scale µ at which it applies: 600-900 MeV Check the estimates for the measured ones

Again: kinematic can be had, quark-mass dependence difficult

(27)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT η→ π0γγ Conclusions

L

ri

and C

ir

Full NNLO fits of the Lri

Amor´os,JB,Talavera, 2000, 2001(fit 10) simple Cir

JB, Jemos, 2011

simple Cir

JB,Ecker,2014, to be published

Continuum fit with more input for Cir

Numerics presented for η → 3π is with fit 10

JB,Ghorbani, 2007

Would expect no major changes from that

(28)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Lowest order

ChPT:Cronin 67: A(s, t, u) = B0(mu− md) 3√

3Fπ2



1 + 3(s − s0) mη2− m2π



with Q2mm22s− ˆm2

d−m2u or R≡ mmds−m− ˆmu mˆ = 12(mu+ md) A(s, t, u) = 1

Q2 m2K

m2π(m2π− mK2)M(s, t, u) 3√

3Fπ2 , A(s, t, u) =

√3

4R M(s, t, u)

LO: M(s, t, u) = 3s − 4mπ2

m2η− m2π

M(s, t, u) = 1 Fπ2

 4 3m2π− s



(29)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Lowest order

ChPT:Cronin 67: A(s, t, u) = B0(mu− md) 3√

3Fπ2



1 + 3(s − s0) mη2− m2π



with Q2mm22s− ˆm2

d−m2u or R≡ mmds−m− ˆmu mˆ = 12(mu+ md) A(s, t, u) = 1

Q2 m2K

m2π(m2π− mK2)M(s, t, u) 3√

3Fπ2 ,

A(s, t, u) =

√3

4R M(s, t, u)

LO: M(s, t, u) = 3s − 4mπ2

m2η− m2π

M(s, t, u) = 1 Fπ2

 4 3m2π− s



(30)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: p

2

and p

4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q2 form lowest order mass relation: Q ≈ 24

=⇒ Γ(η → π+ππ0)LO≈ 66 eV

m2K+ − mK20 ∼ Q−2 at NNLO: Q= 20.0 ± 1.5

=⇒ Γ(η → π+ππ0)LO≈ 140 eV

At order p4 Gasser-Leutwyler 1985: Z

dLIPS|A2+ A4|2 Z

dLIPS|A2|2

= 2.4 ,

(LIPS=Lorentz invariant phase-space)

Major source: large S-wave final state rescattering Experiment: 300 ± 12 eV (PDG 2012/13)

(31)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: p

2

and p

4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q2 form lowest order mass relation: Q ≈ 24

=⇒ Γ(η → π+ππ0)LO≈ 66 eV

m2K+ − mK20 ∼ Q−2 at NNLO: Q= 20.0 ± 1.5

=⇒ Γ(η → π+ππ0)LO≈ 140 eV

At order p4 Gasser-Leutwyler 1985: Z

dLIPS|A2+ A4|2 Z

dLIPS|A2|2

= 2.4 ,

(LIPS=Lorentz invariant phase-space)

Major source: large S-wave final state rescattering Experiment: 300 ± 12 eV (PDG 2012/13)

(32)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: p

2

and p

4

Γ (η → 3π) ∝ |A|2 ∝ Q−4 allows a PRECISE measurement Q2 form lowest order mass relation: Q ≈ 24

=⇒ Γ(η → π+ππ0)LO≈ 66 eV

m2K+ − mK20 ∼ Q−2 at NNLO: Q= 20.0 ± 1.5

=⇒ Γ(η → π+ππ0)LO≈ 140 eV

At order p4 Gasser-Leutwyler 1985: Z

dLIPS|A2+ A4|2 Z

dLIPS|A2|2

= 2.4 ,

(LIPS=Lorentz invariant phase-space)

Major source: large S-wave final state rescattering Experiment: 300 ± 12 eV (PDG 2012/13)

(33)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: LO, NLO, NNLO, NNNLO,. . .

IN Gasser,Leutwyler, 1985(√

2.4 = 1.55):

about half: ππ-rescattering other half: everything else

ππ-rescattering important Roiesnel, Truong, 1981

Dispersive approach (next talk): resum all ππ assume rescattering + rest separable:

LO NLO NNLO

· · ·

NLO NNLO

· · ·

· · ·

NNLO

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

→ ππ-rescattering

dispersive does this all the way

↑ Other effects

(34)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Why look at it this way?

LO NLO NNLO

· · ·

NLO NNLO

· · ·

· · ·

NNLO

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

→ ππ-rescattering

dispersive does this all the way

↑ Other effects

δπ = 0.3, δO = 0.3 LO = 1

NLO = δπ+ δO = 0.6

NNLO = δ2π+ δπδO + δ2O = 0.27 Squared: 1 → 2.6 → 3.5

Underlying other is: 1 + 0.3 + 0.09

Goal: remove dispersive from ChPT, then add again via dispersion relations (but now all boxes)

Problem: Separation is not trivial

(35)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Why look at it this way?

LO NLO NNLO

· · ·

NLO NNLO

· · ·

· · ·

NNLO

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

→ ππ-rescattering

dispersive does this all the way

↑ Other effects

δπ = 0.3, δO = 0.3 LO = 1

NLO = δπ+ δO = 0.6

NNLO = δ2π+ δπδO + δ2O = 0.27 Squared: 1 → 2.6 → 3.5

Underlying other is: 1 + 0.3 + 0.09

Goal: remove dispersive from ChPT, then add again via dispersion relations (but now all boxes)

Problem: Separation is not trivial

(36)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Why look at it this way?

LO NLO NNLO

· · ·

NLO NNLO

· · ·

· · ·

NNLO

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

→ ππ-rescattering

dispersive does this all the way

↑ Other effects

δπ = 0.3, δO = 0.3 LO = 1

NLO = δπ+ δO = 0.6

NNLO = δ2π+ δπδO + δ2O = 0.27 Squared: 1 → 2.6 → 3.5

Underlying other is: 1 + 0.3 + 0.09

Goal: remove dispersive from ChPT, then add again via dispersion relations (but now all boxes)

Problem: Separation is not trivial

(37)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Two Loop Calculation: why?

In Kℓ4 dispersive gave about half of p6 in amplitude Same order in ChPT as masses for consistency check on mu/md

Check size of 3 pion dispersive part

At order p4 unitarity about half of correction Technology exists:

Two-loops: Amor´os,JB,Dhonte,Talavera,. . .

Dealing with the mixing π0-η: Amor´os,JB,Talavera 01

Done: JB, Ghorbani, arXiv:0709.0230

Dealing with the mixing π0-η: extended to η → 3π

(38)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Two Loop Calculation: why?

In Kℓ4 dispersive gave about half of p6 in amplitude Same order in ChPT as masses for consistency check on mu/md

Check size of 3 pion dispersive part

At order p4 unitarity about half of correction Technology exists:

Two-loops: Amor´os,JB,Dhonte,Talavera,. . .

Dealing with the mixing π0-η: Amor´os,JB,Talavera 01

Done: JB, Ghorbani, arXiv:0709.0230

Dealing with the mixing π0-η: extended to η → 3π

(39)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Diagrams

(a) (b) (c) (d)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Include mixing, renormalize, pull out factor 4R3, . . . Two independent calculations (comparison lots of work) You have to carefully define which LO (Mor M) You have to carefully define which NLO

Integrals only in numerical form: (g) is the hardest one

(40)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: M(s, t = u)

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p2 Re p2+p4 Re p2+p4+p6 Im p4 Im p4+p6

Along t = u

-2 0 2 4 6 8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p6 pure loops Re p6 Li r Re p6 Ci r sum p6

Along t = u parts

(41)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

η → 3π: M(s, t = u)

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li = Ci = 0

Re p2 Re p2+p4 Re p2+p4+p6 Im p4 Im p6

Along t = u Lri = Cir = 0

-10 0 10 20 30 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M(s,t,u=t)

s [GeV2] Li fit 10 and Ci

Re p2+p4 µ= 0.6 GeV µ= 0.9 GeV Re p2+p4+p6 µ= 0.6 GeV µ= 0.9 GeV

Along t = u: µ dependence I.e. where Cir(µ) estimated

(42)

ChPT for η→ 3π and

η→ π0γγ Johan Bijnens

Older reviews Model independent ChPT η→ 3π in ChPT

LO LO and NLO NNLO η→ π0γγ Conclusions

Neutral decay

A20 α

LO 1090 0.000

NLO 2810 0.013

NLO (Lri = 0) 2100 0.016

NNLO 4790 0.013

NNLOq 4790 0.014

NNLO (Cir = 0) 4140 0.011 NNLO (Lri = Cir = 0) 2220 0.016

dispersive (KWW) — −(0.007—0.014) tree dispersive — −0.0065 absolute dispersive — −0.007

Borasoy — −0.031

error 160 0.032

experiment: α = −0.032 with small error NNLO ChPT gets a00 in ππ correct

References

Related documents

This contribution is not direct, but the results presented in this thesis, the most precise measurement of the Dalitz plot distribution of the η → π + π − π 0 decay to date, can

quam illa, quae cafus exponit, quibus fenfim labefa&amp;atus fun-?. ditus tandem fubveriüs eft Thronus

(i) The even partial waves with L = 2 , 4 , 6 show a close similarity between the two channels, both in the intensities as function of mass – after scaling by the phase-space

Eftersom det reflekterade ljuset till större delen består av s-polariserat ljus (ljus polariserat med E-fältets svängningar vinkelrätt mot reflektionssplanet blir effekten störst

Lösningsförslag: Det är bara att lägga samman alla små bidrag över dammluckan. Bestäm vridmomentet M kring en axel i luckans plan vid vattenytan som orsakas

Full lines are the total number of π + respective γ generated and dashed lines are those particles recorded after the angle and energy cuts.. The two higher, blue peaks are from π +

Jecidat, Nec eil, quod miremur, ejus imperium non diuturnum fore, cum pneter metum ac terrorem no- minis fui, vix ull.a vinculä, quibus viclorum caritattm iibi conciiiet,

Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People i ’s Republic of China.. Also