• No results found

Study of Argon Shrouding in Ingot Casting, with Focus on Improving the Operation at Scana Björneborg Steel Plant

N/A
N/A
Protected

Academic year: 2022

Share "Study of Argon Shrouding in Ingot Casting, with Focus on Improving the Operation at Scana Björneborg Steel Plant"

Copied!
40
0
0

Loading.... (view fulltext now)

Full text

(1)

           

Babak  Ghazian  Tafrishi  

   

Study  of  Argon  Shrouding  in  Ingot  Casting,   with  Focus  on  Improving  the  Operation  at  

Scana  Björneborg  Steel  Plant  

   

 

Master  thesis  (30  credits)  

Engineering  Materials  Science  Program  (TTMVM),   Industrial  Materials  (IMTA)  

   

 

Date:   March  2014   Supervisor:  Mats  Söder  

  R&D  manager,  

  Scana  Steel  Björneborg  

Examiner:   Pär  Jönsson  

  Professor,  

  Royal  Institute  of  Technology  

  (KTH)    

(2)

ABSTRACT  

This  thesis  has  been  carried  out  as  a  development  project  at  Scana  Steel  Björneborg  with   the  purpose  to  study  the  influential  parameters  in  argon  shrouded  ingot  casting  during  the   manufacturing  of  low-­‐alloy  steels.  

In  the  first  stage,  a  literature  study  was  conducted  in  order  to  investigate  the  theoretical   background   of   the   procedure   and   the   importance   of   protecting   the   melt   during   ingot   casting.  

Next,  a  computer  model  of  the  shield  was  designed  using  COMSOL  Multiphysics®  with   regard  to  the  process  conditions  at  Scana  Steel  Björneborg.  The  effect  of  various  parameters   on   the   process   was   examined   through   simulations   of   the   argon   gas   flow   pattern,   heat   transfer  between  the  gas  and  the  melt  stream,  and  the  chemical  species  transport  in  the  gas   around  the  melt  stream.  

Based  on  the  simulation  results,  two  different  shapes  of  shield  were  proposed  for  the   argon  shrouding  operation.  A  set  of  implementation  tests  was  executed  in  order  to  check   the  installation  and  usage  conditions  of  the  two  new  shields.  

After   deciding   the   proper   shape   of   the   shield,   a   full-­‐scale   ingot-­‐casting   test   was   performed   with   the   selected   shield   to   investigate   the   protection   behavior.   Moreover,   the   impact   of   the   new   casting-­‐protection   shield   on   the   nitrogen   and   oxygen   contents   of   steel   was  examined  through  sampling  and  analyzing  the  steel  before  and  after  casting.  

It  was  found  that  the  use  of  the  new  shield  during  the  uphill  ingot  casting  is  an  effective   way   to   reduce   the   final   nitrogen   and   oxygen   contents   of   the   casted   ingot.   Therefore,   the   new  design  of  the  shield  can  be  used  as  a  developed  substitute  for  the  protection  of  the  melt   stream  in  the  ingot  casting  operation.  

(3)

 

ACKNOWLEDGMENTS    

I   would   like   to   express   my   sincere   gratitude   to   my   supervisor,   Mats   Söder,   for   all   the   guidance  and  supports.  Your  advices  and  the  experience  of  working  with  you  have  provided       me  with  invaluable  inspirations.  

I  am  grateful  for  all  the  help  from  Johan  Lundin,  Production  Leader  at  Scana  Steel,  who   trained  me  for  sample  preparation  and  analysis  at  the  laboratory.  

I  also  want  to  thank  the  operators  at  Scana  Steel  plant,  who  helped  me  with  sampling   during  the  project,  and  gave  me  practical  tips  and  a  good  insight  in  the  processes.  

Thanks  to  all  the  people  as  Scana  Steel  Björneborg  who  were  not  only  colleagues,  but   also  friends.  It  has  been  a  very  interesting  and  worthwhile  experience  for  me  at  Scana  Steel   in  Björneborg.    

I   would   like   to   specially   thank   Professor   Pär   Jönsson   at   Royal   Institute   of   Technology   (KTH),   for   all   the   supports   and   encouragements   and   also   the   beneficial   discussions,   which   have  motivated  me  through  the  project.  

   

   

(4)

CONTENTS  

 

1.  Introduction  ...  1  

1-­‐1.  Background  ...  1  

1-­‐2.  Plant  Description  ...  5  

1-­‐3.  Estimation  of  oxygen  absorption  ...  6  

2.  Methodology  ...  11  

2-­‐1.  Simulations  ...  11  

2-­‐1-­‐1.  Assumptions  ...  11  

2-­‐2.  Parameters  ...  12  

2-­‐2-­‐1.  Distance  between  the  ladle  and  the  shield  ...  12  

2-­‐2-­‐2.  Distance  between  the  shield  and  the  trumpet  ...  13  

2-­‐2-­‐3.  Argon  gas  flow  rate  ...  13  

2-­‐2-­‐4.  Argon  inlets  ...  14  

2-­‐2-­‐5.  Shield  shape  ...  14  

2-­‐3.  Sampling  ...  15  

2-­‐3-­‐1.  SP  Samples  ...  15  

2-­‐3-­‐2.  GP  Samples  ...  15  

2-­‐4.  Measurements  ...  16  

2-­‐4-­‐1.  Total  oxygen  content  ...  16  

2-­‐4-­‐2.  Nitrogen  content  ...  16  

3.  Results  and  Discussions  ...  17  

3-­‐1.  Simulations  and  investigations  of  effective  parameters  ...  17  

3-­‐1-­‐1.  introductory  simulations  ...  17  

3-­‐1-­‐2.  the  effect  of  argon  gas  flow  rate  ...  20  

3-­‐1-­‐3.  the  effect  of  number  of  argon  inlets  ...  22  

3-­‐2.  Simulations  of  recommended  shield  forms  and  the  effect  of  distance  between  the  shield  and   the  trumpet  ...  24  

3-­‐3.  Implementation  test  of  the  proposed  shield  ...  29  

3-­‐4.  Chemical  analysis  of  the  steel  ...  31  

4.  Conclusions  ...  34  

References  ...  35  

(5)

1.  INTRODUCTION   1-­‐1.  Background  

Production  of  high  quality  steel  has  always  been  of  concern  to  the  steelmaking  industry.  

Quality  of  steel  in  today’s  steel  industry  mainly  refers  to  the  cleanliness  of  steel.  Reducing   the  amounts  of  the  impurities  in  steel  is  among  the  most  important  means  of  improving  the   steel   quality.   During   the   past   decades   much   research   have   been   done   on   production   of   cleaner  steels  with  better  characteristics.  It  has  been  showed  that  the  properties  of  steels   are   highly   dependent   on   the   presence   of   non-­‐metallic   inclusions   and   the   size   and   distribution   of   them.   Lower   amounts   of   inclusions   have   a   direct   influence   on   the   improvement   of   mechanical   properties   such   as   ductility,   formability,   fatigue   resistance,   as   well  as  the  corrosion  resistance  in  low-­‐alloy  and  high-­‐alloy  steels.  Moreover,  inclusions  can   have  a  detrimental  effect  on  the  machining  performance  and  also  the  casting  operations.  In   order  to  reduce  the  amount  and  size  of  the  inclusion,  efforts  have  been  spent  to  improve  the   secondary  steelmaking  processes  rather  than  the  casting  operations.  But  since  it  would  be   difficult   to   remove   inclusions   during   casting,   it   is   better   to   prevent   the   formation   of   inclusions  in  the  first  hand  and  avoid  the  inclusions’  carry  over  to  the  final  product.  

The  non-­‐metallic  inclusions  are  typically  categorized  into  oxides,  sulfides,  and  nitrides.  

Among   them,   oxide   inclusions   such   as   alumina   (Al2O3)   and   silica   (SiO2)   are   the   most   important   ones   in   production   of   low-­‐alloy   clean   steel.   Zhang   et   al.   [1]   performed   a   comprehensive   study   on   inclusions   existing   in   industrial   bottom-­‐teemed   ingots   of   carbon   steel.   It   was   showed   that   59%   of   inclusions   larger   than   20μm   were   pure   alumina   or   alumina/FeO.    

 These  inclusions  can  be  formed  in  steel  during  ladle  refinement,  deoxidation  operations   when  aluminum  or  silicon  deoxidants  are  added,  and  reoxidation  during  teeming  and  mold   filling.   If   it   is   the   case,   they   are   called   indigenous   inclusions.   In   addition,   there   is   another   type,   which   is   called   exogenous   inclusions.   These   come   from   incidental   chemical   and   mechanical  interaction  of  liquid  steel  with  its  surroundings,  such  as  entrapment  of  ladle  slag   in   the   molten   steel   or   lining   erosion  [2].   There   are   also   other   possibilities   to   generate   exogenous   inclusions,   which   happen   during   ingot   casting   operations,   such   as   inclusions   eroded   from   ladle   nozzles   and   runners,   and   exogenous   inclusions   from   casting   powders.  

Many   studies   were   conducted   to   recognize   the   sources   of   these   different   inclusions   and   identify  the  major  types.  [3]  [4]  [5]  

In  the  work  of  Tripathi  et  al.  [6]  inclusions  in  the  steel  were  studied  at  different  stages  of   steel  making.  The  results  showed  that  alumina  based  inclusions  (namely  Al2O3  and  Al2O3-­‐SiO2   inclusions)  are  formed  during  mold  filling  and  that  they  are  present  after  a  casting  operation.  

Examining  the  chemical  composition  of  the  casting  powder  and  considering  the  position  of   Al2O3-­‐SiO2  inclusions,  which  is  close  to  the  mold  wall,  supports  the  idea  that  these  inclusions   are  entrapped  casting  powder.  In  case  of  Al2O3  inclusions,  a  part  are  introduced  into  steel   when  the  melt  passes  through  the  pouring  gate  and  nozzles  with  a  high  volumetric  flow  rate  

(6)

and  flushes  off  small  pieces  of  refractory.  Another  part  was  generated  during  casting,  which   is  an  evident  for  reoxidation  during  casting.  

A  study  by  Doostmohamadi  et  al.  [7]  was  performed  on  identifying  the  inclusions  left  in   runners   after   ingot   casting.   The   study   showed   that   oxide   inclusions   found   in   the   samples   contained   the   following   elements:   Al,   Ca,   Mg,   Si   and   O.   Complex   inclusions   with   oxide   composition   such   as   oxide-­‐sulfide   were   also   found   in   the   runner   and   Al2O3-­‐MgO-­‐MnS   inclusions  were  the  most  frequent  among  them.  Additionally,  the  study  indicated  that  the   composition  of  almost  all  of  the  inclusions  with  sizes  larger  than  10μm  was  Al2O3-­‐SiO2-­‐MgO   and   SiO2-­‐MgO.   Figure   1   shows   the   size   classification   of   inclusions   based   on   the   Swedish   Standard  SS111116.  The  study  also  presented  a  comparison  between  the  type  and  size  of   the  inclusions  present  in  samples  from  different  states  of  steel  making,  namely  from  ladle,  in   runner,  in  the  mold.  Considering  that  comparison,  it  can  be  interpreted  that  the  majority  of   small   oxide   inclusions   were   generated   during   casting   and   that   can   be   associated   to   reoxidation.  

 

Figure  1.  Size  groups  of  inclusions  in  runner  (based  on  the  work  of  Doostmohammadi  et  al.)  [7]  

 

A  review  study  on  inclusions  existing  in  steel  ingot  casting  has  referred  to  a  survey  of  25   heats  of  ingot  casting  which  has  found  that  77%  of  the  inclusions  which  form  during  casting   (exogenous  inclusions  including  reoxidation  inclusion)  are  reoxidation  inclusions.  [8]    

Therefore,   reoxidation   during   teeming   can   account   for   a   major   source   of   inclusions   in   ingot  casting.  

The   contact   of   the   liquid   steel   with   the   oxygen   from   the   surrounding   air   is   the   main   cause  of  reoxidation.  The  surface  of  the  stream  of  the  pouring  melt  and  the  top  surface  of  

3≤A≤7μm   7≤B≤11μm   11≤C≤22μm   D≥22μm  

(7)

should   be   noted   that   a   very   small   part   of   reoxidation   reactions   could   be   caused   by   the   exchange  reaction  at  melt/slag  or  melt/refractory  interfaces.  [2]    

 

Figure  2.  Percentage  of  affected  heats  by  different  kind  of  exogenous  inclusions  in  the  work  of   Thomas  et  al.  [8]  

Another  disadvantage  of  inclusion  formation,  which  is  noteworthy,  is  waste  of  alloying   elements.   It   has   been   shown   that   the   consumption   of   oxidizing   elements   is   linearly   proportional  to  the  partial  pressure  of  oxygen  around  the  steam  during  casting  [10].  A  loss  of   about  0.73  kg  Mn,  0.41  kg  Si,  0.41  kg  Al,  and  0.14  kg  C  per  ton  of  steel  has  been  reported  for   unprotected  tapping  and  ladle-­‐filling  operations  in  wrought  steel  production.  [10]  

In  addition  to  reoxidation,  the  exposure  of  liquid  steel  to  air  can  lead  to  other  problems,   namely  nitrogen  pickup.  N2  gas  evolution  may  occur  during  solidification  of  molten  steel  with   high   nitrogen   contents   and   leads   to   formation   of   bubbles   or   pinholes.   Also,   the   physical   properties  of  steel  are  greatly  affected  by  the  precipitation  of  nitrides.  (The  later  phenomena   can  sometimes  be  beneficial.  For  example  in  the  case  of  TiN  precipitants  that  helps  in  grain   refinement.)  It  should  be  noted  that  nitrogen  absorption  is  inversely  dependent  on  surface-­‐

active  solutes  such  as  oxygen  and  sulfur.  Therefore,  the  extent  of  nitrogen  pickup  increases   at   final   stages   of   steelmaking,   namely   casting,   at   which   the   concentration   of   dissolved   oxygen  is  low.  [11]  

The  idea  of  using  a  protective  shroud  around  the  stream  has  been  utilized  from  many   years  ago  in  industry.  This  could  be  done  by  a  submerged  nozzle  in  continuous  casting  or  by   an  inert  gas  in  case  of  ingot  casting.  

77%  

46%  

38%  

8%  

23%  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

Percentage  of  affected  heats  

(8)

****  

The  teeming  operation  in  the  ingot  casting  is  of  great  importance  for  the  quality  of  the   final  steel  product.  It  might  be  underestimated  because  the  diameter  of  the  stream  is  not   very  large.  However,  actually  this  diameter  is  enough  to  provide  a  large  free  surface  for  the   melt  in  the  duration  of  casting.  Hence,  a  considerable  amount  of  oxygen  can  be  absorbed  by   the  melt,  which  leads  to  reoxidation.  On  the  other  hand,  in  bottom-­‐pour  teeming,  a  massive   amount  of  air  entrainment  takes  place  due  to  high  casting  velocities  (more  than  4  m/s)  [12].  

During  contact  of  the  melt  with  the  atmosphere,  oxide  films  form  on  the  surface  of  stream   and  are  then  folded  into  liquid  and  left  behind  as  weak  planes  in  the  solidified  ingot.  The   oxidization   is   more   critical   for   killed   steels   since   they   contain   elements   with   high   oxygen   affinity   such   as   Aluminum,   Calcium   or   Silica.   It   is   therefore   very   important   to   protect   the   melt  stream  from  the  surrounding  air  during  casting  to  minimize  air  entrainment  in  molten   steel.  [2]    

The   best   way   to   prevent   reoxidation   is   to   restrict   the   contact   of   liquid   steel   and   atmosphere.   Industrial   investigations   have   shown   that   using   a   shroud   during   transferring   operations   at   different   stages   of   steelmaking,   i.e.   tapping   or   teeming,   could   protect   the   liquid  steel  against  air  and  prevent  its  contamination.  [3]  [13]  

The   most   conventional   way   of   protection   is   to   cover   the   stream   with   an   argon   gas   curtain,  which  is  injected  from  around  the  teeming  nozzle.  Another  way  is  to  use  a  physical   shroud  between  the  ladle  and  the  casting  trumpet,  which  is  filled  by  inert  gas.  It  has  been   reported  that  a  good  sealing  can  reduce  nitrogen  content  by  30ppm  and  lower  the  number   of  large  Al2O3  inclusions.  The  protection  is  more  effective  for  bottom-­‐pouring  ingot  casting.  

[8]  A  couple  of  examples  for  the  physical  shrouding  method  are  shown  in  Figure  3.  A  two-­‐

third  reduction  in  oxides  in  steel  was  reported  in  casting  operations  using  shroud  with  inert   gas  environment  [12].  Another  alternative,  which  is  costly  and  more  complicated  and  used   only  for  special  purposes,  is  casting  under  vacuum  conditions.  

The   focus   in   this   thesis   is   finding   effective   parameter   in   argon   shrouding.   The   study   consists   of   a   theoretical   part,   a   computerized   modeling   and   plant   trials   based   on   the   simulations  results.  Plant  trials  were  carried  out  at  Scana  Steel  Björneborg.  

(9)

  Figure  3.  Different  devices  for  protection  of  melt  stream  against  air  adsorption  [8]  

   

1-­‐2.  Plant  Description  

Scana  Steel  Björneborg  is  a  scrap-­‐based  steel  plant  that  mainly  produces  low-­‐alloy  steels.  

Recycled  steel  is  melted  in  an  electric  arc  furnace  (EAF)  of  a  55-­‐ton  capacity.  After  melting,   steel  is  phosphor  refined  and  heated  to  a  desired  temperature.  The  steel  is  deoxidized  upon   tapping  into  the  ladle  and  thereafter  transferred  to  the  ladle  furnace  station.  There,  various   alloying   elements   are   added   in   regard   to   the   chemical   specification   of   the   desired   steel   grade.   During   the   ladle   treatment,   the   melt   is   heated   and   stirred   with   argon   bottom   injection  in  order  to  homogenize  the  temperature  and  composition.  In  the  next  stage,  the   ladle   is   transferred   to   the   vacuum   tank   with   the   purpose   of   sulfur   removal   and   hydrogen   degassing   and   inclusion   separation   with   assistance   of   argon   gas   bottom   injection.  

Thereafter,  the  ladle  is  transported  to  the  casting  section  and  the  steel  melt  is  poured  from   the  bottom  of  the  ladle  into  ingot  using  uphill  casting  method.  The  surface  of  the  melt  in  the   molds  is  covered  by  casting  powder  for  thermal  insulation  and  to  prevent  reoxidation.  Also,   for   some   specific   steel   grades,   the   steel   stream   between   ladle   and   the   vertical   runner   is   protected  by  argon  gas  flow  during  teeming.  After  stripping  the  ingots,  they  are  transferred  

(10)

to  the  forging  shop  to  form  them  into  required  shape.  Then,  they  are  heat-­‐treated  and  sent   to  machining  shop  to  prepare  the  final  product.  

 

  Figure  4.  Schematic  picture  of  the  steelmaking  operations  at  Scan  Steel  Björneborg  

 

1-­‐3.  Estimation  of  oxygen  absorption  

A  couple  of  studies  have  been  carried  out  to  explain  the  oxygen  pickup  behavior  of  steel.  

It  is  shown  that  the  oxidation  rate  during  teeming  is  primarily  controlled  by  the  transfer  of   oxygen  from  the  atmosphere  to  the  surface  of  the  steel.  [3]  [10]  [14]    

Choh   et   al.   [14]   studied   oxygen   and   nitrogen   absorption   in   the   melt   stream   during   teeming.  The  absorption  occurred  by  dissolution  of  the  gas,  which  is  introduced  to  the  melt   by   two   mechanisms,   namely,   by   gas   entrainment   and   through   the   surface   of   stream.   The   volume   of   the   entrained   gas   increases   with   increasing   the   length   and   the   velocity   of   the   stream  and  with  decreasing  the  nozzle  diameter.  It  was  also  showed  that  at  a  short  teeming   height  (less  than  50cm),  gas  entrainment  is  independent  of  the  physical  properties  of  molten   steel   such   as   viscosity,   density   and   surface   tension.   With   an   increasing   casting   rate,   less   oxygen  is  absorbed  in  the  melt  during  teeming.  A  mathematical  model  has  been  presented   based   in   another   work   [15]   with   the   intention   to   calculate   the   amount   of   dissolved   gas   during  teeming  in  top  casting,  as  well  as  teeming  from  ladle  to  tundish.  

The  same  approach  has  been  taken  in  the  present  study  to  obtain  equations  to  estimate   the  absorbed  oxygen  into  the  liquid  steel  through  the  surface  of  the  stream.  But  since  this   study   is   interested   in   uphill   ingot   casting   and   there   is   no   pool   of   liquid   steel   under   melt   stream  and  thus,  no  plunging  region  is  formed,  the  effect  of  gas  entrainment  is  neglected   and  only  absorption  through  surface  of  stream  is  considered.  

(11)

It   was   indicated   in   a   work   of   Sasai   et   al.   that   there   is   a   good   conformity   in   the   experimental   results   and   the   calculated   values   by   a   mass   transfer-­‐controlled   model   for   oxidation  of  liquid  steel  during  teeming.  [16]  

When   a   liquid   is   poured   from   the   bottom   of   a   container   i.e.   free-­‐fall   stream,   the   diameter  of  the  stream  becomes  smaller.  This  decrease  continues  as  the  liquid  travels  down.  

The  factor  ξ  accounts  for  the  change  of  melt  stream  diameter,  depending  on  the  distance   from  nozzle.  [15]  

Eq.  1:   8

1

2 0

) 2 1

( +

= U ξ gZ

 

Where  g  is  the  constant  of  the  gravity,  Z  is  the  teeming  height  and  U0  is  the  teeming  flow   rate   at   the   nozzle.   Therefore,   the   radius   of   the   stream   (a)   at   the   teeming   height   can   be   calculated  by  Eq.  2.  

Eq.  2:   a=a0ξ2  

The  area  of  the  surface  of  the  stream  (As)  which  represents  the  interface  between  gas   and  liquid  phase,  is  therefore  expressed  by  Eq.  4:  

Eq.  3:   As =2π

0ZadZ  

Eq.  4:   ⎥

⎦

⎤

⎢⎣

⎡ + −

= 2 1) 1

3 (

4 43

2 0 2 0 0

U gz g

U

As πa  

Because   of   a   continuing   renewal   of   the   liquid   phase,   the   rate   of   oxygen   absorption   is   assumed  to  be  controlled  by  the  rate  of  mass  transfer  in  the  surrounding  gas  phase,  which  is   calculated   by   Eq.   5   [15].   Because   of   immediate   consumption   of   dissolved   oxygen   due   to   activity  of  aluminum  in  steel,  the  interfacial  pressure  of  oxygen  (!!!!)  was  taken  to  be  zero.  

But  PO2  depends  on  surrounding  atmosphere,  which  in  the  case  of  air  as  surrounding  gas  it  is   0.21   and   in   the   case   of   argon   protection,   it   is   assumed   to   be   0.07   based   on   the   results   showed  in  work  of  Zinchenko  et  al.  [17].  Specially,  they  state  that  the  nitrogen  content  and   the   oxygen   content   of   the   atmosphere   around   the   stream   could   be   reduced   nearly   by   a   threefold  reduction  when  argon-­‐blowing  is  used  during  the  teeming.  

Eq.  5:  

( )

RT P k P

n

i O O

g 2 2

= −

 

Eq.  6:   3

1 2 1

Re 664 . 0

2 2

D Sc k L

O N

g =

 

Where  R  is  the  gas  constant,  T  is  the  temperature  of  the  liquid  steel  and  kg  is  the  mass   transfer  coefficient  in  the  gas  atmosphere.  Also,  in  Eq.  6,  Re  is  Reynolds  number  and  Sc  is   Schmidt  number  for  the  surrounding  gas.    

(12)

It  should  be  noted  that  Eq.  6  is  valid  for  a  one-­‐dimensional  flux  and  a  fluid  on  a  flat  plate.  

However,   it   is   used   in   the   present   study   as   an   approximation.   Also,   the   tapping   height   is   taken  as  the  characteristic  length  (L).  

Fuller,  Schettler  and  Giddings  [18]  have  presented  a  simple  and  very  useful  correlation   for  estimation  of  the  interdiffusion  coefficient.  A  modification  to  that  correlation  was  then   recommended  by  Reid  et  al.  and  by  Danner  and  Daubert  (Eq.  7)  [19].  This  equation  was  used   for  two  conditions  of  the  surrounding  gas,  namely  air  and  argon.  

Eq.  7:  

gas O

gas O

gas

O M M

V V

P

D T 1 1

) ( ) (

10 0 . 1

2 2

2 2

3 1 3

1

75 . 1 3

+

⎟⎟

⎠

⎞

⎜⎜

⎝

⎛ ∑ + ∑

×

= ×

 

Table  1.  Diffusion  Volumes  of  Simple  Molecules  [19]  

Gas   ΣVi  

N2   18.5  

O2   16.3  

Air   19.7  

Ar   16.2  

 

Equations   8-­‐11   and   Table   2   were   used   in   order   to   calculate   the   properties   of   the   surrounding  gas  at  the  desired  temperature.  

Eq.  8:  

gas gas gas

LU µ

0ρ

Re =  

Eq.  9:  

gas O gas

gas

Sc D

= ρ 2

µ  

Eq.  10:  

gas gas

gas RT

= PM

ρ  

Eq.  11:     2 0 Sutherland'sCorrelation

3

0 ,

0 T S

S T T

T

gas gas

gas

gas +

+

⎟⎟⎠

⎞

⎜⎜⎝

=µ ⎛

µ  

Table  2.  Constants  for  Sutherland’s  Correlation  [20]  

Gas   μ0  (g/cm.s)   T0  (K)   S  (K)  

Air   1.176×10-­‐4   273.11   110.56  

Ar   2.125×10-­‐4   273.11   144  

N2   1.664×10-­‐4   273.11   107  

 

(13)

Assuming   1000˚C   for   the   average   temperature   around   stream   and   by   using   Eq.   6,   equation  below  was  obtained  for  prediction  of  mass  transfer  coefficient  (kg).  

Eq.  12:   2

1 0 3 1 2 1

) ( 664

. 0

2 1 2

Z Sc U k D

gas gas gass O g

µ

ρ

×

=  

Finally,  the  absorbed  oxygen  in  melt  is  calculated  by:  

Eq.  13:  

[ ]

Steel O s

m tM n

O A 6

100 10Δ 2

=

Δ 

 

It   should   be   noted   that   Eq.   13   refers   to   a   uniform   oxygen   concentration   in   steel.   But,   during  teeming,  the  absorbed  oxygen  does  not  distribute  evenly  to  the  center  of  stream  and   it  is  sounder  to  consider  smaller  amount  of  liquid  steel  instead  of  mSteel.  In  order  to  apply  this   consideration,   the   oxidation   is   assumed   to   be   limited   to   the   outer   section   of   the   stream   (dox=a0/3).   Then,   the   corrected   mass   of   liquid   steel   is   calculated   regarding   to   the   cross   section  of  the  assumed  oxidation  layer.  

Eq.  14:   a U t

mcorrected = × 0Δ

2 6 0

9

10 5π ρ  

 

Figure  5.  Schematic  illustration  of  melt  stream  and  the  effective  oxidation  layer  

Therefore,  by  using  Eq.  14  and  replacing  the  calculated  mass  of  liquid  steel  in  Eq.  13,  the   amount  of  absorbed  oxygen  through  the  surface  of  the  stream  can  be  estimated  by:  

Eq.  15:  

[ ]

ρ π 0

2

5 0

100 9 2

U a

M n

O AsO

×

=

Δ  

The   density   of   the   melt   can   be   estimated   using   the   equation   proposed   in   work   of   I.  

Jimbo  and  A.  Cramb.  [21]  

Eq.  16:   ρ =(7.10−0.0732[%C])−(8.28−0.874[%C])×104(Tmelt −1823)  

 

Table   3   summarizes   the   parameters   that   have   been   used   in   above-­‐mentioned   calculations.  

dox  

a0  

(14)

Table  3.  Parameters  existing  in  oxygen  absorption  calculations  

Parameter   Description   Unit  

a0,  a   radii  of  stream  at  the  nozzle  exit  and  at  the  teeming  height  Z   cm   DO2-­‐gas   Interdiffusion  coefficient  of  oxygen  and  gaseous  atmosphere   cm2/s  

As   area  of  the  interface  between  gas  and  the  stream     cm2   dox   thickness  of  effective  layer  of  stream  prone  to  oxidation   cm  

g   gravity  constant  (=981)   cm/s2  

kg   mass  transfer  coefficient  in  gas  atmosphere   cm/s  

mcorrected   Corrected  weight  of  casted  steel  regarding  to  dox   ton  

msteel   weight  of  casted  steel   ton  

MO2,  Mgas   molecular  weight  of  oxygen  and  the  gas  around  the  stream   g/mole  

!   flux  of  oxygen  in  the  surrounding  gas   mole/cm2s  

∆ !   amount  of  absorbed  oxygen  through  surface  of  the  stream   %  

P   atmospheric  pressure   atm  

!!!, !!!!   oxygen  partial  pressure  and  it  interfacial  value   atm  

R   gas  constant  (=82.05746)   cm3.atm/mol.K  

Re   Reynolds  number  for  surrounding  gas   -­‐  

Sc   Schmidt  number  for  surrounding  gas   -­‐  

te   exposure  time  of  stream  to  gas   s  

Tmelt,  Tgas   temperature  of  the  liquid  steel  and  the  surrounding  gas   K  

U0   teeming  flow  rate  at  nozzle  exit   cm/s  

ΣVO2,  ΣVgas   special  atomic  diffusion  volumes   cm3/mole  

Z   teeming  height   cm  

δ   film  thickness   cm  

ξ   coefficient  of  growth  of  stream  radius   -­‐  

ρ,  ρgas   density  of  liquid  steel  and  surrounding  gas   g/cm3  

 

   

(15)

2.  METHODOLOGY  

There   are   two   distinct   sections   for   the   methodology   for   this   study.   The   first   is   a   computational  modeling  of  the  argon  protection  during  the  ingot  casting  in  order  to  examine   the   influential   parameters.   The   second   section   is   industrial   experiments   and   sampling   in   order  to  compare  with  the  modeling  results  and  to  study  the  effectiveness  of  the  new  shield   design.  

2-­‐1.  Simulations  

In  order  to  fulfill  the  lean  production  criteria,  the  manufacturing  process  must  be  done   correctly  the  first  time,  to  eliminate  the  waste.  Back  in  the  time,  product  development  was   mainly  done  by  trial  and  error,  which  was  very  time  and  money  consuming.  On  the  other   hand,  the  experimental  of  the  gas  flow  in  the  protective  shield  during  casting,  if  possible,  is   very  difficult  and  dangerous.  Today,  with  the  help  of  computer  simulation,  it  is  possible  not   only   to   reduce   the   steps   and   cut   the   costs   (both   materials   and   labor),   but   also   to   design   better   and   optimized   products.   Therefore,   because   the   simulation   process   is   fast,   inexpensive  and  safe,  it  encourages  creativity  and  innovation.    

The  simulations  in  this  project  consist  of  three  different  physics  in  two  steps.  First,  the   flow  pattern  of  argon  gas  in  the  shield  was  calculated  by  using  the  fluid  flow  module  (CFD)   and   the   heat-­‐transfer   module.   Then   in   the   second   step   mass   transfer   of   oxygen,   nitrogen   and  argon  was  simulated  considering  the  forced  convection  by  the  gas  flow  and  diffusion.  

In   the   pre-­‐study   simulations,   the   fluid   flow   pattern   in   the   shield   chamber   and   the   velocity  magnitude  at  the  cross  sections  and  stream  vectors  of  the  gas  were  examined.  Using   the   simulation   results,   the   oxygen   concentration   of   the   gas   atmosphere   in   the   shield   was   studied  for  verification  and  comparisons,  as  well  as  to  establish  a  baseline  for  modifications   and   suggesting   a   new   design   for   the   shield.   The   simulations   were   executed   with   software   COMSOL  Multiphysics®.  

2-­‐1-­‐1.  Assumptions  

A  3D  geometrical-­‐model  of  argon  protection  of  the  liquid  steel  stream  between  the  ladle   and   the   casting   trumpet   was   created   regarding   to   the   dimensions   existing   in   Scana   Björneborg  steel  plant.  Then  a  series  of  preliminary  simulation  was  carried  out  in  order  to   decide  about  the  assumptions  and  the  mesh  dimensions.    

The  following  assumptions  were  used  in  the  calculations  in  the  present  study:  

• The   numerical   calculations   for   prediction   of   the   flow   were   obtained   by   solving   the   equations  of  continuity  and  momentum  conservations  and  Navier-­‐Stokes  equations.  

• The  K-­‐ε  model  was  used  for  simulating  the  turbulent  flow.  

• The  gases  (argon  and  air)  considered  as  compressible  Newtonian  fluid  with  Mach  number   less  than  0.3.  

• It  was  assumed  that  no  chemical  reactions  take  place.  

(16)

• The   stream   of   the   liquid   steel   considered   as   a   sliding   wall   condition   with   a   constant   velocity  corresponding  to  the  casting  velocity.  

• The  standard  temperature  for  argon  gas  was  taken  as  25˚C,  which  is  increased  along  the   inlet’s  length  to  reach  to  the  temperature  of  the  environment  around  the  melt  stream  in   the  shield.    

• The  temperature  of  the  melt  stream  was  taken  as  1400˚C.    

• Based  on  real  situation  measurements,  it  was  assumed  that  the  outer  side  of  the  shield  is   300˚C.  

• Heat   exchange   occurred   via   radiation   from   melt   stream,   natural   convection   in   the   chamber  and  natural  convection  to  the  outer  atmosphere.  

• For  heat  capacity  values,  argon  was  considered  as  a  monoatomic  ideal  gas.  (γ=5/3)  

•  A   “mixture-­‐averaged”   diffusion   model   was   chosen   for   mass   transfer   simulations.   The   diffusion  coefficient  in  this  model  is  computed  by  using  multicomponent  Maxwell-­‐Stefan   diffusivities  (Eq.  7).  

• The   outer   atmosphere   of   the   shield   is   considered   to   be   air   with   pressure   of   1   atm   and   following  constitutes  mole  fraction:  0.93%  argon,  78.12%  nitrogen  and  20.95%  oxygen.  

2-­‐2.  Parameters  

One   of   the   purposes   of   the   present   study   is   to   investigate   the   effect   of   different   parameters  on  the  flow  of  argon  gas  around  the  pouring  steel  and  the  degree  of  protection   against  oxygen  adsorption.    

One  way  to  protect  the  stream  is  to  blow  an  inert  gas  to  the  stream  in  order  to  purge  the   active   atmosphere   away   from   the   liquid   steel.   But   the   drawback   of   shrouds   without   a   physical   enclosure   is   that   they   require   large   amounts   of   the   inert   gas   to   ensure   the   protection  [22].  Therefore,  to  overcome  that  problem,  a  physical  shield  is  used  around  the   stream  to  provide  a  semi-­‐closed  environment  for  the  inert  gas.  

In   the   present   work,   a   cylindrical   casing   has   been   used   around   the   melt   stream   and   argon  gas  was  injected  into  it.  That  leads  to  a  slight  positive  pressure  which  confines  uptake   of   air   through   gaps   and   joints.     So   the   air   entrainment   could   be   efficiently   reduced.  

Moreover,  because  the  casing  enfolds  around  the  nozzle,  it  helps  in  preventing  reoxidation   in  nozzle  and  protecting  it  from  clogging.  

The  factors,  which  were  considered  in  the  study  of  the  effectiveness  of  protection,  are   introduced  in  this  section.  

2-­‐2-­‐1.  Distance  between  the  ladle  and  the  shield  

Although  a  layer  of  25-­‐millimeter  insulating  pad  had  been  used  between  the  shield  and   the  ladle,  there  was  still  a  leakage  gap  of  around  3  cm  at  the  upper  part  of  the  shield.  The   reason  of  that  was  poor  contact  between  the  shield  and  the  protective  plate  of  the  frame  of   the  sliding  nozzle.  This  gap  can  be  seen  in  Figure  6.  

(17)

The  effect  of  omitting  the  gap  between  the  shield  and  the  ladle  was  studied  in  the  first   series  of  simulations.  

 

  Figure  6.  Existing  shield  for  protected  ingot  casting  

2-­‐2-­‐2.  Distance  between  the  shield  and  the  trumpet  

Although   there   is   a   short   distance   between   the   ladle   nozzle   and   top   of   the   casting   trumpet,  this  space  plays  an  important  role  in  the  amount  of  oxidation.  The  gap  between  the   shield  and  the  trumpet  depends  on  the  height  at  which  the  ladle  is  held  during  casting.  

L.  Ragnarsson  et  al.  [5]  simulated  the  flow  of  argon  gas  injected  near  the  ladle  furnace   nozzle,  using  a  physical  model  coupled  with  Particle  Image  Velocimetry  (PIV)  technique.  It   was  found  that  the  most  influential  factor  on  the  amount  of  available  oxygen  around  melt   stream  is  the  distance  between  the  ladle  and  the  trumpet.  

This  can  be  regarded  to  the  drag  of  air  due  to  high  velocity  of  the  stream  and  also  the   pumping  action  due  to  the  conical  trumpet.  These  two  phenomena  suck  air  into  the  runner.  

In  another  study  [15]  has  been  showed  that  the  volume  of  the  entrained  gas  in  liquid  steel   increases  with  increasing  the  length  of  the  stream.  

2-­‐2-­‐3.  Argon  gas  flow  rate  

Argon  can  be  considered  the  best  protective  gas  because  it  is  completely  inert  and  does   not   react   with   or   form   compounds   with   other   elements.   Argon   functions   as   a   curtain   to  

(18)

hinder  the  transfer  of  air  to  the  stream  of  melt.  Moreover,  in  case  of  physical  shroud,  air  is   simply  replaced  by  argon  inside  the  shield  space.    

It  was  shown  in  the  work  of  Ragnarsson  [5]  that  the  flow  patterns  (both  the  shape  and   the  velocity  of  the  flow)  at  different  gas  flow  rates  are  similar.  Also,  based  on  the  oxygen   content  measurements  of  the  gas  around  the  stream,  it  was  concluded  that  the  flow  rate  has   little  effect  on  distribution  of  oxygen  content  in  the  shroud.  However,  no  physical  shield  was   used  in  that  study  and  shrouding  had  been  done  only  by  argon  blowing.  

Hence,  if  the  gas  inlet  is  located  near  the  openings  as  the  case  in  work  of  Ragnarsson  et   al.  [23],  higher  flow  rate  would  suck  in  air  into  the  region  surrounding  the  stream  and  cause   more  air  flushing  and  oxygen  entrainment.  

2-­‐2-­‐4.  Argon  inlets  

The  flow  pattern  in  the  shield  is  also  affected  by  design  characteristic  such  as  number   and   position   of   the   argon   inlets.   Shields   with   1,   2   (with   two   alternatives   for   their   vertical   positions)  and  3  inlets  were  investigated  in  the  simulation  studies.  

2-­‐2-­‐5.  Shield  shape  

In  the  final  stage  of  the  simulation  studies,  the  flow  pattern  of  argon  using  a  new  shape   for  the  shield  was  examined.  This  alternative  shape  was  recommended  based  on  the  results   of  the  previous  simulations  as  well  as  existing  conditions  in  the  Scana  steel  plant.  

 

   

(19)

2-­‐3.  Sampling  

With   the   intention   to   investigate   the   air   uptake   during   teeming,   the   samplings   were   done  at  two  stages.  The  first  series  was  before  casting  (SP)  in  which  samples  were  taken  at   the   end   of   vacuum   treatment.   The   other   was   after   casting   (GP)   where   the   samples   were   taken  from  solidified  vertical  runner.  It  this  way,  the  isolated  nitrogen  and  oxygen  uptake  in   the  teeming  stream  could  be  measured.  

2-­‐3-­‐1.  SP  Samples  

To  obtain  SP  samples,  a  specific  type  of  lollipop  sampler  was  used  to  take  samples  from   liquid  steel  from  ladle  at  the  vacuum  station  before  transferring  it  to  the  casting  station.  The   sampler   is   called   Björneborg   lollipop   sampler   and   is   shown   in  Figure   7.   The   samplings   were   performed   manually   and   its   position   was   aimed   to   be   more   or   less   identical.   To   prevent   entering  the  slag  into  the  sampler,  argon  is  blown  into  sampler  during  immersion  through   the   melt.   After   samples   were   quenched   in   air   and   water,   three   pieces   with   specific   dimensions  were  cut  out  from  the  pin  part  of  the  sample.  

 

Figure  7.  Björneborg  sampler;  green  sections  show  the  selected  parts  for  analyzing  of  the  oxygen  and  nitrogen  contents  

 

2-­‐3-­‐2.  GP  Samples  

After  casting  and  when  the  steel  was  solidified,  the  steel  rod  from  the  vertical  runner  in   the  casting  bottom-­‐plate  was  sawed  and  machined  in  order  to  prepare  the  GP  samples.  Figure   8  demonstrates  the  schematic  picture  of  GP  samples.  

 

Figure  8.  a)  position  of  the  GP  samples  in  the  horizontal  runner  of  the  casting  system,  b)  the  procedure  of  

preparing  GP  samples  ,  c)  the  selected  parts  for  oxygen  and  nitrogen  analyses  from  GP  samples    

(20)

2-­‐4.  Measurements  

The   total   oxygen   content   and   the   nitrogen   content   in   the   prepared   samples   were   measured  by  a  LECO  elemental  analyzer,  model  TC-­‐600.  It  utilizes  an  inert  gas  fusion  method   and  thermal  conductivity  detection  to  measure  the  content  of  desired  element  (oxygen  or   nitrogen).    

2-­‐4-­‐1.  Total  oxygen  content  

The  total  oxygen  (T.O.)  in  the  steel  is  the  sum  of  the  dissolved  oxygen  and  the  combined   oxygen  in  the  oxide  inclusions.  Despite  the  fact  that  the  size  of  the  samples  is  small  (1  gram)   and  it  is  rare  to  capture  inclusions  due  to  their  small  population,  there  is  a  direct  correlation   between  probability  of  large  oxide  inclusions  and  total  oxygen  content.  Therefore,  the  T.O.  

can  serve  as  an  index  of  steel  cleanliness.  [8]  

 

Figure  9.  Relationship  between  T.O.  and  macroinclusions  in  steel  [8]  

2-­‐4-­‐2.  Nitrogen  content  

Sasai  et  al.  [16]  showed  that  there  is  direct  correlation  between  the  amount  of  oxidation   of  molten  steel  by  air  and  the  change  in  nitrogen  content  of  steel,  during  teeming  of  steel   from  ladle  to  tundish.    

Nitrogen   pickup   of   steel   inversely   depends   on   amount   of   oxygen   and   sulfur   in   steel   because   of   their   effect   on   surface   tension   of   liquid   steel.   In   the   steel   with   low   oxygen   content,  nitrogen  absorption  happens  faster  and  the  difference  in  nitrogen  content  before   and  after  casting  of  low  oxygen  steel  can  be  an  indicator  for  amount  of  air  adsorption.  

   

(21)

3.  RESULTS  AND  DISCUSSIONS  

3-­‐1.  Simulations  and  investigations  of  effective  parameters   3-­‐1-­‐1.  Introductory  simulations  

The   initial   digital   model   based   on   the   conventional   shield   used   in   shrouded   casting   at   Scana  Steel  Björneborg  is  shown  in  Figure  10.  

  Figure  10.  Schematic  of  the  3D  model  of  the  existing  shield  

Two  parts  of  the  model,  namely  the  distance  between  the  ladle  and  the  shield  at  the   upper  part  and  the  distance  between  the  ladle  and  the  trumpet  at  the  lower  part,  were  set   as  outlet  with  pressure  constraint  condition.  

Figure  11  demonstrates  the  temperature  distribution  of  gases  in  the  shield  space  around   the  melt  stream  obtained  from  steady  state  simulations.  

 

Figure  11.  Temperature  distribution  calculated  by  steady  state  simulations  considering  the   assumptions  in  section  2-­‐1-­‐1  

(22)

It  is  seen  that  temperature  of  the  stream  is  less  than  the  assumed  initial  temperature  of   the   melt   in   section   2.1.1   due   to   heat   transfer   to   neighboring   atmosphere.   (Although   it   is   below  the  solidification  temperature  of  the  steel  alloy,  it  is  assumed  the  stream  is  in  liquid   phase.   This   assumption   does   not   affect   the   gas   flow   simulations   results.)   The   highest   temperature  in  the  model  occurs  in  the    space   in   the   sprue   that   is   made   of   refractory   material.    

The   flow   pattern   of   gas   flow   in   the   shield   chamber   during   the   protected   casting   with   conventional   conditions   at   Scana   Steelmaking   is   demonstrated   by   streamline   in   Figure   12.  

The  color  and  the  thickness  of  the  streamlines  are  proportional  to  the  gas  flow  velocity.  

 

  Figure  12.  Streamlines  of  gas  flow  in  the  existing  shield  

 

The   flow   pattern   shows   that   there   is   relatively   high   gas   flow   in   the   upper   part   of   the   shield  near  the  gap  at  the  connection  of  the  shield  to  the  ladle’s  sliding-­‐gate.  The  reason  of   that  can  be  explained  by  overall  flow  pattern,  which  is  caused  by  a  downward  stream  of  the   melt  as  well  as  by  the  swirling  effect  the  argon  gas  flow.  

In   the   following   simulation   results,   the   molar   concentration   of   the   oxygen   gas   around   the  melt  stream  is  taken  as  the  study  subject  in  the  simulations  of  the  various  conditions  for   the  shield-­‐protected  casting.  The  unit  of  these  measurements  is  mole/m3.    

Table  4  can  be  used  as  a  guide  for  comparing  the  results  with  available  oxygen  in  the  air   at  different  temperatures.  

(23)

Table  4.  Oxygen  content  of  air  at  different  temperatures   Temperature  

(˚C)   Air  molar  concentration  

(mol/m3)   Oxygen  molar  concentration  

(mol/m3)  

25   40.87   8.56  

300   21.27   4.46  

1000   9.57   2.01  

 

Figure  13  presents  the  oxygen  content  results  for  Scana’s  conventional  shield  with  a  100   l/min   flow   rate   of   argon   and   a   3cm   gap   between   the   shield   and   the   ladle.   The   existing   conditions  of  the  shield  installation  are  shown  in  Figure  6.  

The  simulation  result  of  the  identical  shield  with  better  sealing  at  the  ladle  connection,   namely  with  1cm  gap,  is  depicted  in  Figure  14.  

   

Figure  13.  Oxygen  concentrations  for  existing  shield  with  100  l/min  argon  flow  and  3cm  upper  gap  

   

Figure  14.  Oxygen  concentrations  for  existing  shield  with  100  l/min  argon  flow  and  1cm  upper  gap  

References

Related documents

The length of the columnar zone in the macro-etchings was compared to the simulated shell thickness which point to a delay in solidification in the corner of the slab

There was a gradual change in the microbiota, shown as a gradual rise in the ratio of anaerobic to facultative bacteria from 1:1 in ileostomal to 400:1 in the

in general the time elapsed from order placement until the ordered items are delivered to the retailer, is three days, and Scania GmbH fully covers the transportation cost

Nemlab, which stands for New England Materials Laboratory High Strain Rate Testing Machine, is used to simulate the hot ductility of steels at Outokumpu Stainless AB in

In the second supplement, a detailed analysis of the inclusions present in a commercial tool steel grade is presented. The following methods were used for the inclusion

Resultatet av vår studie talar för att det inte är av betydelse om revisorn arbetar på en Big 4 eller annan revisionsbyrå vad gäller träffsäkerheten av en oren

Gravimetric measurements of total fly ash concentration showed outlet emissions below 5 mg/Nm 3 when the ESP was operated with two fields in service at oxyfuel conditions.. 2

The aim was to imitate the moving bed biofilm reactors of the on-site wastewater treatment plant, creating the same environmental conditions for biological activity in the