• No results found

The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign

N/A
N/A
Protected

Academic year: 2022

Share "The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Fusion Engineering and Design

j ou rn a l h o m epa g e : w w w . e l s e v i e r . c o m / l o c a t e / f u s e n g d e s

The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign

N. Fonnesu

a,b,∗

, R. Villari

a

, S. Loreti

a

, M. Angelone

a

, R. Pilotti

a,b

, A. Klix

c

, P. Batistoni

a

, JET contributors

1

aENEA,DepartmentofFusionandNuclearSafetyTechnology,I-00044Frascati,Rome,Italy

bDepartmentofIndustrialEngineering,UniveristyofRome‘TorVergata’,ViadelPolitecnico1,00133Rome,Italy

cKarlsruheInstituteofTechnology,76344,Eggenstein-Leopoldshafen,Karlsruhe,Germany

h i g h l i g h t s

•Theassessmentoftheshutdowndoserateisamajorsafetyissueforfusiondevices.ThefutureDTE2campaignatJETwillprovideauniqueopportunity tocheckthecapabilitiesofthenumericaltoolsforSDRpredictions.

•DetectorsforSDRexperimentarecharacterizedbyexcellentreproducibility,long-termstabilityandflatenergyresponse.

•DifferentENEAfacilitiesandlaboratorieshavebeenusedforcalibratingandtestingthedosimetryequipmentselectedfortheexperiment.

•Flatenergyresponseintermsofairkermawithin4.1%hasbeenobservedforboththeionizationchambers.

a r t i c l e i n f o

Articlehistory:

Received30September2016

Receivedinrevisedform9January2017 Accepted18January2017

Availableonline26January2017

Keywords:

JET

Shutdowndoserate

Occupationalexposureinfusion experiments

DTE2

a b s t r a c t

TheassessmentoftheShutdownDoseRate(SDR)duetoneutronactivationisamajorsafetyissuefor fusiondevicesandinthelastdecadeseveralbenchmarkexperimentshavebeenconductedatJETduring Deuterium-DeuteriumexperimentsforthevalidationofthenumericaltoolsusedinITERnuclearanaly- ses.ThefutureDeuterium-TritiumcampaignatJET(DTE2)willprovideauniqueopportunitytovalidate thecodesunderITER-relevantconditionsthroughthecomparisonbetweennumericalpredictionsand measuredquantities(C/E).Forthispurpose,anovelSDRexperiment,describedinthepresentwork,is inpreparationintheframeoftheWPJET3-NEXPsubprojectwithinEUROfusionConsortium.Theexper- imentalsetuphasbeenaccuratelydesignedtoreducemeasurementuncertainties;sphericalair-vented ionizationchambers(ICs)willbeusedforon-lineex-vesseldecaygammadosemeasurementsduring JETshutdownfollowingDToperationsandactivationfoilshavebeenselectedformeasuringtheneutron fluencenearICsduringoperations.Activedosimeters(basedonICs)havebeencalibratedoverabroad energyrange(fromabout30keVto1.3MeV)withXandgammareferencebeamqualities.Neutronirra- diationtestsconfirmedthecapabilityofactivedosimetersofperformingon-linedecaygammadoserate measurements,tofollowgammadosedecayattheendofneutronirradiationaswellasinsignificant activationoftheICs.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Correspondingauthorat:ENEA,DepartmentofFusionandNuclearSafetyTech- nology,I-00044Frascati,Rome,Italy.

E-mailaddress:nicola.fonnesu@enea.it(N.Fonnesu).

1 SeetheAppendixofRomanelliF.etal2014Proc.25thIAEAFusionEnergyConf.

2014(St.Petersburg,Russia)EUROfusionConsortium,JET,CulhamScienceCentre, Abingdon,OX143DB,UK.

1. Introduction

Neutrons produced during Deuterium-Deuterium (DD) and Deuterium-Tritium(DT)plasmaoperationsinducetheactivation ofthematerialsconstitutingthefusionmachinecomponents.

Theassessmentoftheshutdowndoserate(SDR)isamajorsafety issueforfusiondevices,toguaranteetherespectofdoselimitsto externalexposureduringmaintenanceandinterventions.Radia- tiondoselimitsarebasedonprotectionquantitiesthatarenot directlymeasurableandtheneedforreadilymeasurablequantities thatcanberelatedtoeffectivedoseandequivalentdose[1]hasled

http://dx.doi.org/10.1016/j.fusengdes.2017.01.030

0920-3796/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

tothedevelopmentofoperationalquantitiesfortheassessmentof externalexposure.Forareamonitoring,theoperationalquantity forstronglypenetratingradiationasgammaraysduetoneutron activation,istheambientdoseequivalentata10mmdepthofthe ICRUsphereH*(10)[1,2].

SDRexperimentsrepresentalsoakeyissueforthedesignand forplanningthemaintenanceoperationsoffuturefusiondevices, in particular for ITER. In order to ensurethe reliability of SDR predictionsforITER,theuseofqualifiedandvalidatedcodesand nucleardataisfundamental.ThefutureDeuterium-Tritiumcam- paign(DTE2)atJETwillprovidea uniqueopportunitytocheck thecapabilitiesofthenumericaltoolsforSDRpredictions[3–6]

inacomplexfusiondeviceandtovalidatethecodesunderITER- relevant conditions, exploiting the significant 14MeV neutron production(upto1.7·1021neutrons)[7].

Thepresentworksummarizesthemainexperimentalactivities inpreparationoftheSDRexperimentduringthenextDTE2:the selectedmeasuringequipmenttobeinstalledatJETisdescribedin Section2,calibrationofactivedosimetersandneutronirradiation tests,respectively,inSections3and4.Conclusionsaregivenin Section5.

2. Experimentalassembly

ThemeasuringequipmentatJETconsistsofthreeactivedosime- ters,formeasuringthedoserateattheshutdownandduringsome inter-shots,andapassivesystemformeasuringneutronfluence (i.e.,twoactivationfoilassemblies)duringJETpulsesnearactive dosimeters[8].Thermo-luminescentdetectors(TLDs)forpassive in-vesselmeasurementsand aportableHigh-PurityGermanium spectrometer(HPGe)forgamma-rayspectrameasurementsatthe shutdown(whenthehumanaccesstothetorushallisallowed), completetheequipment.

Theactivegammadosimetersarebasedontwo140mmdiam- eterair-ventedsphericalionizationchambers(ICs),PTW model 32002,andononesmallerIC,44mmdiameter,PTWmodel32005 [9].ICs32002havebeenprocuredbyENEAandKIT(henceforth, namedrespectivelyENEAIC32002andKITIC32002);thesmaller IChasbeenprocuredbyENEA(herelabeledENEAIC32005).ICs 32002and32005 aredesigned forradiationprotectionand are characterizedbyexcellentreproducibility,long-termstability of thesensitivevolumeandaboveall,flatenergyresponse(interms ofairkerma[1]),whichisessentialinthisapplication.Thespherical constructionensuresanearlyuniformresponsetogammaradia- tionfromeverydirection.Thesedetectorshavebeenselectedto coveradoseraterangefrombackgroundto30mSv/h,aspredicted bycalculationsreportedin[10].

ICsareoperatedincurrentmodeandtheoutputsignalisana- lyzedbytwosuitable electrometersfordosimetry,onefor both ENEAICsandtheotheronefortheKITIC.Theseelectrometers, modelPTWUNIDOS[9],areequippedwithanEthernetinterfacefor integratingtheminthelaboratorylocalnetwork(LAN)forremote access.Auserwrittensoftwarehasbeenimplementedforremote controlofelectrometersanddataacquisition.Highqualitytriaxial cables,100mlong,serveaslownoiseconnectionofradiationdetec- tors,locatednearthetokamak,toelectrometers,locatedoutside thetorushallforlimitingradiationdamage.Theselectedcables, designedforprecisecurrentmeasurementsdownto10−15Aand withalowleakagecausedbyirradiation,provideinsulatedpoten- tialsforthemeasuringsignal,theguardelectrode,andhighvoltage (i.e.,400V)toICs.

Thetwoactivationfoilassembliesconsistofanaluminumholder (100mm×50mm×4.5mm)with7foils(Co,Ta,AgandNifoils,4 bare+3Cd-covered)[8].

Twoex-vessel positions,close totheJEThorizontal portsof Octants1and2,havebeenchosenforthelocationofICsandactiva- tionfoilassemblies,onthebasisofcalculationsreportedin[8].The positioninOctant1isclosetotheRadialNeutronCameraandthe positioninOctant2isonthetopoftheITER-likeAntenna.ENEAICs 32002and32005,togetherwithanactivationfoilassembly,willbe locatedonadedicatedsupportinOctant1;KITIC32002andthe othersetofactivationfoils,onadedicatedsupportinOctant2.The in-vesselpositionforTLDsisthesameasinthepreviousbenchmark experimentdescribedin[10].

3. Calibrationofactivedosimeters 3.1. ENEAdosimeters

Thetwodosimetrysystems,respectivelybasedontheENEAICs 32002and32005,connectedtotheassociatedPTWelectrometer, havebeencalibratedatENEA-INMRI[11]intermsofairkerma, usingtheselectedXandgammareferencebeamqualitiesatlow doses(therangeofinterestis<40mSv/h)reportedinTable1and accordingtoISO4037[12].NqualitiesrepresentfilteredX-rayspro- ducedwithanacceleratedelectronbeam(voltageofvacuumtube andaddedfiltersareindicatedinthesametable),whileSqualities aregamma-emitters.

Airkermaatthereferencemeasuringpoint(Kair)wasdeter- minedwithINMRInationalstandardreferenceionizationchambers (parallelplateandcylindricalchambers),eachdedicatedtoaspe- cificradiationquality.TheairkermacalibrationfactorNKair ata specifiedradiationquality,isthencalculatedastheratiobetween Kair andthedosimetrysystemreadingM.Acalibrationinterms ofH*(10)wouldbeuseless,sincethedetectorresponse forthis operationalquantityisstronglyenergy-dependentandthedecay gammaenergyspectrumatthedetectorsisvariableduringmea- surements.Forthesereasons,aweightedintegrationofcalibration coefficients atdifferent beamqualities overthe gammaenergy spectrum,fordeterminingthemeancalibrationcoefficienttobe usedforconvertinginstrumentreadingMintoH*(10),isprecluded.

Anenergy-independentresponseisneededinthiscaseand,asear- liermentioned,theselectedICsshowaflatenergyresponsewhen measuringairkerma.AmbientdoseequivalentH*(10)canbethen calculatedfromairkermabymeansofICRPconversioncoefficients [13].

ResultsofthecalibrationsarereportedinTable1andshown in Fig. 1, where diamond-shaped dots are NKair for the differ- entbeamqualities;circulardotsincorrespondenceoftheCo-60 arethecalibrationfactorsmeasuredbyPTW,consistentwiththe INMRIones.ExpandedmeasurementuncertaintyU(coveragefac- tor k=2), which gives a level of confidence of approximately 95%and calculated accordingtotheISOrecommendations [12]

isalsoindicated. Calibrationshave beencarriedoutunder con- trolledreferenceambientconditions(i.e.,T=20C,P=1013.25hPa andrelativehumidity=50%,withoutsignificantvariations),since variationsofairdensityandhumidityaffecttheresponseofair ventedICs.AirdensityandhumiditywillbemonitoredduringSDR experiment anddepartures fromthereferenceconditions must be considered in order to apply appropriate correction factors totheelectrometersreadout.Toconverttheinstrumentreadout (Coulomb)intoairkerma(Gray),an‘equivalent’calibrationfac- tor(NKcal)isneeded;underthehypothesisofperfectflatenergy responseofthedosimeters,y=NKcal,themeasuredcalibrationfac- torsNKaircanbeconsideredenergyindependent.Inparticular,if

(3)

Table1

RadiationqualitiesusedforthecalibrationofENEAICs.

RadiationQuality HighVoltage(kV) Added Filtration (mm)

Average Energy (KeV)

Airkermarate (Gy/s)

IC32002 IC32005

IC32002 IC32005 NKair(Gy/C) U(%) NKair(Gy/C) U(%)

N-40 40 4Al+0.21Cu 32.5 2.0·10−4 1.145·106 1.0

N-150 150 4Al+2.5Sn 116.6 5.6·10−5 2.6·10−5 2.442·104 2.4 1.090·106 2.3

N-300 300 4Al+3Sn+5Pb 249.6 2.8·10−5 2.8·10−5 2.526·104 2.5 1.113·106 2.4

S-Am 59.0 4.2·10−6 2.8·10−5 2.462·104 2.4 1.098·106 2.4

S-Cs 662.0 1.9·10−6 1.9·10−6 2.506·104 2.4 1.107·106 2.4

S-Co ENEAlab. 1253.0 1.3·10−4 1.3·10−4 2.402·104 1.4 1.087·106 1.1

PTWlab. min1.7·10−7/max5.0·10−3 2.487·104 2.5 1.099·106 2.5

Fig.1.NKairfactorsfortheENEAICs32002(left)and32005(right)resultingfromtheINMRI(diamond-shapedpoints)andPTW(circle-shapedpoints)calibration.Errorbars representtheexpandedmeasurementuncertainty(coveragefactork=2).The‘equivalent’calibrationfactorNKcalisplottedassolidline;dashedlinesrepresentthelimitsof theexpandeduncertainty(k=2)associatedtoNKcal.

theirdistributionaboutNKcalfollowsaGaussianfunction,themost probablevalueofNKcalistheweightedleastsquaresestimator[14]:

NcalK =



n i=1

NKair(i)·(i)−2



n i=1

(i)−2

(1)

InEq.(1),summationsareoverthencalibrationpointsandeach NKairvalueisweightedwiththeinversesquareoftheassociated uncertainty.Finally,theuncertaintyassociatedtoNKcaliscalculated asthesquarerootofthesamplevariance:

cal2=



n i=1



NK(i)−NcalK



2

n−1 (2)

Wheren-1isthenumberofdegreesoffreedomofthesample(i.e., 5forIC32002and6forIC32005).

NKcalvaluesareindicatedinFig.1forthetwodosimetersand plottedassolidhorizontallines;inthesamefigure,dashedlines representthelimitsofthe95%confidenceinterval.Bothdosimeters showflatenergyresponseintermsofairkermawithin4.1%.

3.2. KITdosimeter

To compare the response of the KIT dosimetry system (IC 32002+PTWUNIDOSelectrometer)withtheENEAidenticalsys- temcalibratedatINMRI,across-calibrationhasbeenperformedat thegammacalibrationlaboratoryofENEA-INMRI.Thetwoioniza- tionchamberswerealternativelyexposedto3differentstandard

Cs–137gammasources.Aschemeoftheexperimentalsetupisin Fig.2.

Thedoserateatthespherepositionforthe3standardgamma sources was respectively 0.2, 1.7 and 3.6mGy/h. The detectors had beenpreventively exposed for 5mintothe gammasource beforethemeasurementsstarted.Duringmeasurements,temper- ature(18.4C–18.8C),pressure(1011.1–1011.3hPa)andrelative humidity(42%)didnotundergosignificantvariations.

The collectedcharge wasrecorded every60sand measure- mentslasted900seach.Theslopeofthelinearfitofthecollected chargevs.acquisitiontimeshowninFig.3(bottom)istheionization currentmeasuredwiththeENEAdosimetrysystem,proportional (throughthecalibrationfactor)totheairkermarate.Normalized differencesbetweenmeasurementsofcollectedchargeperformed withtheKIT(CKIT)andtheENEA(CENEA)systems,withrespectto CKIT,areshownintheuppergraphofFig.3.Asystematicover- estimation of about0.5%of theKIT dosimeteris observed.The maximumdifferenceiswithin1%.

4. IrradiationtestsatFNG

A preliminary test of the ENEA IC 32002 was carried out atFNG (FrascatiNeutron Generator),theENEA 14MeV neutron sourcefacility,withtheaimofassessingthecorrectfunctioning ofthedetectorafterneutronirradiation.Thistestshowedthatthe dosimetrysystemcorrectlymeasuresthebackgrounddoseratein thelaboratoryattheneutronsourceshutdown,afterarunofirra- diationexperiment[8].Afurthertestwasperformedtocheckfor self-activationofthedetectorinducedbyneutrons.Thedetector waspositioned1mfromtheFNGtarget(whereneutronsarepro- duced)andirradiatedforabout3h.The14MeVneutronfluence

(4)

Fig.2.Sourceleadcollimator(a)andionizationchamberlocatedonthemovablecarriage(b)atENEAINMRIgammacalibrationlaboratory;(c)schemeoftheexperimental setup.

Fig.3.Bottom:CollectedchargemeasuredwiththeENEAdosimetrysystematdif- ferentdoserates(0.2,1.7and3.6mGy/h).Top:normalizeddifferenceofcollected chargemeasuredwiththeKITandENEAsystems.

Fig.4.AirkermaratemeasuredafterthesecondirradiationtestatFNGwiththe irradiatedIC(i.e.,ENEAIC32002)andthenon-irradiatedIC(i.e.,KITIC32002).

(atthesphereposition)was8.2·108cm−2.Theionizationchamber, afterbeingirradiated,wasimmediatelymovedtothecontrolroom andthenswitchedon.MeasuredairkermarateisshowninFig.4 duringthedifferentphasesofthetest.Thebackgrounddoserate incontrolroom,previouslymeasured,isalsoreported.Background intheFNGcontrolroomisnotconstantandstronglydependenton theRn-222concentrationinair.

(5)

Theacquisitionwiththeirradiateddetectorinthecontrolroom lasted 22h. An exponential decrease (see Fig. 4) is observable in this phase witha decay constant␭≈2.06·10−4s−1 and half- lifeT1/2≈0.9h.Thisindicatesthatonly short-termactivationis observedanditisrelatedtotheactivationofairinsidetheIC.Subse- quently,theKITIC32002,identicaltotheENEAchamberbutnever exposedtoneutrons,wasconnectedtotheelectrometer,inplace oftheirradiateddetector,for24h.Thebackgrounddoseratemea- surementsinthecontrolroomwiththetwodetectorsshowthat afteraboutonedaythetwoICsmeasurethesamecurrent;afterthis period,noresidualcurrentduetotheself-activationisdetectable.

Italsoconfirmsthatnodamageswereinducedintheirradiated ionizationchamber.

5. Conclusions

ThepreparationoftheShutdownDoseRate(SDR)experiment atJETrequiredthechoiceofsuitabledetectorsforradiationprotec- tion,characterizedbyexcellentreproducibility,long-termstability andflatenergyresponse.DifferentENEAfacilitiesandlaboratories havebeenusedforcalibratingandtestingthedosimetryequip- mentselectedfortheexperiment.Inparticular,thetwodosimetry systems,respectivelybasedontheENEAIC32002and32005,have beencalibratedatENEA-INMRIintermsofairkermawithXand gammasourcesatlowdoses.Flatenergyresponseintermsofair kermawithin4.1%hasbeenobservedforboththeionizationcham- bers.IrradiationtestsoftheENEAIC32002werecarriedoutatFNG withtheaimofassessing

thecorrectfunctioningofthedetectorafterneutronirradia- tionandforcheckingtheself-activationofthedetectorinduced byneutrons.Thesetestshaveshownthataftertheirradiationof thedetector,thedosimetrysystemmeasurescorrectlythecharac- teristicdoseratetrendintheFNGlaboratoryattheneutronsource shutdown.Afteraboutoneday,noresidualcurrentsignaldueto theself-activationisdetectableandnodamageswereinducedin theirradiatedionizationchamber.

Acknowledgments

This work has been carried out within the framework of theEUROfusion Consortiumand hasreceivedfundingfromthe EuratomResearchandTrainingProgramme2014-2018undergrant agreementNo633053.Theviewsandopinionsexpressedhereindo notnecessarilyreflectthoseoftheEuropeanCommission.

References

[1]InternationalCommissiononRadiationUnitsandMeasurements(ICRU), QuantitiesandUnitsinRadiationProtectionDosimetry,ICRURep.51, Bethesda,MD(1993).

[2]InternationalAtomicEnergyAgency(IAEA),OccupationalRadiation Protection:safetyguide,IAEASafetyStandardSeriesNo.RS-G-1.1,Vienna (1999).

[3]P.Pereslatvsev,etal.,FusionEng.Des.89(2014)2083.

[4]A.Davis,R.Pampin,FusionEng.Des.85(2010)87.

[5]J.P.Catalan,P.Sauvan,J.Sanz,FusionEng.Des.88(2013)2088.

[6]R.Villari,etal.,ShutdowndoserateassessmentwiththeAdvancedD1S method:development,applicationsandvalidation,FusionEng.Des.80(2014) 2083.

[7]P.Batistoni,etal.,TechnologicalexploitationofDeuterium-Tritium operationsatJETinsupportofITERdesign,operationandsafety,FusionEng.

Des.109-111(2016)278.

[8]R.Villari,etal.,NeutronicsexperimentsandanalysesinpreparationofDT operationsatJET,FusionEng.Des.109–111(2016)895.

[9]PTWFreiburghGmbH.http://www.PTW.de,2016(accessed01/09/16).

[10]R.Villari,etal.,ValidationofshutdowndoserateMonteCarlocalculations throughabenchmarkexperimentatJET,FusionEng.Des.83(2008)1782.

[11]TheItalianNationalInstituteofIonizingRadiationMetrology(ENEA-INMRI).

http://www.inmri.enea.it,2016(accessed01/09/16).

[12]InternationalOrganizationforStandardization(ISO),Xandgammareference radiationforcalibratingdosemetersanddoseratemetersandfordetermining theirresponseasafunctionofphotonEnergy,ISO4037(2009).

[13]InternationalCommissiononRadiologicalProtection(ICRP),Conversion CoefficientsforRadiologicalProtectionQuantitiesforExternalRadiation Exposures,ICRPPublication116,Ann.ICRP402–5(2010).

[14]H.D.Young,StatisticalTreatmentofExperimentalData,McGraw-Hill,1962.

References

Related documents

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

At the 1- year follow-up there were significant correlations in the day clinic group between the burden of caregivers and the patient’s life satisfaction, FIM social/cognitive

Strong enrichment of T was observed in the areas covered by Be deposition layers such as the horizontal region (apron) of Tile 1 and the shadowed regions of Tiles 4 and 6 [5,6],

- Two gamma-ray shields (a Movable Gamma-Ray Shield, MGRS, and a Fixed Gamma-Ray Shield, FGRS, Fig. 2) for minimizing the flux of parasitic gamma radiation reaching the detector..

Patients with suspected malignancy: Triphase CTU, low dose unenhanced, normal dose corticomedullary and reduced dose excretory phase scan from the diaphragm to the pubic

Cis whisky lactone was present in all American oak barrels (ranging from 0,6 to 1,1 µg/ml), and in low concentrations in the Swedish light and medium toasted 25 L barrels, in

För det tredje har det påståtts, att den syftar till att göra kritik till »vetenskap», ett angrepp som förefaller helt motsägas av den fjärde invändningen,