• No results found

Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

N/A
N/A
Protected

Academic year: 2021

Share "Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

JET

M. Bernerta,,M. Wischmeiera,A. Huberb,F. Reimoldb, B. Lipschultzd, C. Lowryc, S. Brezinsekb, R. Duxa, T.Eicha,A. Kallenbacha, A. Lebschya,C. Maggie, R.McDermotta, T. Püttericha, S. Wiesenb,JET contributorsf,1,the EUROfusion MST1 team2,the ASDEX Upgrade Team

a Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

b Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, 52425 Jülich, Germany

c European Commission, B-1049 Brussels, Belgium

d University of York, York Plasma Institute, Heslington, York, YO10 5DD, United Kingdom

e CCFE, Culham Science Centre, Abingdon OX14 3DB, UK

f EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

a rt i c l e i n f o

Article history:

Received 15 July 2016 Revised 27 November 2016 Accepted 22 December 2016 Available online 27 January 2017

a b s t r a c t

Futurefusionreactorsrequireasafe,steadystatedivertoroperation.Apossiblesolution forthepower exhaustchallengeisthedetacheddivertoroperationinscenarioswithhighradiatedpowerfractions.The radiationcanbeincreasedbyseedingimpurities,suchasNfordominantscrape-off-layerradiation, Ne orArforSOLandpedestalradiationandKrfordominantcoreradiation.

Recentexperimentsontwooftheall-metaltokamaks,ASDEXUpgrade(AUG)andJET,demonstrateop- erationwithhighradiatedpowerfractionsandafully-detacheddivertorbyN,NeorKrseedingwitha conventionaldivertorinaverticaltargetgeometry.Forbothdevicessimilarobservationscanbemade.

Inthescenarios withthe highest radiatedpower fraction,thedominant radiationoriginates fromthe confinedregion,inthecaseofNandNeseedingconcentratedinaregionclosetotheX-point.

Applyingtheseseedimpuritiesforhighlyradiativescenariosimpactslocalplasmaparametersandalters theimpuritytransportinthepedestalregion.Thus,plasmaconfinementandstabilitycanbeaffected.A properunderstandingoftheeffectsbytheseimpuritiesisrequiredinordertopredicttheapplicabilityof suchscenariosforfuturedevices.

© 2017ElsevierLtd.

ThisisanopenaccessarticleundertheCCBY-NC-NDlicense.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Futurefusion reactors requireplasmascenarios withhighdis- sipated powerfractionsinorder toreduce thepowerflux onthe divertortargetplates.ForITER,about85–90%oftheexhaustpower needs tobe dissipatedandforapossibleDEMOreactora fraction ofmorethan95%isrequiredtomeetthemateriallimits[1,2].With

Corresponding author.

E-mail address: matthias.bernert@ipp.mpg.de (M. Bernert).

1 See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

2 See http://www.euro-fusionscipub.org/mst1 .

asufficientreductionofthepowerfluxtothedivertor,theelectron temperatureinthedivertorisreduceddowntoseveraleV,where atomicprocessessetinandvolumetricrecombinationbecomesef- ficient.In this detached state the particle and power flux to the targetsreducessignificantly.

The power dissipation consists of perpendicular transport, chargeexchangelossesandradiationlosses,thelatterusuallybe- ingthebiggestcontribution.Theradiatedpowercanbeincreased by introducing seed impurities. These can be chosen to increase primarilythecore(e.g.Kr,W)orscrape-off-layerradiation(e.g.N, Ne).InordertoretaintheenhancedenergyconfinementoftheH- mode,thepowerfluxacrosstheseparatrixhastostayabovetheL- Hthreshold[3].Therefore,atITERadditionalradiationinthecore isnotviable,whileforDEMOtheexpectedexcessofalphaheating http://dx.doi.org/10.1016/j.nme.2016.12.029

2352-1791/© 2017 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(2)

Fig. 1. Radiation distribution of nitrogen seeded discharges at AUG (#30506) and JET (JPN 85067) in the detached state.

abovetheH-modethresholdallows(andrequires)significantcore radiation[4].

High radiation scenarios with different seed impurities were tested at two of the all-metal tokamaks, ASDEX Upgrade (AUG) andJET. Theseexperiments aimed todemonstratepower exhaust athighestheatfluxes.Thedominantparameterdeterminingthese heatfluxesis theratioof thepowerflux over theseparatrix Psep andthe majorradius oftheplasmaR [5]. ForITER,thisisin the rangeofPsep/R≈ 15MW/mand forDEMOexpected tobe in the range of 15–20 MW/m [1]. At AUG, values of up to Psep/R=12 MW/mwere achieved, while at JET experimentswere limitedto about5MW/m.

This publication compares the observations at both machines andtheimpactofthevariousseedimpurities ontheplasmasce- narios.It isordered by thedifferent seedimpurities used,show- ing forboth devices nitrogenseeding in Section 2, neonseeding inSection3andkryptonseedinginSection4.Section5compares theobservations at both devicesand Section 6gives a summary andshortoutlook.

2. Nitrogenseeding

The use of nitrogen fordivertor cooling is a well established technique[6]. It is commonlyobserved that the energy confine- menttimeoftheplasmaisincreasedwiththeinjectionofnitrogen inan all-metaldevice[7].At thesametime,theNseedingisob- servedto alterthe ELMcharacteristics,increasing their frequency anddecreasingtherelativeenergyloss[8].

Fig. 1a shows a tomographic reconstruction of the radiation distribution in AUG discharge #30506, where 18MW of heating power are applied at a constant N seeding rate. The normalized confinementfollowingthe ITERphysics basescaling [9]isaround H98=0.9 atupto 95% oftheGreenwald density.In betweenthe type-IIIELMs,thedivertorisinapronounced detachedstate[10], wheretheparticlefluxontothetargetissignificantlyreducedfor about10cmalong the target. The radiatedpower fraction(frad= Prad/Pheat)inthisdischargeisaround75%,whileindischargeswith lowerheatingpower(e.g.AUG #29383)up to90% oftheheating powerisradiatedinthedetachedstate.

In Fig. 1b a tomographic reconstruction of JET pulse 85067 is shown, where also 18MW of heating power are applied. The plasmaisinaELM-lessH-mode,theconfinementisaroundH98= 0.7at90%oftheGreenwalddensity.Thedivertorisinafullyde-

Fig. 2. Evolution of radiation around X-point, line of sight measurements (top), cen- tral nitrogen concentration (middle) and temporal evolution of tomographic recon- struction (bottom).

tached state and the radiated power fraction at about 75%, the maximumobservedatJET[11].Note,thatinthisconditionnosig- nificantheat flux ismeasured atthedivertor [12,13].At ahigher heatingpower(JPN87201,Pheat=27MW),theplasmaisinatype- IELMyH-modebutshowssimilarvaluesofconfinementandradi- atedpowerfractionasat18MW.

The comparison in Fig. 1 shows that for both devices, in N seededdetacheddischarges,thedominantradiationisemitted by a small region inside the confined region, above the X-point. In both cases, about 5MW are radiated from this region, which is about40%ofthetotalradiationforJETandAUG.

ForAUG,thisso-calledX-pointradiatorisconsistentlyobserved in the N seeded detached condition, not only at highest heat- ing powers [14]. Such a local radiatorinside the confined region canalsobereproducedbymodelingwiththeSOLPScodepackage [15,16].

Fig. 2shows the temporal evolution ofthe location of the X- pointradiatorindischargeAUG#30506,whereaconstantNseed- ingrateisapplied.Thisconstantseeding leadsto aslowincrease oftheNconcentrationintheconfinedplasmaduetotheresidence timeofnitrogeninthevacuumchamber.TheX-pointradiatorde- velopsintheregionoftheX-pointandwithincreasing Nconcen- trationmovesupwardsinsidetheconfinedregion.Itappearstobe very localizedandnot significantly elongated alongthe magnetic fieldlines.

Theintenseradiationinthisregionindicatesastrongreduction ofthelocaltemperatureto valuesof10–100eV,whereNradiates efficiently.ElectrontemperaturesofonlyafeweVareindicatedby theSOLPSmodelingandbythe observationofdeuteriumlinera- diation in the region below the X-point radiator. However, there is nodirect measurementof theelectron temperaturein thisre- gionavailableyet.Suchalocalreductionoftheelectrontempera- turemightrepresentaso-calledradiationcondensation,wherethe characteristics of the impurity radiation lead to a strong cooling downtothetemperatureofthemostefficientradiation.Thisleads toa densityincreaseinthisregion anda furtheramplificationof theradiationlosses.ThisindicatesasimilarityoftheX-pointradi- atortotheMARFEphenomenon[17].However,theoperationwith sucha X-pointradiatordoesnot leadtoanunstableplasma, asit isusuallyobservedwithMARFEsintokamakswithcarbonasfirst wallmaterial.AsshowninFig.2,thisradiatorcanexistforseveral secondsandmodulationsbyELMsandheatingpowertripsdonot leadtoanimmediateendofthedischarge.

Such strong poloidal asymmetries of radiation and electron temperaturemight be unexpected for the confinedregion of the plasma. However, the X-point region has a high flux expansion

(3)

Fig. 3. Vertical position of the radiator relative to the X-Point in AUG #32273 with the modulation of heating power and N seeding (top).

and, thus,insidetheconfined region,alongconnection lengthto the midplane. Therefore, poloidaltemperature gradients resultin ratherlowparalleltemperaturegradients.Thistemperaturegradi- entdrivesapowerfluxintotheradiatingregion,whichcanbesus- tainedby theradial powerflux intothespecific fluxsurface, and whichstabilizesthetemperatureinthisregion.Astheconnection lengthisstronglychangingattheX-point(ifmovingverticallyup- wards),theregion ofintenseradiationmightbe determinedby a local equilibriumbetweenpowerflux driven intothe region(de- termined by the parallel temperature gradient)and the radiated power. This can also be an explanation of the observed vertical movementoftheX-pointradiator.

UsingthelinesofsightoftheAXUV diodediagnostic [18],the verticallocationandextendoftheX-pointradiatorcanbetracked.

Fig. 3 showsthe vertical position relative to theX-point fordis- chargeAUG#32273.Byareductionofheatingpower,thisradiator movesfurther insidethe confinedregion.The innermostposition showninFig.3correspondstoρpol ≈ 0.9975.Withanincreaseof the heating power, the equilibration point of the radiator moves closer to the X-point. The increase ofthe N seeding levels leads againtoaninwardmovement.Iftheradiatormovestoofarinside theconfinedregion,adisruptionistriggered(e.g.inAUG#32274).

SimilartoobservationsofMARFEsatthetwodeviceswithcarbon as first wall material [19,20], the radiator moves upwards along thehigh-fieldsideandmostlikelytriggers adisruptive2/1-island throughtheshrinkingofthecurrentchannelbytheedgecooling.

The X-point radiatoris observed in both devices, atAUG and JET, indicating that it isa general operational regime fordevices withafull-metalwall.Forbothdevicestheradiatoris,indetached conditions,insidetheconfinedregionanddissipatingasignificant fractionoftheinjectedpowerbyradiation.Itstillneedstobeeval- uated,inwhichwaythisradiationimpactsthepowerfluxoverthe separatrix, whichdetermines theaccessto H-mode,andhowthe plasmaconfinementofsuchascenarioisaffected.

3. Neonseeding

Neonisapromisingcandidateasanedgeradiatingimpurityfor futurereactorscenarios.Itradiatesdominantlyattemperaturesof about50eV,whichexistintheSOL.Itdoesnottraptritiuminthe deviceaspredictedforN,whichpotentiallyformstritiatedammo- nia [21].Therefore,highradiationscenarios withNeinsteadofN seedingweretestedatbothdevices,AUGandJET.

Fig. 4. Time traces of Ne seeded discharge AUG #32272. The gray lines indicate when the confinement starts to increase and when the ELM frequency drops, re- spectively.

3.1. NeseedingatAUG

Fig.4 shows time traces ofa Ne seeded discharge#32272 at AUG. The Ne seeding level is increased in three steps. The first two levels lead to a slight increase of the central Ne concentra- tionandtheoverallradiationlevel.However,thedivertorradiation (Fig.4(d))isonlymarginallyaffected bytheinjectedneon, show- ing that Ne does not increase the divertor radiation to required levels forefficient power exhaust(compared to Nin Fig. 2). The presenteddischarge is ended by a central accumulation oftung- sten, which results from changes in pedestal transport and ELM frequencycausedbytheNeseeding,asdescribedbelow.

The injection of Ne leads to an improvement of the confine- ment,hereseenat4.1s,similartotheobservationsmadewithni- trogen. Unlike for N, where the pedestal top temperature is in- creased and, thus, leads to the confinement improvement [22], withNe the pedestal top densityis increased. Edge kinetic pro- filesbefore andaftertheconfinementimprovementareshownin Fig.5(a).

The ratio of the neoclassical radial drift and diffusion coeffi- cients for impurities, shown in Fig. 5(b), is calculated with the NEOARTcode[23].Theneoclassicalinward drift,whichdominates the pedestal impurity transport in between ELMs [24], increases significantlyforNeaswellasfortungstenwiththeincreasedden- sity gradient. This leads to an increase of the peaking factor of tungstenatthepedestal

FW=nWpol=0.97) nWpol=1) =

 0.97 1.0

v

Ddr [25]from5to35.

Furthermore,theELMfrequencyissteadilyreducingduringthe Neseeding (Fig.4(e)).Thisisthetypicalbehaviouroftype-IELMs duetothereductionoftheheatingpower[26].Inthepresentcase, thecentralradiationofNereducestheactualpowerfluxoverthe separatrix and thus leads to the reduction of ELM frequency. By

(4)

Fig. 5. Top: Edge profiles of electron density and temperature before and after the confinement improvement. Bottom: NEOART calculation of the neoclassical impu- rity transport at the pedestal.

0.00 MW/m3 0.60 MW/m3 1.20 MW/m3 1.80 MW/m3 2.40 MW/m3 3.00 MW/m3

(a) JPN 85441 (b)

53.37s

JPN 85441 53.47s

Fig. 6. Radiation distribution of the Ne seeded discharge JPN 85441. (a): H-mode, detached state; (b) L-mode, attached state.

thedecreaseintheELMfrequency,theeffectofimpurityflushing byELMs[24]issignificantlyreduced.

Botheffectstogether,namelytheincreasedneoclassicalinward transport and the reduced ELM flushing, lead to a strong, self- amplifyingincrease oftheimpurity concentrationintheconfined plasmaand,thus,thecollapseofthedischarge.

The lackofefficientdivertorcoolingandtheabovementioned effects of impurity transport make it impossibleto studypower exhaustwithNeseeding atthe testedAUG parameters.In future devicesthepedestalimpuritytransportisexpectedtobeverydif- ferentfromcurrentexperiments duetothe higherpedestal tem- perature gradients and lower density gradients. The temperature screeningofimpurities increasesand thedensitygradient driven inwardpinch reduces[27].Therefore,the applicationofNeseed- ingforpowerexhaustinsuchdevicesmightstillbepossible.

3.2.NeseedingatJET

AtJET,Neseedingtohighradiatedpowerfractions(frad>50%) leadstoaditheringbetweenELM-less H-modesandL-modesand aconfinementofH98 ≤ 0.8[11].Inthesecasesthedominantradi- ationisemittedfromtheregioninsidetheX-point,similar tothe observationswithNseeding. Withthedithering betweenH-and L-mode,the divertorgoesfroma detached (H-mode)to attached (L-mode)state.InH-modetheradiationisconcentratedatthere- gionjustinsidetheX-pointwhileinL-modetheradiationismore diffuseinthedivertorandincreasedintheSOL(seeFig.6).

Fig. 7. Time traces of Kr seeded discharge AUG #33256.

Thetransitions betweenH-andL-mode indicatethat thecen- tral radiationlosses by Ne reduce the powerflux over the sepa- ratrixbelowtheL-H powerthreshold.In L-mode,thepower flux over the separatrix is about 1MW higher than in H-mode. This difference might determine the change between H-and L-mode, however,thepowerfluxinH-modeiswith9.5MWstillabovethe L-Hthresholdscalingofabout8.7MW.

The ditheringbetweenH-andL-mode makes Neseeding also not applicable for power exhaust scenarios at JET for the tested heatingpowerofabout19MW.Withan externalheatingofmore than 22MW,the plasma mightstay in H-mode and Necould be furthertestedasaSOLanddivertorradiator.However, suchheat- ingpowerswerenotavailablefortheseexperiments.

4. Kryptonseeding

Kryptonhasahighradiationefficiencyatelectrontemperatures ofabout300eV. Thus, itis expectedtocreatestrong radiationin the pedestalregion inside theseparatrix, asit isrequired forfu- turefusionreactors. Additionally,at15eV thecoolingfactorofKr hasanotherpeak,therefore,alsoincreasedradiationinadetached divertorcanbeexpected.

4.1. KrseedingatAUG

Fig. 7 showstime tracesof discharge AUG #33256, where Kr seedingisapplied.Verylow seedingratesofKrare required(Kr

<21021l/s),therefore,agaspuff modulationschemeisappliedin ordertoachievereliableparticlefluxesfromthegasvalves.There isnoeffectseenbythismodulation,indicatingthat thetransport timescaleofKrisabove30ms.Inthepresenteddischarge,aNpuff wasappliedbyarealtimefeedback[6]tokeeptheelectrontem- peratureattheouter divertortargetaround 5eV.Theadditionally injectedKrisstepwisereplacingtheNpuff.

Withthe firststep,there isonly asmallreduction on theav- eraged N seeding ratein order to keep the divertortemperature

(5)

Fig. 8. Radiation distribution (ELM averaged) with dominant Kr radiation for AUG

#33256. The radiated power fraction is up to 90% and a radiating ring evolves at the pedestal. Such a radially narrow structure, which is most likely poloidally sym- metric, cannot fully be reconstructed by the tomographic inversion (see Fig. 9 for details). The radiation in the divertor legs is dominated by ELM induced radiation.

Fig. 9. Left: Time traces of AXUV diode measurements at the pedestal region for AUG #33256. Right: Viewing volume of AXUV channels.

constant. The ELM frequency reduces slightly as the power flux over the separatrix is reduced by an increased central radiation.

The drop inplasmastored energyat 3s iscaused by an internal 3/2NTM, whichdevelopsatthehighbetanormalizedof2.7.This reducesthe storedenergyby 10%,which remains stablelateron.

Otherplasmaparametersdonotchangesignificantly.

WiththesecondlevelofKrseeding,thedivertorgoesintothe detached state (Tdiv ≈ 0eV) andno further Nseeding isrequired fordivertorcooling.WithKrasdominantradiator,aradiatingring is forming around the pedestal region (see Fig. 8). The Kr radia- tion inside the confined region dissipates sufficient power to re- ducethepowerfluxesontothetargetplatestoreachdetachment.

Theradiatedpowerfractionisupto90%.ThisisobservedwithKr concentrationsoflessthan5· 10−4(Fig.10,[28]).Withtheonsetof detachment,theplasmadensityincreasesbymorethan30%.

Fig.9showsthelineintegratedmeasurements ofthepedestal radiation by AXUV diodes. The dominant radiation is emitted in theregionofchannelDHC44,whichisdominantlymeasuringbe- tween ρpol=0.95− 1. This is identified by the strong signal in- creasefromDHC45to DHC44,butno furtherincrease to DHC43.

Withthestrongradiationinsidetheconfinedregion,theELMfre- quencyreducesto10–20Hz.

In Fig. 9 the strong modulation of the pedestal radiation by ELMs can also be seen. In between ELMs, the pedestal radiation increasesrapidly,whilethepedestalisstronglyerodedbyanELM.

This can be explained by a stronginward transport of Krin be- tween ELMs, created by an increased densitypedestal as shown inSection3.1.Kriscoolingthepedestalregionand, thus,leading to afurther increaseofthe density.Thisisa self-amplifying pro- cessandleadstransientlytohollowdensityprofiles.TheKrinthe

Fig. 10. Kinetic profiles (top) and radiation profiles (bottom, inverted from bolom- etry measurements and modeled by STRAHL [29] ) for two discharges before and after the radiation is dominated by Kr. Adapted from [28] .

pedestalregionisflushedoutby ELMsandthepedestal radiation isdecreased.AfteranELM,Krisagaintransportedinside.

Athigh ELMfrequencies, the balance ofinward transport and ELMflushing ofKr could potentially lead to a quasi steadystate scenario.However,asKrincreasesthecentralradiationandbythis reducesthepower fluxover theseparatrix, theELM frequencyis inherentlyreducedandthenetinward transport ofKris increas- ing. This resultsin a very low ELMfrequency andcan lead to a (minor)radiativecollapseoftheplasma,seeninFig.7at4.8s.At- temptstokeepahighELMfrequencye.g.byadditionalNinjection showedthattheeffectofKrontheELMfrequencyisstilldominat- ing.Therefore,othermeansofELMfrequencycontrolarerequired andnotyettested.

TheimpactoftheKrradiationontheconfinementdependson theradial location ofthe radiation.Fig. 10compares kinetic pro- filesandradiationprofiles fortwo Krseededdischargeswithdif- ferentheating powers.In the dischargewithhighheating power (Pheat=19MW),thepedestaltoptemperatureisreducedbytheKr radiationfrom1.2keVto800eV.Theregionofmaximumemissivity ofKrstaysinsidethepedestalregionandthestoredenergyofthe plasmaisobservedtonotbeaffected.FortheSTRAHLsimulation,a Krconcentrationof5· 10−4wasassumed.Thisiswellreproducing theradiatedpowermeasurements, eventhough noother impuri- tieswereincludedinthecalculation,and, thus,indicates aupper thresholdfortheKrconcentration[28].

In the case with lower heating power (Pheat=10.5MW), Kr leadsto a reduction of the pedestal top temperature from more than 500eV to lessthan 400eV. In these cases the dominant Kr radiation shifts further inside the confined region and the con-

References

Related documents

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Detta projekt utvecklar policymixen för strategin Smart industri (Näringsdepartementet, 2016a). En av anledningarna till en stark avgränsning är att analysen bygger på djupa

DIN representerar Tyskland i ISO och CEN, och har en permanent plats i ISO:s råd. Det ger dem en bra position för att påverka strategiska frågor inom den internationella

Indien, ett land med 1,2 miljarder invånare där 65 procent av befolkningen är under 30 år står inför stora utmaningar vad gäller kvaliteten på, och tillgången till,

Den här utvecklingen, att både Kina och Indien satsar för att öka antalet kliniska pröv- ningar kan potentiellt sett bidra till att minska antalet kliniska prövningar i Sverige.. Men