• No results found

Laser welding of ultra-high strength steel and a cast magnesium alloy for light-weight design

N/A
N/A
Protected

Academic year: 2022

Share "Laser welding of ultra-high strength steel and a cast magnesium alloy for light-weight design"

Copied!
2
0
0

Loading.... (view fulltext now)

Full text

(1)

Laser welding of ultra-high strength steel and a cast magnesium alloy for

light-weight design

KARL FAHLSTRÖM HÖGSKOLAN VÄST

AKADEMISK AVHANDLING

som med tillstånd av Forsknings- och forskarutbildningsnämnden vid Högskolan Väst, för avläggande av doktorsexamen i Produktionsteknik,

framläggs för offentlig granskning.

Onsdagen den 24 april 2019 klockan 10 i Sal: F131, Högskolan Väst Opponent: Michael Rethmeier

(2)

Abstract

Title: Laser welding of ultra-high strength steel and a cast magnesium alloy for light-weight design

Keywords: Laser welding, ultra-high strength steel, cast magnesium alloy, light- weight design, automotive industry, distortion, porosity

ISBN: 978-91-88847-29-4 (printed) 978-97-88847-28-7 (digital)

There is a strong industrial need for developing robust and flexible manufacturing methods for future light-weight design. Better performing, environmental friendly vehicles will gain competitive strength from using light- weight structures. In this study, focus has been on laser welding induced distortions for ultra-high strength steel (UHSS) where trials were performed on single hat and double hat beams simulating A-pillar and B-pillar structures. Furthermore, also laser welding induced porosity in cast magnesium alloy AM50 for interior parts were studied.

For UHSS, conventional laser welding was done in a fixture designed for research. For cast magnesium, single-spot and twin-spot welding were done. Measurements of final distortions and metallographic investigations have been performed.

The results show that the total weld metal volume or the total energy input were good measures for predicting the distortions within one steel grade. For comparing different steel grades, the width of the hard zone should be used. The relation between the width of the hard zone, corresponding to the martensitic area of the weld, and the distortions is almost linear. Additionally, compared with continuous welds, stitching reduced the distortions.

For cast magnesium, two-pass (repeated parameters) welding with single-spot gave the lowest porosity of approximately 3%. However, two-pass welding is not considered production friendly. Twin-spot welding was done, where the first beam provided time for nucleation and some growth of pores while reheating by the second beam should provide time for pores to grow and escape. This gave a porosity of around 5%.

Distortions and porosity are the main quality problems that occur while laser welding UHSS and cast magnesium, respectively. Low energy input seems to generally minimize quality issues. Laser welding shows high potential regarding weld quality and other general aspects such as productivity in light-weight design for both high strength steel and cast magnesium.

References

Related documents

The plastic anisotropy can be further evaluated by shear tests, plane strain tests an a so called bulge test, where a balanced biaxial stress state is obtained, i.e.. The

Linköping Studies in Science and Technology Thesis No... Linköping Studies in Science and Technology

This specific function allows for an individual yield stress, and thus individual plastic hardening, in three uniaxial tensile stress states and in the balanced biaxial stress state..

15, it is clear that the ferrite volume ratio decreases by increasing the heat input (Fig. Like in Fig. 9, It can be seen that, austenite phase is mainly formed at the

A tensile specimen for sheet material testing has been designed to have plastic localisation and onset of fracture at an inner point, thus avoiding influence from cut edges on

With the 6 kW-laser, on DOMEX steels, full penetration was not achieved on laser cut 8 mm plate at a reference welding speed 0,8 m/min. Welding on 6 mm plasma cut WELDOX- steel

Group 4 consists of samples 104 and 105, Figure 71 shows the base material and the welds for the samples. It is obvious that the base material is different. The samples were

Another difference is the fiber lasers higher cutting speed in thin metal sheets, sheet thickness up to about 4 mm, compared to CO 2 lasers [8].. 1.3 Social and