• No results found

Charging￿the￿high-voltage￿battery. BMW￿Service Technical￿training.Product￿information.

N/A
N/A
Protected

Academic year: 2022

Share "Charging￿the￿high-voltage￿battery. BMW￿Service Technical￿training.Product￿information."

Copied!
84
0
0

Loading.... (view fulltext now)

Full text

(1)

Technical�training.

Product�information.

BMW�Service

Charging�the�high-voltage�battery.

(2)

General�information

Symbols�used

The�following�symbol/schematic�diagram�is�used�in�this�document�to�facilitate�better�comprehension or�to�draw�attention�to�very�important�information:

Contains�important�safety�information�and�information�that�needs�to�be�observed�strictly�in�order�to guarantee�the�smooth�operation�of�the�system.

Information�status�and�national-market�versions

BMW�Group�vehicles�meet�the�requirements�of�the�highest�safety�and�quality�standards.�Changes in�requirements�for�environmental�protection,�customer�benefits�and�design�render�necessary continuous�development�of�systems�and�components.�Consequently,�there�may�be�discrepancies between�the�contents�of�this�document�and�the�vehicles�available�in�the�training�course.

This�document�basically�relates�to�the�European�version�of�left-hand�drive�vehicles.�Some�operating elements�or�components�are�arranged�differently�in�right-hand�drive�vehicles�than�shown�in�the graphics�in�this�document.�Further�deviations�may�arise�as�a�result�of�the�equipment�specification�in specific�markets�or�countries.

Additional�sources�of�information

Further�information�on�the�individual�topics�can�be�found�in�the�following:

• in�the�operating�instructions�of�the�high-voltage�charger

• in�the�Integrated�Service�Technical�Application.

Contact:�conceptinfo@bmw.de

©2012�BMW�AG,�Munich,�Germany

Reprints�of�this�publication�or�its�parts�require�the�written�approval�of�BMW�AG,�Munich The�information�contained�in�this�document�forms�an�integral�element�of�the�technical�training�of the�BMW�Group�and�is�intended�for�the�trainer�and�participants�in�the�seminar.�Refer�to�the�current respective�information�systems�of�the�BMW�Group�for�any�changes/additions�to�the�technical�data.

Information�status:�May�2012

(3)

Charging�the�high-voltage�battery.

Contents.

1. Introduction....5

1.1. BMW�EfficientDynamics...5

1.2. Definition�and�reasons�for�hybrid�cars...7

1.2.1. Definition�of�the�hybrid�cars...7

1.3. Classification�according�to�power...9

1.3.1. Micro�hybrid�cars...9

1.3.2. Mild�hybrid...11

1.3.3. Full�hybrid...12

2. System�components....14

2.1. Energy�storage�device...14

2.1.1. Physical�principles�of�the�chemical�store...14

2.1.2. Battery�types...17

2.1.3. Summary...22

2.2. Power�electronics...23

2.2.1. General�converter...23

2.2.2. Rectifier...24

2.3. Electromechanical�switch�contactor...24

2.4. High-voltage�battery�unit...26

2.4.1. Structure�of�the�high-voltage�battery�unit...26

2.4.2. Transport�mode...33

2.5. High-voltage�charger...33

2.5.1. Lines�and�connectors...35

3. Safe�work....37

3.1. Basic�physical�effects...37

3.1.1. High�electrical�voltage...37

3.1.2. High�electrical�current...38

3.2. Dangers�posed�by�electricity...40

3.2.1. Perfusion�of�the�human�body...40

3.2.2. Electric�arc...43

3.3. Safety�rules�for�averting�danger...46

3.3.1. Basic�information...46

3.3.2. Disconnect�the�system�from�the�power�supply...47

3.3.3. Establish�that�the�system�is�isolated�from�the�power�supply...49

3.4. Other�dangers�by�hybrid�technology...49

3.4.1. Lithium-ion�battery...49

3.5. First-aid�measures...51

3.5.1. Basic�information...51

3.5.2. Immediate�measures...53

3.5.3. Send�emergency�call...55

(4)

Charging�the�high-voltage�battery.

Contents.

3.5.4. First-aid�measures...56

3.5.5. Help�by�emergency�service�and�medical�aftercare...58

3.6. Safe�work�practices�for�working�on�high-voltage�components...59

3.6.1. Prerequisites...59

3.6.2. Technical�safety�precautions...59

3.6.3. Special�features�for�working�on�high-voltage�components...67

4. Charging�the�battery....68

4.1. Introduction...68

4.2. Charging�procedure...69

4.2.1. Initial�situation...69

4.2.2. Preparing�high-voltage�charger...70

4.2.3. Opening�the�packaging�of�the�high-voltage�battery�unit...71

4.2.4. Connecting�the�high-voltage�battery�unit...73

4.2.5. Charging�the�high-voltage�battery�unit...76

4.2.6. Disconnecting�the�high-voltage�charger...78

4.2.7. Documentation�of�the�charging�procedure...79

5. Faults�and�support....80

5.1. Faults�and�support...81

5.2. Voltage�supply�of�the�high-voltage�charger�is�interrupted...81

5.3. Cancelling�the�charging�procedure...81

(5)

Charging�the�high-voltage�battery.

1.�Introduction.

1.1.�BMW�EfficientDynamics

BMW�EfficientDynamics�is�the�communicative�umbrella�term�for�a�variety�of�technologies�and innovations,�which�produce�fewer�emissions�while�at�the�same�time�lead�to�an�increase�in�power�and enhanced�driving�pleasure.�With�BMW�EfficientDynamics�BMW�has�assumed�a�leading�global�role in�the�measures�for�reducing�consumption�and�CO2.�Today�over�one�million�owners�of�new�BMW cars�have�been�benefiting�from�this�since�spring�2007.�However,�BMW�EfficientDynamics�is�more than�just�high�precision�injection,�engine�start-stop�function�or�brake�energy�regeneration.�BMW EfficientDynamics�also�includes�BMW�active�hybrid,�the�combination�of�a�combustion�engine�with electric�motors�in�the�powertrain.

At�the�end�of�2009�the�first�hybrid�versions�of�the�BMW�X6�(E72)�and�BMW�7-Series�(F04)�were introduced.�The�next�generation�of�BMW�hybrid�cars�was�built�at�the�end�of�2011�with�the�BMW ActiveHybrid�5�(F10H).�This�hybrid�car�employs�the�second�generation�of�the�high-voltage�batteries (Gen.�2.0),�which�are�also�installed�in�the�new�BMW�ActiveHybrid�7�(F01H/F02H)�and�BMW

ActiveHybrid�3�(F30H).

The�high-voltage�batteries�for�the�BMW�ActiveHybrid�X6�(E72�)�and�BMW�ActiveHybrid�7�(F04)�still originate�from�the�cooperation�ventures�with�other�automobile�manufacturers,�whereas�the�high- voltage�battery�used�in�the�BMW�ActiveHybrid�5�(F10H)�is�"Made�by�BMW".

Generations�of�active�hybrid�cars�to�date

(6)

Charging�the�high-voltage�battery.

1.�Introduction.

Index Explanation

1 The�BMW�conceptX6�ActiveHybrid�was�launched�on�the�market�at�the�end of�2009�as�the�first�BMW�hybrid�car.�The�technology�used�here�(so-called generation�1.0)�was�a�product�created�by�the�cooperation�venture�between General�Motors,�DaimlerChrysler�and�BMW.�A�nickel�metal�hydrid�battery�was used�as�an�electric�energy�storage�device.

2 The�second�hybrid�car�from�BMW�came�on�the�market�in�2010�with�the�name ActiveHybrid�7.�It�is�a�mild�hybrid�car�with�1.5�generation�technology.�This technology�was�developed�together�with�Mercedes�Benz.�The�highly�efficient lithium-ion�battery�was�used�in�the�high-voltage�electrical�system.

3 The�so-called�Generation�2.0�of�the�hybrid�cars�at�BMW�is�used�for�the ActiveHybrid�5.�The�drive�system�comprises�a�225�kW/306�HP�6-cylinder spark�ignition�engine�with�BMW�TwinPower�Turbo�technology�and�a�hybrid- specific�8-speed�automatic�gearbox�with�an�integrated�electrical�machine.

The�electrical�energy�is�stored�in�a�lithium-ion�battery�which�was�developed�by BMW.

4 The�BMW�ActiveHybrid�7�is�the�second�hybrid�car�to�use�so-called

"Generation�2.0"�hybrid�technology.�The�energy�storage�device�used�here�was adopted�from�the�ActiveHybrid�5.

5 Generation�2.0�hybrid�technology�is�also�used�in�the�BMW�ActiveHybrid�3.

What�does�BMW�ActiveHybrid�represent�and�what�is�the�difference�to�hybrid�cars�from�competitors?

BMW�ActiveHybrid�essentially�describes�all�hybrid�activities�of�BMW�aimed�at�achieving�higher efficiency�–�the�word�"Active"�should�highlight�the�particularly�dynamic�requirement�of�all�BMW�hybrid models.�The�two�different�types�of�hybridization�are�summarised�under�BMW�ActiveHybrid:�full�hybrid and�mild�hybrid.

They�are�essentially�distinguished�by�the�following:

Full�hybrid:

• Powerful�electric�drive�with�a�power�that�enables�driving�by�purely�electric�means

• High�potential�to�reduce�consumption�and�emissions,�particularly�in�urban�traffic

• Excess�weight�and�less�available�stowage�space�as�a�result�of�hybrid�components�and batteries

• High�component�and�manufacturing�costs.

Mild�hybrid:

• Small�electric�motor,�used�for�supporting�the�combustion�engine�("Boost"�function)

• Electric-only�driving�is�not�possible

• Moderate�potential�to�reduce�consumption:�Particularly�advantageous�in�urban�traffic

• Slight�increase�in�weight�and�additional�space�requirement�by�smaller�hybrid�components

• Manufacturing�costs�higher�than�for�the�standard�powertrain,�but�less�than�for�the�full�hybrid.

(7)

Charging�the�high-voltage�battery.

1.�Introduction.

Hybrid�is�only�integrated�in�the�hybrid�strategy�of�BMW�where�costs�and�savings�potential�are appropriately�interrelated.�A�start�was�made�with�large�models�with�large�engines�such�as�the�BMW ActiveHybrid�X6�and�the�BMW�ActiveHybrid�7�because�the�greatest�efficiency�potential�exists�here.

To�realise�this�approach,�the�modular�system�"Best�of�Hybrid"�is�used�at�BMW,�i.e.�the�optimal�hybrid components�(full�or�mild�hybrid�components)�are�integrated�in�different�vehicle�concepts.

1.2.�Definition�and�reasons�for�hybrid�cars

1.2.1.�Definition�of�the�hybrid�cars

Griffon�motorcycle,�Sports�model,�model�year�1906,�is�a�hybrid�vehicle

The�term�"hybrid"�comes�from�Greek�and�actually�means�"dual�origin�or�mixed�origin".�For�the definition�in�the�automotive�industry�this�now�means�that�vehicles�are�equipped�with�two�drive�types (energy�types)�and�have�two�energy�storage�devices.�The�special�feature�is�that�the�elements�brought together�are�already�solutions�in�themselves,�but�by�their�combination�can�also�create�new�desired properties.�The�most�widely�used�combination�of�these�two�drive�types�by�the�different�automotive manufacturers�is�the�combination�of�a�combustion�engine�and�electric�motor�with�two�energy�sources in�the�form�of�a�fuel�tank�and�a�battery.

Reasons�for�hybrid�cars

The�advantages�of�the�hybrid�drive�primarily�lie�in�low�consumption,�but�also�in�the�fact�that�the electric�motor�absorbs�all�unfavourable�operating�ranges�of�the�combustion�engine.�In�addition,�the characteristic�curves�of�the�electric�motor(s)�and�combustion�engine�complement�each�other�better�as the�lower�torque�of�the�combustion�engine�(in�the�lower�engine�speed�range)�is�ideally�supplemented by�the�higher�torque�of�the�electric�motor.�Furthermore,�the�brake�energy�regeneration�can�have�a positive�effect�on�the�actual�brake�wear�(minimisation�of�existing�brake�wear).

Energy�recovery�for�vehicles

The�principle�of�energy�recovery�for�vehicles�is�based�on�the�principle�of�conservation�of�energy.

(8)

Charging�the�high-voltage�battery.

1.�Introduction.

The�principle�of�conservation�of�energy�states�that�the�total�energy�of�a�closed�system�does�not change�over�time.�The�energy�can�in�fact�be�converted�between�different�energy�forms,�for�example from�heat�to�kinetic�energy.�However,�it�is�not�possible�to�create�or�destroy�energy�in�a�closed�system.

The�total�energy�in�a�closed�system�remains�constant.�The�energy�can�thus�not�arise�from�nothing and�also�cannot�simply�disappear.�Different�energy�types,�for�example�kinetic�energy,�thermal�energy, radiation�energy�or�binding�energy,�only�convert�into�one�another.�From�a�technical�perspective however,�they�are�generally�considerably�more�difficult�to�use�subsequently.

For�hybrid�cars�their�kinetic�or�potential�energy�is�converted�to�heat�energy�by�braking�and�to�electrical energy�by�the�electrical�machine�and�stored�in�a�battery.�This�stored�electrical�energy�can�then�be�used to�start�the�combustion�engine�or�for�electric�driving�for�example.

How�great�is�the�kinetic�or�potential�energy�of�a�vehicle?

The�kinetic�energy�is�calculated�according�to�the�following�formula:�Ekin�=�½ • m • v2.�The�mass�of�the vehicle�is�stated�in�m�and�v�is�the�speed�of�the�vehicle.

The�potential�energy�is�calculated�according�to�the�following�formula:�Epot�=�m • g • Δh.�Here�the vehicle�mass�is�m,�g�is�the�gravitational�acceleration�(9.81 m/s2)�and�Δh�the�difference�in�height.

Sample�calculations:

Kinetic�energy:�A�vehicle�mass�of�2500�kg�and�a�speed�of�100�km/h�results�in�the�kinetic�energy�of

½ • 2500 kg • (100�km/h)2.�So�that�the�units�match�the�speed�must�be�converted�to�m/s.�100�km/h equals�27.77 m/s.

Ekin�=�1250�kg�•�(27.77�m/s)2�=�964 506 Nm�(Ws)

If�the�braking�lasts�10�seconds�up�to�standstill,�the�available�power�is�P = 96 451 W.�The�electric�power is�calculated�according�to�the�formula�P = U • I.�For�a�voltage�of�12 V�the�current�obtained�would�be over�8000�A.�These�current�levels�cannot�be�used�in�a�car.�To�use�the�available�power�the�voltage�must be�increased�so�that�the�current�level�is�in�a�range�which�can�be�used�in�the�automobile�industry.�This is�also�the�reason�why�higher�voltages�are�used�for�hybrid�cars.�If�one�assumes�a�voltage�of�400 V,�then the�current�level�in�our�sample�calculation�is�241 A.

Potential�energy�of�a�vehicle

(9)

Charging�the�high-voltage�battery.

1.�Introduction.

Index Explanation

1 Maximum�potential�energy

2 Minimum�potential�energy

Potential�energy:�A�vehicle�mass�of�2500 kg�and�a�difference�in�height�of�100 m�gives�the�potential energy

Epot�=�2500�kg�•�9.81�m/s2�•�100�m�=�2�452�500�Ws.

If�taking�off�lasted�10�seconds�for�example,�then�the�available�power�is�P = 245 250 W.�For�a�battery voltage�of�400 V�the�current�level�is�613 A.

The�above�calculations�are�very�simplified,�but�they�give�a�feeling�of�the�magnitudes�of�energy,�power and�resulting�current�level.

1.3.�Classification�according�to�power

The�hybrid�cars�can�be�classified�into�three�groups�based�on�the�power�of�the�electric�motors:

• Micro�hybrid�cars

• Mild�hybrid�cars

• Full�hybrid�cars

The�following�table�shows�the�key�characteristics�of�each�hybrid�car�group:

Power of�the electric motor

Voltage�range Possible�functions Fuel�savings

Micro�hybrid 2�to�3�kW 12�V -�Start-stop�function under�10%

Mild�hybrid 10�to�15

kW 42�V�to�150�V -�Start-stop�function -�Boost�function -�Energy�recovery

under�20%

Full�hybrid >�15�kW >�100�V -�Start-stop�function -�Boost�function -�Energy�recovery -�Electric�driving

over�20%

1.3.1.�Micro�hybrid�cars

General�information

The�micro�hybrid�cars�are�the�first�level�of�hybrid�cars.�Micro�hybrid�cars�have�an�generator�power�of 2�to�3�kW�and�conventional�12�V�battery�technology.�The�low�power�and�voltage�restricts�the�level�of energy�recovery�during�braking�or�overrun�phases.�The�electrical�energy�recovered�is�stored�in�the�12 V�vehicle�electrical�system�in�micro�hybrid�cars.�Some�of�these�systems�also�have�a�start-stop�function with�a�conventional�starter�motor�or�integrated�starter�generator.�A�disadvantage�of�the�start-stop

(10)

Charging�the�high-voltage�battery.

1.�Introduction.

function�is�the�increased�wear�on�the�crankshaft�as�a�result�of�frequent�starting-up.�The�crankshaft is�designed�as�a�frictionless�bearing�on�a�constant�rotation.�The�time�and�effort,�excess�weight�and costs�for�the�micro�hybrid�cars�are�reasonable.�However,�overall�no�more�than�10%�energy�savings�can be�expected.�If�we�were�to�strictly�depend�on�the�definition,�the�micro�hybrid�cars�are�not�hybrid�cars because�they�only�have�one�drive�type.

Micro�hybrid�solution�from�BMW

BMW�1-Series�with�automatic�engine�start-stop�function

Intelligent�generator�control

BMW�introduced�different�technologies�for�reducing�the�fuel�consumption�of�all�BMW�Group�vehicles.

One�of�these�measures�is�the�partial�energy�recovery�of�the�vehicle's�kinetic�energy.�The�intelligent generator�control�alone�can�save�up�to�3%�CO2�and�thus�fuel�depending�on�the�driving�profile.�There are�therefore�no�impacts�on�the�power�development�of�the�customer's�vehicle.�The�core�principle�of the�intelligent�generator�control�is�an�extension�of�the�charging�strategy�of�the�battery.�The�battery is�no�longer�fully�charged,�but�charged�to�a�defined�state�depending�on�different�ambient�conditions (ambient�temperature,�age�of�battery,�etc.).�The�charging�procedure�only�takes�place�in�overrun�phases of�the�vehicle�in�comparison�to�traditional�charging�strategies.�Here�the�generator�is�energised�to�its maximum,�electrical�energy�is�created�and�stored�in�the�battery.�The�generator�is�not�energised�in the�acceleration�phases�of�the�vehicle.�Thus�no�energy�and�also�no�fuel�are�used�to�create�electrical energy.�More�information�on�this�topic�can�be�found�in�the�product�information�bulletin�"Intelligent generator�control".

Automatic�engine�start/stop�function

The�reduction�in�consumption�is�achieved�by�an�automatic�shutdown�of�the�engine�when�the�vehicle is�at�a�standstill.�The�restart�is�also�effected�automatically�as�soon�as�the�corresponding�switch-on conditions�are�present.�The�MSA�has�already�been�in�use�in�vehicles�of�the�BMW�Group�since�2007 and�is�now�available�in�numerous�vehicle�models�including�those�with�an�automatic�transmission.�The MSA�function�is�located�in�the�engine�control�(DME/DDE).�For�the�MSA�function�different�information from�the�bus�system�that�is�already�available�is�used.�Furthermore,�new�sensors�are�necessary for�fault-free�function�of�the�system.�More�information�on�this�topic�can�be�found�in�the�product information�bulletin�"MSA�automatic�engine�start-stop�function".

(11)

Charging�the�high-voltage�battery.

1.�Introduction.

1.3.2.�Mild�hybrid

General�information

Classic�mild�hybrid�systems�work�at�voltages�over�42�V.�Today�the�voltages�for�these�systems

sometimes�extend�beyond�160�V.�The�power�of�the�electrical�machine�lies�in�the�range�of�10�to�15�kW.

For�these�mild�hybrid�systems�generally�electrical�machines�are�used�which�convert�part�of�the�kinetic energy�to�electrical�energy�upon�deceleration/braking.�Mild�hybrid�systems�generally�have�a�start- stop�function�whereby�the�electrical�machine�is�used�after�the�combustion�engine�has�shut�down�to restart�the�engine.�In�the�case�of�mild�hybrid�systems�the�electrical�machine�is�sometimes�also�used�to support�the�combustion�engine�for�starting-up�or�acceleration.�For�some�mild�hybrid�systems�the�fuel supply�of�the�combustion�engine�is�shut�down�if�there�is�a�sufficient�state�of�charge�of�the�high-voltage energy�storage�device�and�there�is�a�steady�journey�of�up�to�approx.�50�km/h.�The�vehicle�is�then�only driven�by�the�electrical�machine�and�as�a�result�fuel�economy�is�possible.

BMW�mild�hybrid

BMW�Concept�7-Series�ActiveHybrid

The�first�BMW�ActiveHybrid�7�(F04)�is�a�mild�hybrid�and�was�in�serial�production�from�the�end�of�2009 to�2012.�Its�hybrid�system�works�at�a�voltage�of�120�V.�As�part�of�the�mild�hybrid�concept�the�electric drive�increases�the�dynamic�potential�of�the�eight-cylinder�petrol�engine�and�reduces�consumption and�CO2�emissions�by�up�to�15�percent,�mainly�in�urban�traffic�by�brake�energy�recovery.�Larger�and heavier�hybrid�and�battery�components�are�dispensed�with,�which�in�turn�brings�advantages�in�terms of�the�vehicle�weight�and�luggage�compartment.�The�following�functions�are�available�in�the�BMW ActiveHybrid�7�(F04):

• Engine�start-stop�function

• Recuperative�braking

• Boost

• Climate�control�when�the�vehicle�is�at�a�standstill

But�no�electric�driving.

(12)

Charging�the�high-voltage�battery.

1.�Introduction.

1.3.3.�Full�hybrid

General�information

The�full�hybrid�systems�are�characterised�by�the�fact�that�start-up�and�driving�is�fully�possible�without a�running�combustion�engine.�In�full�hybrid�systems�high-voltage�energy�devices�with�voltages�of sometimes�over�200�V�are�used.�With�these�systems�it�is�therefore�possible�to�drive�vehicles,�e.g.

for�start-up,�by�purely�electric�means�and�in�the�case�of�strong�acceleration�use�the�torque�of�the combustion�engine�and�the�electric�motor�at�the�same�time.�This�process�is�also�called�"boost".

BMW�full�hybrid

BMW�ActiveHybrid�5

Within�the�framework�of�BMW�EfficientDynamics,�the�BMW�Group�introduces�another�version of�a�hybrid�car�from�spring�2012�and�this�time�in�the�segment�of�the�5-Series�saloon.�The�BMW ActiveHybrid�5�is�the�third�series�vehicle�with�hybrid�technology.�By�combining�for�the�first�time�a�BMW six-cylinder�in-line�engine�with�an�electric�drive,�the�BMW�ActiveHybrid�5�sets�new�standards�in�sporty driving�pleasure�and�sustainability�in�this�vehicle�segment.�The�BMW�ActiveHybrid�5�is�a�full�hybrid�car with�a�lithium-ion�high-voltage�battery.

The�drive�system�of�the�BMW�ActiveHybrid�5�comprises�a�6-cylinder�in-line�engine�with�TwinPower turbo�technology�(N55B30M0),�an�8-speed�automatic�gearbox�(GA8P70HZ)�and�an�electrical machine.�The�integration�of�BMW�active�hybrid�technology�in�the�already�efficient�saloon�with�a combustion�engine�once�again�ensures�a�reduction�of�over�10�percent�in�consumption�and�emissions levels.

(13)

Charging�the�high-voltage�battery.

1.�Introduction.

The�electric�motor�of�the�BMW�ActiveHybrid�5�enables�fully�electric�driving�and�thus�emission-free driving�at�speeds�of�up�to�60�km/h.�At�an�average�speed�of�35�km/h,�the�high-voltage�battery�provides enough�energy�to�enable�fully�electric�driving�across�a�distance�of�up�to�four�kilometres.

(14)

Charging�the�high-voltage�battery.

2.�System�components.

2.1.�Energy�storage�device

The�energy�storage�devices�store�the�energy�which�is�used�at�a�later�stage.�Often�the�energy�is�stored in�another�energy�form�and�only�converted�later�if�required�to�minimise�the�drawbacks�in�the�case�of standstill�losses.�For�example�chemical�energy�(fuel)�is�stored�in�the�tank�and�converted�to�thermal and�mechanical�energy�in�the�combustion�engine.�Losses�always�occur�during�energy�storage�and energy�conversion.�There�are�many�types�of�energy�stores�(mechanical,�thermal,�chemical,�magnetic and�electrostatic).�The�following�provides�a�more�detailed�description�of�the�chemical�stores,�as�these are�used�most�frequently�in�today's�hybrid�cars�as�a�second�energy�source.

2.1.1.�Physical�principles�of�the�chemical�store

Basic�structure�of�a�voltaic�cell

Index Explanation

1 Negative�electrode

2 Electrolyte

3 Separator

4 Positive�electrode

In�principle�a�voltaic�cell�comprises�the�electrolyte,�the�battery�housing�and�of�course�the�two electrodes.�In�addition,�the�electrodes�are�insulated�from�one�another�by�a�permeable�separator�for ions�and�an�impermeable�separator�for�electrons.�There�are�chemical�reactions�in�the�voltaic�cells, which�result�in�an�electron�excess�at�one�electrode�and�an�electron�shortage�at�the�other.�Electrical voltage�thus�arises�between�these�two�electrodes.

When�the�battery�is�discharged�the�chemical�energy�stored�is�converted�to�electrical�energy�by a�chemical�reaction.�The�energy-supplying�reaction,�the�discharging,�is�made�up�of�two�spatially separated,�but�connected�partial�reactions�(electrode�reactions).�The�electrode�with�which�the corresponding�partial�reaction�runs�for�a�redox�potential�lower�in�comparison�to�the�other�electrode is�the�negative�electrode,�and�the�other�the�positive�electrode.�An�oxidation�process�takes�place at�the�negative�electrode�for�the�discharging�of�the�cell,�during�which�electrons�are�released;�the corresponding�amount�of�electrons�are�absorbed�at�the�positive�electrode�via�a�reduction�process.�The electron�current�flows�through�an�outer�consumer�circuit�from�the�negative�to�the�positive�electrode.

In�the�cell�the�current�between�the�electrodes�is�carried�by�ions�in�the�ion-conducting�electrolyte�("ion current"),�whereby�ion�and�electron�reactions�are�connected�in/at�the�electrode.

(15)

Charging�the�high-voltage�battery.

2.�System�components.

The�voltaic�cells�are�used�as�DC�voltage�sources.�The�combination�of�electrode�materials�gives�the voltaic�cell�its�name,�such�as�nickel�metal�hydride�cell.�Depending�on�whether�the�cell�is�charged�or discharged,�the�composition�of�the�electrolyte,�as�well�as�the�electrode�material,�changes.�The�type�of materials�from�which�the�electrodes�are�produced�is�determined�by�the�nominal�voltage�of�the�cell.

The�term�"battery"�describes�the�interconnection�of�several�voltaic�cells�which�are�used�as�an�energy source.�But�an�individual�voltaic�cell�is�also�called�a�"battery"�in�normal�usage.�Voltaic�cells�convert�the chemical�energy�stored�within�directly�to�electrical�energy.�A�distinction�is�made�between�rechargeable and�non-rechargeable�batteries.�The�difference�lies�in�the�fact�that�in�rechargeable�batteries�the reactions�for�the�discharging�are�largely�reversible�and�the�battery�can�always�be�recharged�and discharged.�Multiple�conversions�of�chemical�to�electrical�energy�and�vice�versa�are�thus�possible.

Series�connection�of�voltaic�cells

If�a�higher�voltage�is�required�than�the�actual�cell�voltage,�the�cells�can�be�connected�in�series.�The total�voltage�of�the�battery�then�corresponds�to�the�sum�of�the�individual�cells.�In�the�example�above the�total�voltage�is�Utot�=�U1�+�U2�+�U3.

Parallel�circuit�of�voltaic�cells

The�capacity�of�the�battery�is�increased�by�a�parallel�circuit�of�the�voltaic�cells.�The�voltage�of�the battery�thus�always�stays�the�same.

The�capacity�of�a�battery�is�the�electric�charge�stored�in�the�battery.�The�capacity�of�the�battery is�stated�in�ampere�hour�(abbreviation:�Ah).�The�available�capacity�of�a�battery�depends�on�the discharging�conditions.�The�available�capacity�decreases�with�an�increasing�discharge�current.

The�power�of�a�battery�is�stated�in�watt�and�is�the�product�of�a�discharge�current�and�discharge voltage.�The�energy�stored�in�a�battery�is�generally�not�specified.�The�energy�per�mass�or�per�volume is�however�an�important�parameter�of�battery�systems.

Energy�density�and�power�density�of�a�battery

(16)

Charging�the�high-voltage�battery.

2.�System�components.

Energy�and�power�density�of�batteries

Index Explanation

1 Double-layer�capacitor

2 Lead-acid�battery

3 Nickel�cadmium�battery

4 Nickel�metal�hydrid�battery

5 Lithium-ion�battery

x Energy�density�in�Wh/kg

y Power�density�in�W/kg

The�energy�density�describes�the�distribution�of�energy�to�the�mass�of�a�material�and�is�specified in�Wh/kg.�In�hybrid�cars�the�energy�density�of�the�energy�storage�device�used�is�decisive�for�the achievable�range.

The�power�density�of�a�battery�defines�its�electric�power�related�to�the�mass�and�is�specified�in�W/kg.

The�diagram�above�shows�the�power�density�and�energy�density�of�some�storage�devices.�For example�the�double-layer�capacitors�have�a�very�high�power�density,�but�a�low�energy�density�in comparison�to�other�storage�devices.�They�are�thus�capable�of�delivering�a�very�high�power�for�a short�period.�If�for�example�one�compares�the�nickel�cadmium�and�the�nickel�metal�hydrid�battery, one�notices�that�the�two�batteries�have�roughly�the�same�power�density.�But�the�nickel�metal�hydrid battery�has�almost�double�the�energy�density.�This�means�that�a�nickel�metal�hydrid�battery�would

(17)

Charging�the�high-voltage�battery.

2.�System�components.

only�have�half�the�weight�of�a�nickel�cadmium�battery�with�the�same�amount�of�storable�energy.�Or�if one�considers�the�range:�A�vehicle�with�a�nickel�metal�hydrid�battery�would�have�double�the�range�of�a vehicle�with�a�nickel�cadmium�battery�of�the�same�size.

Comparison�of�the�energy�densities�of�petrol�and�a�12�V�battery

Fossil�fuels�have�a�considerably�higher�energy�density.�For�example�the�petrol�or�diesel�fuel�has�an energy�density�of�11.8�kWh/kg.�A�12�V�lead-acid�battery�has�an�energy�density�of�30�Wh/kg.�This means�that�petrol�has�approx.�400�times�higher�energy�density�than�the�lead-acid�battery.�If�for example�a�12�V�battery�has�a�volume�of�approx.�12�litres,�the�petrol�would�take�a�volume�of�0.03�litres with�the�same�amount�of�energy.

There�are�several�versions�of�batteries�on�the�market.�The�following�only�describes�the�most�important battery�types,�which�are�of�interest�from�the�point�of�view�of�hybrid�technology.

2.1.2.�Battery�types

Lead-acid�battery

The�lead-acid�battery�is�one�of�the�oldest�battery�systems�(since�1850)�and�today�still�supplies�millions of�vehicles�with�electrical�energy.�The�lead-acid�battery�is�used�in�vehicles�as�a�starter�battery�for starting�the�combustion�engine.�In�addition,�it�supplies�the�electrical�consumer�with�current�over�a limited�period,�also�at�engine�standstill.

(18)

Charging�the�high-voltage�battery.

2.�System�components.

Structure�of�a�lead-acid�battery

Index Explanation

1 Seal�plug

2 Hydrometer�(magic�eye)

3 Carry�handle

4 Positive�terminal�of�the�battery

5 Battery�housing

6 Base�for�securing�the�battery

7 Disc�block�comprising�positive�and�negative�disc�set

8 Negative�terminal�of�battery

(19)

Charging�the�high-voltage�battery.

2.�System�components.

Chemical�reaction�in�a�lead-acid�battery

Index Explanation

1 Cathode�(negative�terminal)

2 Anode�(positive�terminal)

3 Sulphuric�acid

In�a�charged�state�the�positive�terminal�of�the�lead-acid�battery�is�made�up�of�lead-oxide�(PbO2)�and the�negative�terminal�lead�(Pb).�Diluted�sulphuric�acid�(H2SO4)�is�used�as�an�electrolyte.�If�the�battery�is discharged,�both�terminals�are�made�up�of�lead-sulphate�(PbSO4).

The�overall�reaction�during�discharging�can�be�shown�with�help�of�the�following�chemical�formulas:

Pb�+�PbO2�+2H2SO4�—>�PbSO4�+�2H2O2�+�electrical�energy

The�cells�are�essentially�made�up�positive�and�negative�electrodes,�separators�and�the�parts�necessary for�the�assembly.�Each�cell�supplies�a�voltage�of�two�volts.�6�cells�are�connected�in�series�for�a�battery voltage�of�12�V.�The�energy�density�of�the�lead-acid�battery�is�approx.�30�Wh/kg.

Nickel�cadmium�battery

The�nickel�cadmium�battery�(NiCd)�was�developed�over�100�years�ago�and�is�still�in�use�today.�An essential�difference�to�the�lead-acid�battery�is�that�the�electrolyte�remains�unchanged�during�charging and�discharging.�In�a�charged�state�the�electrodes�of�a�nickel�cadmium�cell�are�made�up�of�panels, which�are�loaded�with�cadmium�at�the�negative�terminal�and�nickel�hydroxide�at�the�positive�terminal.

Potassium�hydroxide�is�used�as�an�electrolyte.�This�combination�supplies�a�voltage�of�1.2�V.�The energy�density�is�comparable�to�that�of�a�lead-acid�battery.

The�heavy�metal�cadmium,�which�is�harmful�to�the�environment,�and�the�so-called�memory�effect�are the�main�causes�for�the�replacement�of�NiCd�batteries�with�new�battery�systems.�The�memory�effect is�described�as�the�capacity�loss�which�occurs�in�the�case�of�very�frequent�partial�discharge�of�a�nickel cadmium�battery.�The�battery�seems�to�"notice"�the�energy�requirement�for�the�previous�discharge processes.�Instead�of�the�original,�nominal�energy�quantity�the�battery�only�delivers�a�minimal�energy quantity�and�the�voltage�drops.

(20)

Charging�the�high-voltage�battery.

2.�System�components.

Nickel�metal�hydrid�battery

Nickel�metal�hydrid�battery�in�the�ActiveHybrid�X6

The�nickel�metal�hydrid�battery�(NiMH�battery)�is�often�considered�the�successor�of�the�NiCd�battery.

The�NiMH�cell�supplies�a�nominal�voltage�of�1.2�volts.�The�energy�density�of�a�NiMH�battery�is�roughly 80�Wh/kg�and�is�thus�double�that�of�a�NiCd�battery.�The�memory�effect�described�above�hardly�ever occurs�in�the�case�of�the�NiMH�battery.�Within�a�short�period�it�can�deliver�its�stored�electrical�energy at�almost�constant�voltage.

The�NiMH�battery�is�sensitive�to�overloading,�total�discharging,�overheating�and�incorrect�polarity.�It�is also�temperature-sensitive.�It�has�a�significant�capacity�loss�near�freezing�point.

The�anode�is�made�from�a�metal�alloy�which�can�store�hydrogen�reversibly�by�storing�it�in�crystal�lattice and�thus�forming�a�metal�hybrid.�The�electrolyte�contains�20�percent�potassium�hydroxide�solution�in which�the�cathode�made�from�nickel�hydroxide�is�also�located.

The�hydrogen�is�oxidised�during�discharging.�A�voltage�of�1.32�volts�occurs�at�both�electrodes�as�a result.�So�that�the�metal�is�not�oxidised�instead�of�the�hydrogen�at�the�end�of�the�discharging�process, the�negative�electrode�is�much�larger�in�size�than�the�positive�electrode.

Lithium-ion�battery�(li-ion�battery)

The�development�of�lithium�batteries�with�lithium�metal�anodes�and�non-aqueous�electrolytes�began in�the�1960s.�The�non-rechargeable�lithium�batteries�were�first�used�in�space�travel�and�for�military applications.�Due�to�their�minimal�self-discharging�they�are�still�also�used�today�in�pacemakers,�clocks and�cameras.�The�actual�commercial�breakthrough�of�the�rechargeable�lithium�battery�came�with the�market�introduction�of�a�cell�which�completely�dispenses�with�metallic�lithium,�the�lithium-ion battery.�Li-ion�cells�are�used�today�mainly�for�the�energy�supply�of�portable�devices�with�a�high�energy requirement�(mobile�phones,�digital�cameras,�notebooks,�etc.).�Due�to�its�high�energy�density�they�are also�of�particular�interest�for�use�in�electric�and�hybrid�cars.�In�addition,�they�supply�a�constant�voltage over�the�entire�discharge�period�and�have�no�memory�effect.

(21)

Charging�the�high-voltage�battery.

2.�System�components.

Structure�of�a�li-ion�cell

Index Explanation

1 Positive�electrode

2 Housing�with�electrolyte

3 Lithium�metal�oxide

4 Separator

5 Graphite�layer

6 Negative�electrode

7 Lithium-ion

The�positive�electrode�of�the�most�frequently�used�li-ion�cells�is�made�up�of�lithium�metal�oxides�in several�layers�(e.g.�LiCoO2�or�LiNiO2).�The�negative�electrode�is�made�up�of�several�layers�of�graphite.

Both�electrodes�are�in�an�electrolyte�free�of�water.�A�separator�is�located�between�the�two�electrodes.

The�lithium-ion�battery�generates�the�source�voltage�by�shifting�the�lithium�ions.�During�the�charging procedure�of�the�cell�positively�charged�lithium�ions�are�converted�by�the�electrolyte�of�the�anode�into the�graphite�layers�of�the�cathode.�The�lithium�ions�form�a�bond�with�the�graphite�(carbon)�without destroying�the�molecular�structure�of�the�graphite.�During�discharging�the�lithium-ions�convert�back into�metal�oxide�and�the�electrons�can�flow�via�the�outer�circuit�to�the�positive�electrode.�The�formation of�a�protective�surface�layer�on�the�negative�electrode�is�essential�for�bonding�the�lithium�ions�and�the graphite�layer.�This�layer�is�permeable�for�the�small�lithium�ions�and�impermeable�for�molecules�in�the electrolyte.

Li-ion�batteries�have�minimal�self-discharging�and�their�efficiency�is�roughly�96%�due�to�the high�ability�to�move�of�the�lithium�ions.�The�efficiency�is�temperature-dependent�and�decreases considerably�at�a�lower�temperature.

A�conventional�li-ion�cell�supplies�a�nominal�voltage�of�3.6�volts.�The�voltage�of�a�lithium-ion�battery is�also�three�times�that�of�a�nickel�metal�hydrid�battery.�A�total�discharge�to�under�2.4�volts�leads�to irreparable�damage�and�capacity�loss�of�the�cell�and�therefore�the�voltage�cannot�fall�below�this�level.

(22)

Charging�the�high-voltage�battery.

2.�System�components.

The�specific�power�density�lies�in�the�range�of�300�to�1500�W/kg.�The�energy�density�is�roughly double�that�of�the�nickel�cadmium�battery�for�example�and�is�95�to�190�Wh/kg.

Discharging�of�the�lithium-ion�battery�under�40�%�should�be�avoided�as�this�can�lead�to�larger�capacity losses�due�to�irreversible�reactions�in�the�electrodes.�Also�the�battery�ages�quicker�the�higher�its�cell voltage�is.�For�this�reason�it�should�also�be�avoided�that�the�lithium-ion�battery�is�constantly�charged�at 100�%.�The�optimal�state�of�charge�is�between�50�%�and�80�%.

There�are�some�special�features�to�note�when�handling�lithium-ion�batteries.�The�mechanical�damage of�the�battery�can�cause�a�short�circuit�of�the�cell.�The�housing�could�melt�and�catch�fire�as�a�result of�the�high�current�level.�Li-ion�batteries�are�in�fact�hermetically�sealed,�nevertheless�they�should�not be�immersed�in�water.�Lithium-ion�batteries�react�very�strongly�in�water,�particularly�in�a�fully�charged state.

As�lithium-ion�batteries�have�a�production-related�fluctuation�of�different�parameters,�e.g.�capacity, and�a�battery�is�composed�of�many�cells,�the�cells�must�be�monitored�individually.�This�is�the�job�of�the battery�management�system.�This�system�ensures�that�the�individual�cells�do�not�overload�or�become heavily�discharged�and�it�arranges�a�charge�balance�between�the�cells�if�necessary.

2.1.3.�Summary

As�we�have�seen�the�voltaic�cell�is�the�core�of�a�storage�system.�Therefore�the�number�of�suitable�cells is�decisive�for�the�storage�device�properties.�The�following�table�provides�an�overview�of�the�properties of�the�key�electrical�energy�storage�devices.

Energy storage device

Cell�voltage

in�volt Power

density�in W/kg

Energy density�in Wh/kg

Memory

effect Operating

temperature in�°C

Lead-acid

battery 2 up�to�500 30 - up�to�45

Nickel cadmium battery

1.2 up�to�1.000 40 yes up�to�65

Nickel�metal

hydrid�battery 1.2 up�to�1.000 80 low up�to�60

Lithium-ion

battery 3.6 300�to�1,500 95�to�190 no up�to�50

If�the�voltage�and/or�the�capacity�of�the�cell�is�not�sufficient�for�the�application,�several�cells�can�be connected�in�series�or�parallel.

Cells�connected�in�series�and�parallel�circuit�of�cells

(23)

Charging�the�high-voltage�battery.

2.�System�components.

2.2.�Power�electronics

Power�electronics�is�a�sub-area�of�electrical�technology,�but�also�includes�the�electronic�components whose�job�is�to�switch,�control�and�convert�electrical�energy.�The�components�and�circuits�of�the power�electronics�are�made�up�of�silicone�diodes�and�silicone�thyristors.�These�components�can switch�very�high�voltages�and�currents�(up�to�4500�V�and�1500�A).

Silicone�transistors�and�silicone�triacs�are�also�used�in�the�lower�power�range.�Thyristors�are circuit�elements�whose�switch-on�time�can�be�set�or�adjusted�by�a�control�voltage�at�the�control electrode,�the�gate.�Two�thyristor�elements�in�one�component,�which�are�connected�in�parallel�in�the opposite�direction�and�are�controlled�jointly,�is�called�a�triac.�The�conversion�of�electrical�energy�with transformers�or�using�rotating�machine�sets�is�not�calculated�for�the�power�electronics.�The�power electronics�primarily�enables�the�conversion�of�electrical�energy�relating�to�the�voltage�type,�the�level of�voltage�and�current,�as�well�as�the�frequency.

2.2.1.�General�converter

Converter�and�inverter

(24)

Charging�the�high-voltage�battery.

2.�System�components.

Index Explanation

1 Rectifier

2 DC-DC�converter

3 Inverter

4 AC-AC�converter

The�circuits�for�conversion�of�electrical�energy�related�to�the�voltage�type,�as�well�as�the�level�of voltage�and�current,�are�called�converters.�Depending�on�their�function�a�distinction�is�made�between rectifier,�inverter�and�converter.

The�conversion�of�AC�voltage�to�direct�current�voltage�is�effected�using�a�rectifier.�Direct�current voltage�can�also�be�converted�to�AC�voltage.�Inverters�are�used�for�this�purpose.�The�conversion of�direct�current�voltage�to�a�higher�or�lower�direct�current�voltage�is�effected�using�a�DC-DC converter.AC-AC�converters�are�used�for�the�conversion�of�AC�voltage�to�AC�voltage�at�a�different height�(amplitude).�If�the�frequency�of�the�AC�voltage�should�change,�frequency�converters�are required.�In�hybrid�cars�the�power�electronics�is�required�for�the�conversion�of�direct�current�voltage to�AC�voltage�and�vice�versa.�In�addition,�the�operating�points�of�electrical�machines�can�be�set�very flexibly�with�help�of�power�electronics.

2.2.2.�Rectifier

Circuit�symbols�for�rectifiers

Rectifiers�are�used�for�the�conversion�of�AC�voltage�to�direct�current�voltage.�They�comprise�several diodes�which�become�rectifiers�by�their�interconnection.�The�diodes�direct�the�respective�half-waves of�the�AC�voltage�to�a�common�direction,�so�that�a�pulsating�direct�current�voltage�arises.�To�obtain pure�direct�current�voltage,�the�voltage�must�be�smoothed�after�the�rectifier�by�means�of�a�capacitor or�throttle.�The�rectification�can�be�uncontrolled�by�semi-conductor�diodes�or�controlled�with�help�of thyristors.�Controlled�rectifiers�require�a�control�voltage�which�specifies�at�what�time�which�electronic circuit�has�to�be�opened�and�closed�in�order�to�achieve�a�rectifying�effect.�Controlled�rectifiers�are realised�by�electronic�circuit�elements�such�as�thyristors�and�MOSFET.�In�the�case�of�uncontrolled rectifiers�the�rectification�of�the�AC�voltage�takes�place�without�an�additional�control�electronics.

2.3.�Electromechanical�switch�contactor

An�electromechanical�switch�contactor�is�an�electrical�switch�for�high�switching�capacities.�The operating�principle�of�a�switch�contactor�is�the�same�as�that�for�a�relay.�However,�the�power,�which can�be�switched�via�a�switch�contactor,�is�much�higher�and�ranges�from�500�watt�to�several�hundred kilowatt.

(25)

Charging�the�high-voltage�battery.

2.�System�components.

Operating�principle�of�a�relay

Index Explanation

A Switch�contactor�open

B Switch�contactor�closed

1 Voltage�source�(low�voltage)

2 Switch�for�low-voltage�circuit

3 Coil�(magnet)

4 Armature

5 Normally�open�contact

6 Load�current�circuit�with�consumer

A�coil�is�activated�via�a�switch�in�a�low-voltage�circuit.�As�soon�as�the�low-voltage�circuit�is�closed, the�induced�magnetic�field�of�the�coil�moves�an�armature.�This�closes�the�circuit�of�the�high-voltage circuit.�As�soon�as�the�low-voltage�circuit�is�reopened,�the�magnetic�effect�of�the�coil�is�removed.�The armature�is�then�reset�to�the�initial�position�by�a�spring.�The�high-voltage�circuit�is�also�interrupted�as�a result.

The�switching�contacts�of�electromechanical�switch�contactors�are�generally�double-break,�i.e.�the high-voltage�circuit�is�generally�separated�by�the�switch�contactor�at�two�points.

(26)

Charging�the�high-voltage�battery.

2.�System�components.

Circuit�symbols�for�switch�contactor

In�extreme�cases,�for�example�extremely�high�current�levels,�the�normally�open�contacts�may�"stick".

If�this�occurs,�the�high-voltage�circuit�can�no�longer�be�interrupted�by�the�electromechanical�switch contactor

2.4.�High-voltage�battery�unit

2.4.1.�Structure�of�the�high-voltage�battery�unit

The�term�"high-voltage�battery"�refers�to�the�actual�energy�accumulator�for�the�high-voltage�system.

In�addition�to�the�energy�storage�device,�other�components�are�required�in�the�vehicle�in�the�high- voltage�battery�unit�to�ensure�maintenance�and�safety�in�the�vehicle.�In�this�chapter�the�structure�of�a high-voltage�battery�unit�using�the�example�of�the�high-voltage�battery�unit�Gen.�2.0�is�described.

The�nominal�voltage�of�316.8 V�is�achieved�by�a�series�connection�of�a�total�of�96�battery�cells (nominal�voltage�3.3 V).

The�high-voltage�battery�unit�is�made�up�of�8�cell�modules.�Each�cell�module�comprises:

• 12�cells

• Cooling�extruded�profiles�(5�centrepieces�and�2�side�pieces)

• Cell�contact�system�ZKS.

(27)

Charging�the�high-voltage�battery.

2.�System�components.

Structure�of�cell�module

Index Explanation

1 Cell

2 Cooling�extruded�profile,�centrepiece

3 Cell�module

4 Cooling�extruded�profile,�side�piece 5 Bracket�for�cell�contacting�system 6 Cell�connector,�cell�contacting�system

The�individual�lithium-iron-phosphate�cells�from�A123�Systems�are�cylindrical�in�shape.�These cells�are�lithium-ion�batteries�whose�cathodes�are�made�from�lithium-iron-phosphate.�They�are characterised�by�their�high�load�capacity�and�robustness.�Another�advantage�of�the�lithium-iron- phosphate�cells�as�opposed�to�other�lithium-ion�batteries�is�that�there�is�no�oxidation�material�in�the cell�and�therefore�overreactions�are�less�severe.

(28)

Charging�the�high-voltage�battery.

2.�System�components.

The�cells�are�bonded�in�the�cooling�extruded�profiles.�In�general,�the�adhesive�tape�should�have�high thermal�conductivity�to�ensure�good�heat�dissipation�from�the�cell�to�the�extruded�profile.�In�the�event of�damage�to�the�plastic�sleeve�of�the�cell�the�adhesive�must�also�have�an�insulating�effect.

The�two�parts�of�the�cell�contacting�system�ZKS�are�welded�to�the�cell�terminal�by�means�of�a�laser welding�process.�This�provides�the�series�connection�of�the�individual�cells.

There�are�two�power�taps�in�each�module�to�discharge�the�current�from�the�module.�The�power taps�are�attached�at�the�front�cell�contacting�system.�The�power�taps�of�neighbouring�modules�are connected�to�the�module�connectors.

Lithium-ion�technology�cells�are�sensitive�to�overloading,�overvoltage,�overcurrent�and�excess

temperature.�For�this�reason�printed�circuit�boards�for�voltage�taps�are�fitted�at�the�cells�with�integrated temperature�sensors�on�both�sides�of�the�cell�module.�The�monitoring�of�the�cells�is�effected�by�the cell�supervision�circuits�CSC�(Cell�Supervising�Circuit).

The�cell�modules�are�installed�in�a�vaporising�unit�to�cool�the�cells.�The�refrigerant�is�routed�along�the cells�through�channels�in�the�heat�sink�and�the�cells�cooled.

Structure�of�the�high-voltage�battery�unit

(29)

Charging�the�high-voltage�battery.

2.�System�components.

Index Explanation

1 Housing�cover

2 Shield�including�current�arrester

3 Cell�supervision�circuit�CSC

4 Battery�management�electronics�(SME)

5 Heat�sink�incl.�crash�plates

6 Retaining�bracket

7 Housing

8 Cell�module

The�housing�of�the�high-voltage�battery�unit�Gen.�2.0�cannot�be�opened.

The�passing�of�forces�in�the�event�of�a�crash�through�the�heat�sink�and�thus�along�the�cell�modules�is realised�by�so-called�crash�plates.�These�are�located�between�the�cell�modules.

If�an�impermissible�high�temperature�or�impermissible�high�pressure�arises�in�a�cell,�a�pressure�relief value�is�integrated�in�both�covers�of�each�cell�beside�tight�and�weldable�terminals.�Above�this�point�the excess�pressure�in�the�cell�can�be�decreased.�The�gases�released�in�the�process�are�discharged�from the�vehicle�through�the�degassing�pipe.

The�high-voltage�battery�can�be�connected�to�or�isolated�from�the�high-voltage�electrical�system�using the�contacts�of�electromechanical�switch�contactors�inside�the�high-voltage�battery�unit�of�the�vehicle.

These�contacts�are�located�on�the�positive�terminal�and�the�negative�terminal,�before�the�terminals�of the�high-voltage�battery�are�routed�outwards.�The�electromechanical�switch�contactors�are�activated by�a�control�unit�in�the�high-voltage�battery�unit,�the�so-called�battery�management�electronics�SME.

Battery�management�electronics

High�demands�are�placed�on�the�service�life�of�the�high-voltage�battery�(service�life�of�the�vehicle).�In the�interest�of�satisfying�these�demands,�it�is�not�permitted�to�operate�the�battery�in�any�manner�one likes.�Instead,�the�high-voltage�battery�is�operated�in�a�precisely�defined�range�so�as�to�maximise�its service�life.�This�includes�the�following�marginal�conditions:

• Protecting�the�cells�against�overheating�(by�cooling�and/or�limiting�the�current)

• Adjusting�the�state�of�charge�of�the�individual�cells�where�necessary�to�one�another

• Not�fully�depleting�the�battery's�amount�of�storable�energy.

For�this�reason�the�high-voltage�battery�unit�also�has�its�own�control�unit,�which�monitors�these marginal�conditions�and�intervenes�where�necessary.�This�control�unit�is�called�the�"battery

management�electronics�(SME)"�and�is�located�inside�the�high-voltage�battery�unit,�which�is�why�it�is not�accessible�from�the�outside.�The�SME�control�unit�must�fulfil�the�following�tasks:

(30)

Charging�the�high-voltage�battery.

2.�System�components.

• Determining�the�state�of�charge�(SoC)�and�the�state�of�health�(SoH)�of�the�high-voltage�battery

• Control�of�the�starting�and�shutdown�of�the�high-voltage�system

• Safety�functions�(e.g.�high-voltage�interlock�loop,�insulation�monitoring)

• Monitoring�the�voltage�and�temperature�of�the�battery�cells�and�the�current

• Communication�of�fault�status.

The�SME�control�unit�has�its�own�fault�memory�which�can�be�read�out�using�the�BMW�diagnosis system.

Cell�monitoring

Certain�conditions�must�be�observed�for�fault-free�operation�of�the�lithium-ion�cells:�The�cell�voltage and�the�cell�temperature�cannot�exceed�or�drop�below�certain�values�as�otherwise�the�battery cells�may�suffer�long-term�damage.�For�this�reason�each�high-voltage�battery�unit�has�several�cell supervision�circuits,�which�are�described�as�"Cell�Supervisory�Circuits�CSC".

The�cell�supervision�circuits�perform�the�following�functions:

• Measurement�and�monitoring�of�the�voltage�of�each�individual�battery�cell

• Measurement�and�monitoring�of�the�temperature�at�a�point�on�each�cell�module

• Communication�of�the�measured�variables�to�the�battery�management�electronics�control�unit

• Implementation�of�the�process�for�adjusting�the�cell�voltage�of�the�battery�cells.

The�measurement�of�the�cell�voltage�is�effected�at�a�very�high�sampling�rate.�The�end�of�the�charging procedure,�as�well�as�the�discharging�procedure,�can�be�identified�using�the�voltage�measurement.

Using�the�cell�temperature�an�overload�or�electrical�fault�can�be�identified.�In�such�a�case�the�current level�must�be�reduced�immediately�or�the�high-voltage�system�shut�down�completely�in�order�to�avoid progressive�damage�to�the�battery�cells.

External�interface�(S-box)

In�the�high-voltage�battery�unit�there�is�an�interface�unit�with�its�own�housing,�which�is�also�called�a

"shift�box"�or�"S-box"�for�short.

The�following�components�are�integrated�in�the�interface�unit:

• Current�sensor�in�the�current�path�of�the�negative�battery�terminal

• Safety�fuse�in�the�current�path�of�the�positive�battery�terminal

• Two�electromechanical�switch�contactors�(one�switch�contactor�per�current�path)

• Pre-charge�switch�for�slow�start-up�of�the�high-voltage�system

• Voltage�sensors�for�monitoring�the�switch�contactors�and�for�measuring�the�total�battery voltage.

High-voltage�connection

There�is�a�2-pin�high-voltage�connection�at�the�high-voltage�battery�unit.

(31)

Charging�the�high-voltage�battery.

2.�System�components.

High-voltage�connection�on�the�high-voltage�battery�unit

Index Explanation

1 Bush�with�connection�for�bridge�in�the�circuit�of�the�high-voltage�interlock�loop

2 Mechanical�locking

3 Electrical�contact�for�high-voltage�cable 4 Electrical�contact�for�shielding

5 Contact�protection

The�high-voltage�connection�not�only�fulfils�the�primary�task�of�connecting�the�high-voltage�battery unit�to�the�high-voltage�cables.�In�addition,�the�high-voltage�connection�provides�protection�against contact�with�live�parts:�The�actual�contacts�are�coated�in�plastic�so�that�nobody�can�touch�them directly.�Only�when�the�cable�is�connected�is�the�coating�pushed�away�and�the�contact�established.

The�plastic�slide�serves�as�the�mechanical�latch�mechanism�of�the�connector.�In�addition,�it�is�also an�element�of�a�safety�function:�If�the�high-voltage�cable�is�not�connected,�the�slide�conceals�the connection�for�the�bridge�of�the�high-voltage�interlock�loop.�Only�when�the�high-voltage�cable�is properly�connected�and�the�connector�is�locked,�is�this�connection�accessible�and�the�bridge�can�be inserted.�This�guarantees�that�only�when�a�high-voltage�cable�is�connected�is�the�circuit�of�the�high- voltage�interlock�loop�also�closed.�The�high-voltage�system�can�thus�only�be�active�if�the�high-voltage cable�is�connected�and�the�circuit�of�the�high-voltage�interlock�loop�is�closed.

(32)

Charging�the�high-voltage�battery.

2.�System�components.

High-voltage�connection

Index Explanation

A High-voltage�connection�with�connected�high-voltage�cable B High-voltage�connection�with�disconnected�high-voltage�cable 1 Bridge�for�high-voltage�interlock�loop�(connected)

2 Mechanical�slide

3 High-voltage�connector�of�the�high-voltage�cable 4 Bridge�for�high-voltage�interlock�loop�(disconnected) 5 High-voltage�connection�on�the�high-voltage�battery�unit

Procedure�for�connection�of�high-voltage�cable�to�high-voltage�battery�unit

(33)

Charging�the�high-voltage�battery.

2.�System�components.

Index Explanation

A Connect�high-voltage�connector

B Lock�with�slide

C Connect�bridge�of�high-voltage�interlock�loop

After�the�high-voltage�connector�is�inserted�at�the�high-voltage�battery�unit,�the�plastic�slide�must be�pushed�in�the�direction�of�the�connector.�The�high-voltage�connector�is�thus�locked�and�the connection�for�the�high-voltage�interlock�loop�free.�Then�the�bridge�of�the�high-voltage�interlock�loop can�be�positioned.�While�the�bridge�of�the�high-voltage�interlock�loop�is�connected,�the�lock�cannot�be loosened�and�thus�the�high-voltage�connector�cannot�be�disconnected.

2.4.2.�Transport�mode

The�high-voltage�battery�unit�is�in�the�so-called�transport�mode�for�transport�and�storage.�In�transport mode�some�internal�functions�such�as�balancing�of�the�individual�cells�for�example�are�switched�off.�As a�result,�the�self-discharging�of�the�high-voltage�battery�unit�is�reduced.

The�transport�mode�also�contributes�to�electrical�safety�in�that�it�prevents�the�electromechanical switch�contactors�being�able�to�be�closed.�For�charging�the�transport�mode�must�therefore�be

cancelled�by�the�high-voltage�charger�for�a�short�period.�After�the�charging�procedure�is�complete,�the transport�mode�of�the�high-voltage�battery�unit�must�be�activated�again�in�order�to�prevent�quick�self- discharging.

2.5.�High-voltage�charger

The�high-voltage�charger�HVL1�was�developed�by�Eltek�for�the�high-voltage�battery�unit�Gen.�2.0.�The software�of�the�high-voltage�charger�can�be�updated�to�allow�improvements�from�development.

High-voltage�charger�HVL1

(34)

Charging�the�high-voltage�battery.

2.�System�components.

Index Explanation

1 Brief�instructions

2 Display�with�pushbuttons

3 Emergency-off�switch

4 Network�switch

5 Signal�connector

6 Mains�plug

7 Label�for�high-voltage�component

8 Ventilation�grille

9 Connection�for�equipotential�bonding�(is�not�used�when�charging�the�high- voltage�battery�unit)

10 High-voltage�connector

Brief�instructions�on�using�the�device�can�be�found�on�the�front�of�the�device.�These�serve�only�as reference.�When�charging�high-voltage�batteries�always�observe�the�operating�instructions�enclosed with�the�high-voltage�charger.

The�high-voltage�charger�has�the�following�operating�and�display�elements:

Operating�and�display�elements�of�high-voltage�charger�HVL1

Index Explanation

1 Display

2 Display�of�voltage�supply�of�high-voltage�charger 3 Display�of�high-voltage�charging�procedure

4 Display�of�faults

References

Related documents

For�the�F10H�there�are�two�components�in�the�exterior�trim,�based�on�which�it�can�be�differentiated

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Coad (2007) presenterar resultat som indikerar att små företag inom tillverkningsindustrin i Frankrike generellt kännetecknas av att tillväxten är negativt korrelerad över

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Fredrik Svinhufvud, Chairman, Vindkraft Ukraina Discussant: Chloé Le Coq, Assistant Professor, SITE Date: Thursday, November 21, 9.15 -11.45. Place: Stockholm School of

The differences and exact value changes for the first re-simulation are presented in table 37 below. Whereas the second re-simulation incorporated all of the presented changes as

The figure looks like a wheel — in the Kivik grave it can be compared with the wheels on the chariot on the seventh slab.. But it can also be very similar to a sign denoting a