• No results found

9 Diskussion och slutsats

9.5 Vidare forskning

Områdessegmentering som metod har i denna studie tagits fram, presenterats, analyserats och diskuterats. Den har validerats i den mån som är möjlig idag men ytterligare validering eller motbevisning av metodens tillämpbarhet rekommenderas vidare genom uppföljning av ifall de identifierade stadsdelarna ökar i PV-penetration i framtiden. Som nämnts i 9.3 Metodkritik krävde framtagandet av metoden en del subjektiva beslut även om den till största del framtogs systematiskt. Denna subjektivitet rekommenderas att granskas vid vidare tillämpning och utveckling av metoden.

Ett gap gällande litteratur som kan kopplas till adoption av näringsfastigheter och lägenheter har identifierats. En grund för vidare arbete inom detta har lagts i och med Appendix 1 –

Lägenheter och näringsfastigheter. Förslag kring hur en liknande metod skulle kunna appliceras

på dessa har presenterats där rekommendationen är att göra kvalitativ datainsamling för ett fåtal specifika aktörer som ska undersökas. Eftersom detta är aktörer vars installation har potential att vara stor och själv motsvara villornas klusterinstallationer är det av stor relevans. Installationer på gårdar på landsbygd är också något som inte berörts i denna studie men kan ha liknande effekt med stora installationer. Dessa skulle också kunna identifieras med kvalitativ datainsamling.

De åtgärder som undersökts är endast nätförstärkning, batterilagring och curtailment. Dessa valdes utifrån litteratur som identifierat dem som de bästa, tillsammans med övrig energilagring. Annan teknik för energilagring och andra typer av åtgärder skulle kunna undersökas vidare för att se vilken potential de har att lösa utmaningarna.

En stor del av denna studies resultat beror på hur elnätet kommer utformas i framtiden. Kanske finns det så mycket decentraliserad elproduktion att elnätsbolag som TvAB inte längre kommer ha någon produktion utan enbart tillhandahålla lagringsfunktioner? Kanske kommer priset på batterier sjunka snabbare än förväntat eller så ökar kostnader för markarbete i samband med kabelläggning? Elnätet som system är komplext och i ständig förändring med nya tekniker och denna förändring behöver uppmärksammas löpande för att vara beredd på framtiden. Alternativa ägandeformer både av PV-systemen och åtgärderna bör undersökas vidare eftersom det här har tydliggjorts att nya affärsstrategier med mellanhandsaktörer och fördelning av nyttor och kostnader potentiellt kan öka lönsamheten med exempelvis batterier. Gällande just lönsamhet finns det mycket som skulle kunna arbetas vidare med. Här hade lönsamhetsberäkningarna endast en liten del i arbetet medan många aspekter togs upp i vidare diskussion. Denna diskussion tillsammans med de antaganden som gjordes skulle kunna göras om till beräkningar för ytterligare validitet i ett framtida arbete som primärt fokuserar på lönsamheten och hur lönsamheten för olika åtgärder skulle kunna förbättras.

Litteraturförteckning

ABB (2021) Transformatorstationer.

Abbas, A. S. et al. (2021) ‘Optimal Harmonic Mitigation in Distribution Systems with Inverter Based Distributed Generation’, Applied Sciences, 11(2), p. 774. doi: 10.3390/app11020774. Afolabi, O. A. et al. (2015) ‘Analysis of the Load Flow Problem in Power System Planning Studies’, Energy and Power Engineering, 7, pp. 509–523. doi: 10.4236/epe.2015.710048. Ajzen, I. (1991) ‘The theory of planned behavior’, Organizational Behavior and Human

Decision Processes, 50(2), pp. 179–211. doi: 10.1016/0749-5978(91)90020-T.

Alrashoud, K. and Tokimatsu, K. (2020) ‘An exploratory study of the public’s views on residential solar photovoltaic systems in oil-rich Saudi Arabia’, Environmental Development, 35. doi: 10.1016/j.envdev.2020.100526.

Anugwom, E. E., Anugwom, K. N. and Eya, O. I. (2020) ‘Clean energy transition in a developing society: Perspectives on the socioeconomic determinants of Solar Home Systems adoption among urban households in southeastern Nigeria’, African Journal of Science,

Technology, Innovation and Development, 12(5), pp. 653–661. doi:

10.1080/20421338.2020.1764176.

Aziz, T. and Ketjoy, N. (2017) ‘PV Penetration Limits in Low Voltage Networks and Voltage Variations’, IEEE Access. Institute of Electrical and Electronics Engineers Inc., pp. 16784– 16792. doi: 10.1109/ACCESS.2017.2747086.

Bach, L., Hopkins, D. and Stephenson, J. (2020) ‘Solar electricity cultures: Household adoption dynamics and energy policy in Switzerland’, Energy Research and Social Science, 63. doi: 10.1016/j.erss.2019.101395.

Bao, Q. et al. (2020) ‘A human-centered design approach to evaluating factors in residential solar PV adoption: A survey of homeowners in California and Massachusetts’, Renewable

Energy, 151, pp. 503–513. doi: 10.1016/j.renene.2019.11.047.

Baroni, B. R. et al. (2021) ‘Impact of photovoltaic generation on the allowed revenue of the utilities considering the lifespan of transformers: A Brazilian case study’, Electric Power

Systems Research, 192(1), pp. 1–12. doi: 10.1016/j.epsr.2020.106906.

Bashiri, A. and Alizadeh, S. H. (2018) ‘The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran’,

Renewable and Sustainable Energy Reviews, 81(2), pp. 3131–3139. doi: 10.1016/j.rser.2017.08.093.

Bell, J. and Waters, S. (2014) Introduktion till forskningsmetodik. 5th edn. Lund: Studentlitteratur.

Bergek, A. and Mignon, I. (2017) ‘Motives to adopt renewable electricity technologies: Evidence from Sweden’, Energy Policy, 106, pp. 547–559. doi: 10.1016/j.enpol.2017.04.016.

Bird, L., Cochran, J. and Wang, X. (2014) Wind and Solar Energy Curtailment: Experience

and Practices in the United States. Denver. Available at: www.nrel.gov/publications.

(Accessed: 20 April 2021).

Bird, L., Gagnon, P. and Heeter, J. (2016) Expanding Midscale Solar: Examining the Economic

Potential, Barriers, and Opportunities at Offices, Hotels, Warehouses, and Universities.

Golden, CO (United States). doi: 10.2172/1326896.

Bitowt, M. and Johansson, M. (2013) Design of a tidal power park and a wave power park

with a techno-economical approach. Chalmers.

Bixia (2020) Elbolag med närproducerad klimatsmart el - Bixia.

Bondio, S., Shahnazari, M. and McHugh, A. (2018) ‘The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland’s rapid uptake residential solar photovoltaics market’, Renewable and Sustainable Energy Reviews, 93, pp. 642–651. doi: 10.1016/j.rser.2018.05.035.

Börjeson, L. et al. (2006) ‘Scenario types and techniques: Towards a user’s guide’, Futures, 38, pp. 723–739. doi: 10.1016/j.futures.2005.12.002.

Brunsdon, N. et al. (2013) Opportunities and obstacle to the uptake of photovoltaics and

sustainable technologies in the Christchurch commercial rebuild.

Butler-Purry, K. L. and Marotti, M. (2006) ‘Impact of distributed generators on protective devices in radial distribution systems’, in Proceedings of the IEEE Power Engineering Society

Transmission and Distribution Conference, pp. 87–88. doi: 10.1109/TDC.2006.1668462.

Byman, K. (2016) Sveriges framtida elproduktion: En delrapport. Stockholm.

Candas, S., Siala, K. and Hamacher, T. (2019) ‘Sociodynamic modeling of small-scale PV adoption and insights on future expansion without feed-in tariffs’, Energy Policy, 125, pp. 521– 536. doi: 10.1016/j.enpol.2018.10.029.

Cárdenas, B. et al. (2021) ‘Energy storage capacity vs. renewable penetration: A study for the UK’, Renewable Energy, 171, pp. 849–867. doi: 10.1016/j.renene.2021.02.149.

Cohen, J. et al. (2019) ‘Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles’, Energy Economics, 83, pp. 567–577. doi: 10.1016/j.eneco.2019.08.004.

Cole, W. and Frazier, A. W. (2020) Cost Projections for Utility-Scale Battery Storage: 2020

Update. Denver. Available at: https://www.nrel.gov/docs/fy20osti/75385.pdf (Accessed: 20

April 2021).

Crago, C. L. and Chernyakhovskiy, I. (2017) ‘Are policy incentives for solar power effective? Evidence from residential installations in the Northeast’, Journal of Environmental Economics

Crago, C. L. and Koegler, E. (2018) ‘Drivers of growth in commercial-scale solar PV capacity’,

Energy Policy, 120, pp. 481–491. doi: 10.1016/j.enpol.2018.05.047.

Deutsch, N. and Berényi, L. (2020) ‘Economic potentials of community-shared solar plants from the utility-side of the meter – A Hungarian case’, Electricity Journal, 33(8), p. 106826. doi: 10.1016/j.tej.2020.106826.

Devi, A. L. and Subramanyam, B. (2005) SIZING OF DG UNIT OPERATED AT OPTIMAL

POWER FACTOR TO REDUCE LOSSES IN RADIAL DISTRIBUTION. A CASE STUDY.

Dharshing, S. (2017) ‘Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany’, Energy Research and

Social Science, 23, pp. 113–124. doi: 10.1016/j.erss.2016.10.012.

DNV GL (2020a) ‘Energy Transition Outlook 2020 - A global and regional forecast to 2050’,

Dnv Gl Energy Transition Outlook, p. 306. Available at:

https://eto.dnvgl.com/2020/index.html.

DNV GL (2020b) Tesla’s battery day and the energy transition - DNV. Available at: https://www.dnv.com/feature/tesla-battery-day-energy-transition.html (Accessed: 14 May 2021).

Draka (2017) Kraftkablar 1 kV–SE-N1XZ1 0,6/1 kV. Available at: http://media.draka.se/2015/03/SE-N1XZ1-1kV-2017-06-30.pdf (Accessed: 10 May 2021). Ellevio (2020) Sverige har en solcellsboom – och det är villaägarna som dominerar - Ellevio

Kundnyheter. Available at: https://kundnyheter.ellevio.se/sverige-har-en-solcellsboom-och-

det-ar-villaagarna-som-dominerar/ (Accessed: 7 April 2021).

Elsäkerhetsverket (2015) Informationsbehov och elsäkerhetskrav rörande solcellsanläggningar. Energiföretagen (2018) Anslutning av elproduktion till lågspänningsnätet − ALP.

Energimarknadsbyrån (2020a) Elens väg.

Energimarknadsbyrån (2020b) Elens väg. Available at:

https://www.energimarknadsbyran.se/el/elmarknaden/elnatet/elens- vag/#:~:text=Stamnät,transporteras dit där den behövs.

Energimarknadsinspektionen (2017) Elnät.

Energimarknadsinspektionen (2019) Nu är alla beslut om elnätsföretagens intäktsramar för

åren 2020–2023 fattade - Energimarknadsinspektionen. Available at: https://www.ei.se/sv/nyhetsrum/nyheter/nyheter-2019/nu-ar-alla-beslut-om-

elnatsforetagens-intaktsramar-for-aren-2020-2023-fattade/ (Accessed: 10 May 2021).

Energimyndigheten (2016) Förslag till strategi för ökad användning av solel, Statens

Energimyndigheten (2017) Energistatistik för småhus 2016. Eskilstuna. Available at: www.energimyndigheten.se (Accessed: 14 May 2021).

Energimyndigheten (2018) Målsättningar för solceller i Sverige.

Energimyndigheten (2019) Så undersöker du förutsättningarna för solel. Available at: http://www.energimyndigheten.se/fornybart/solelportalen/har-mitt-hus-ratt-

forutsattningar/sa-undersoker-du-forutsattningarna/ (Accessed: 20 April 2021).

Energimyndigheten (2020a) Nätanslutna solcellsanläggningar. Available at: https://www.energimyndigheten.se/nyhetsarkiv/2020/solcellsstatistik-2019--nu-finns-44-000- solcellsanlaggningar-i-sverige/.

Energimyndigheten (2020b) Sveriges energi- och klimatmål.

Energimyndigheten (2021a) 22 000 nya nätanslutna solcellsanläggningar. Available at: http://www.energimyndigheten.se/nyhetsarkiv/2021/22-000-nya-natanslutna-

solcellsanlaggningar-under-2020/ (Accessed: 21 April 2021). Energimyndigheten (2021b) Löpande intäkter efter installation.

Energimyndigheten (2021c) Vanliga frågor och svar om investeringsstödet.

Energirådgivningen (2020) Eluppvärmning i småhus . Available at: https://energiradgivningen.se/eluppvarmning-i-smahus/ (Accessed: 20 April 2021).

Engelken, M. et al. (2018) ‘Why homeowners strive for energy self-supply and how policy makers can influence them’, Energy Policy, 117, pp. 423–433. doi: 10.1016/j.enpol.2018.02.026. European Commission (2020) 2030 climate & energy framework | Climate Action.

European Commission (2021) A European Green Deal. Available at: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (Accessed: 30 March 2021).

Fachrizal, M. and Tang, J. (2019) ‘Forecasting annual solar PV capacity installation in Thailand residential sector: A user segmentation approach’, Engineering Journal, 23(6), pp. 99–115. doi: 10.4186/ej.2019.23.6.99.

Fina, B. et al. (2021) ‘Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria’, Applied Energy, 283, p. 116309. doi: 10.1016/j.apenergy.2020.116309.

Fitzgerald, G. et al. (2015) The economics of battery energy storage: How multi-use, customer-

sited batteries deliver the most services and value to customers and the grid. Available at:

http://www.rmi.org/electricity_battery_value (Accessed: 20 April 2021).

14 April 2021).

Framtidens Solel i Östra Mellansverige (2020) Om projektet | Framtidens Solel i Östra

Mellansverige.

Frey, E. F. and Mojtahedi, S. (2018) ‘The impact of solar subsidies on California’s non- residential sector’, Energy Policy, 122, pp. 27–35. doi: 10.1016/j.enpol.2018.07.020.

Fuchs, G. et al. (2012) Technology Overview on Electricity Storage.

Gandhi, O. et al. (2020) ‘Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration’, Solar Energy, 210(July), pp. 181–201. doi: 10.1016/j.solener.2020.06.097.

Gebbran, D. et al. (2021) ‘Fair coordination of distributed energy resources with Volt-Var control and PV curtailment’, Applied Energy, 286, p. 116546. doi: 10.1016/j.apenergy.2021.116546.

Hansson, M. and Lakso, J. (2016) Potentialen för lokala energilager i distributionsnäten. Stockholm. Available at: www.powercircle.org (Accessed: 20 April 2021).

Haryadi, F. N. et al. (2019) ‘Predicting Rooftop Photovoltaic Adoption In The Residential Consumers of PLN Using Agent-Based Modeling’, 2019 International Conference on

Technologies and Policies in Electric Power & Energy, 1(1), pp. 1–5.

Hatefi Torshizi, N. et al. (2021) ‘An adaptive characteristic for overcurrent relays considering uncertainty in presence of distributed generation’, International Journal of Electrical Power

and Energy Systems, 128(1), pp. 1–11. doi: 10.1016/j.ijepes.2020.106688.

Heinrich, C. et al. (2016) ‘PV-integration strategies for low voltage networks’, in 2016 IEEE

International Energy Conference, ENERGYCON 2016. Institute of Electrical and Electronics

Engineers Inc. doi: 10.1109/ENERGYCON.2016.7514141.

Hoen, B., Rand, J. and Elmallah, S. (2019) Commercial PV Property Characterization: An

Analysis of Solar Deployment Trends in Commercial Real Estate.

IEA (2019) Trends in Photovoltaic Applications 2019. IEA (2021) International Energy Agency: Data & Statistics.

Iioka, D. et al. (2019) ‘Voltage reduction due to reverse power flow in distribution feeder with photovoltaic system’. doi: 10.1016/j.ijepes.2019.05.059.

Iria, J., Heleno, M. and Candoso, G. (2019) ‘Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks’, Applied Energy, 250, pp. 1147–1157. doi: 10.1016/j.apenergy.2019.04.120.

Energy Economics, 81, pp. 216–226. doi: 10.1016/j.eneco.2019.04.001.

Jamil, M. and Anees, A. S. (2016) ‘Optimal sizing and location of SPV (solar photovoltaic) based MLDG (multiple location distributed generator) in distribution system for loss reduction, voltage profile improvement with economical benefits’. doi: 10.1016/j.energy.2016.02.095.

Kandt, A. (2011) ‘Solar for Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint’, in ASES SOLAR

2011. Raleigh, North Carolina.

Karimi, M. et al. (2016) ‘Photovoltaic penetration issues and impacts in distribution network - A review’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, pp. 594–605. doi: 10.1016/j.rser.2015.08.042.

Karjalainen, S. and Ahvenniemi, H. (2019) ‘Pleasure is the profit - The adoption of solar PV systems by households in Finland’, Renewable Energy, 133(1), pp. 44–52. doi: 10.1016/j.renene.2018.10.011.

Kesari, B., Atulkar, S. and Pandey, S. (2018) ‘Consumer Purchasing Behaviour towards Eco- Environment Residential Photovoltaic Solar Lighting Systems’, Global Business Review, 1(1), pp. 1–19. doi: 10.1177/0972150918795550.

Kim, M.-H. and Gim, T.-H. T. (2021) ‘Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea’, International Journal of

Environmental Research and Public Health, 18(2), p. 644. doi: 10.3390/ijerph18020644.

Kumar, N. M. et al. (2020) ‘Solar PV module technologies’, in Photovoltaic Solar Energy

Conversion. Elsevier, pp. 51–78. doi: 10.1016/b978-0-12-819610-6.00003-x.

Kvandal, M. (2021) VW-chefen lovar: Tvåvägsladdning i alla nya bilar från nästa år | Vi

Bilägare, Vi Bilägare. Available at: https://www.vibilagare.se/nyheter/vw-chefen-lovar-

tvavagsladdning-i-alla-nya-bilar-fran-nasta-ar (Accessed: 14 May 2021).

Kwan, C. L. (2012) ‘Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States’, Energy

Policy, 47, pp. 332–344. doi: 10.1016/j.enpol.2012.04.074.

Lan, H., Gou, Z. and Lu, Y. (2020) ‘Machine learning approach to understand regional disparity of residential solar adoption in Australia’, Renewable and Sustainable Energy

Reviews, 136(1), p. 110458. doi: 10.1016/j.rser.2020.110458.

Larsson, P. and Börjesson, P. (2016) Cost models for battery energy storage systems. Stockholm.

Latheef, A. A., Gosbell, V. J. and Smith, V. (2006) ‘Harmonic Impact of Residential Type Photovoltaic Inverters on 11kV Distribution System’, in Australian Universities Power

Lau, L. S. et al. (2020) ‘Investigating nonusers’ behavioural intention towards solar photovoltaic technology in Malaysia: The role of knowledge transmission and price value’,

Energy Policy, 144(1), p. 111651. doi: 10.1016/j.enpol.2020.111651.

Lecy, J. and Beatty, K. (2012) Structured Literature Reviews Using Constrained Snowball

Sampling and Citation Network Analysis.

Leithon, J., Werner, S. and Koivunen, V. (2020) ‘Cost-aware renewable energy management: Centralized vs. distributed generation’, Renewable Energy, 147, pp. 1164–1179. doi: 10.1016/j.renene.2019.09.077.

LEVA (2020) Så fungerar elnätet.

Linköpings kommun (2017) Solenergi - en vägledning. Linköping. Available at: https://www.linkoping.se/globalassets/bygga-bo-och-

miljo/energiradgivning/solenergi/solenergi_vagledning_webb.pdf?49ee0f (Accessed: 20 April 2021).

Linköpings kommun (2018a) Kommunkoncernens handlingsplan 2018-2020 för

koldioxidneutralt Linköping 2025. Linköping.

Linköpings kommun (2018b) Program för ökad produktion av solel. Linköpings kommun (2020a) Handlingsplan för solel.

Linköpings kommun (2020b) Solenergi.

Lobaccaro, G. et al. (2017) ‘Boosting solar accessibility and potential of urban districts in the Nordic climate: A case study in Trondheim’, Solar Energy, 149, pp. 347–369. doi: 10.1016/j.solener.2017.04.015.

Lukanov, B. R. and Krieger, E. M. (2019) ‘Distributed solar and environmental justice: Exploring the demographic and socio-economic trends of residential PV adoption in California’,

Energy Policy, 134, p. 110935. doi: 10.1016/j.enpol.2019.110935.

Lynn, P. A. (2010) Electricity from Sunlight - An Introduction to Photovoltaics. 1st edn. West Sussex: John Wiley & Sons, Incorporated. Available at: https://ebookcentral.proquest.com/lib/linkoping-ebooks/detail.action?docID=480473

(Accessed: 7 April 2021).

Martinsson, A. et al. (2019) Remissvar - Det stora antalet ansökningar för solcellsstödet måste

hanteras och en plan för utfasningen av stödet tas fram. Stockholm. Available at:

https://www.svensksolenergi.se/upload/om-oss/arkiv/SSE-rek-regering-solcellsstod2020- juni2019.pdf (Accessed: 21 April 2021).

McCabe, A., Pojani, D. and van Groenou, A. B. (2018) ‘The application of renewable energy to social housing: A systematic review’, Energy Policy, 114, pp. 549–557. doi: 10.1016/j.enpol.2017.12.031.

Mengist, W., Soromessa, T. and Legese, G. (2020) ‘Method for conducting systematic literature review and meta-analysis for environmental science research’, MethodsX, 7, p. 100777. doi: 10.1016/j.mex.2019.100777.

Menon, N. M., Jerome, S. and Sujatha, I. (2020a) ‘Study to identify factors influencing the adoption of solar photovoltaic panels in households’, Journal of Critical Reviews. doi: 10.31838/jcr.07.12.89.

Menon, N. M., Jerome, S. and Sujatha, I. (2020b) ‘STUDY TO IDENTIFY FACTORS INFLUENCING THE ADOPTION OF SOLAR PHOTOVOLTAIC PANELS IN HOUSEHOLDS’, Journal of Critical Reviews. doi: 10.31838/jcr.07.12.89.

Mohandes, N., Sanfilippo, A. and Al Fakhri, M. (2019) ‘Modeling residential adoption of solar energy in the Arabian Gulf Region’, Renewable Energy, 131, pp. 381–389. doi: 10.1016/j.renene.2018.07.048.

Muyingo, H. (2015) ‘Organizational challenges in the adoption of building applied photovoltaics in the Swedish tenant-owner housing sector’, Sustainability (Switzerland), 7(4), pp. 3637–3664. doi: 10.3390/su7043637.

Nag, A., Haddad, R. J. and El-Shahat, A. (2017) ‘Analysis of centralized vs decentralized storage systems in PV distributed generation’, in Conference Proceedings - IEEE

SOUTHEASTCON. Institute of Electrical and Electronics Engineers Inc. doi:

10.1109/SECON.2017.7925332.

Naturvårdsverket (2021) Parisavtalet. Available at:

https://www.naturvardsverket.se/parisavtalet (Accessed: 30 March 2021).

Navarro, A., Ochoa, L. F. and Randles, D. (2013) ‘Monte Carlo-based assessment of PV impacts on real UK low voltage networks’, IEEE Power and Energy Society General Meeting, 1, pp. 1–5. doi: 10.1109/PESMG.2013.6672620.

Oskarsson, B., Aronsson, H. and Ekdahl, B. (2013) Modern logistik - för ökad lönsamhet. 4th edn. Liber.

Palm, A. (2017) ‘Peer effects in residential solar photovoltaics adoption—A mixed methods study of Swedish users’, Energy Research and Social Science, 26, pp. 1–10. doi: 10.1016/j.erss.2017.01.008.

Palm, A. (2020) ‘Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics’, Renewable and Sustainable Energy Reviews, 133, p. 110142. doi: 10.1016/j.rser.2020.110142.

Palm, A. and Lantz, B. (2020) ‘Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden’, Energy Policy, 142, p. 111540. doi: 10.1016/j.enpol.2020.111540.

perspective Acknowledgement’, Energy Policy, 113(1), pp. 1–8.

Palm, J. and Eriksson, E. (2018) ‘Residential solar electricity adoption: how households in Sweden search for and use information’, Energy, Sustainability and Society, 8(1), p. 14. doi: 10.1186/s13705-018-0156-1.

Parsad, C., Mittal, S. and Krishnankutty, R. (2020) ‘A study on the factors affecting household solar adoption in Kerala, India’, International Journal of Productivity and Performance

Management, 69(8), pp. 1695–1720. doi: 10.1108/IJPPM-11-2019-0544.

Passey, R. et al. (2011) ‘The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors’, Energy Policy, 39(10), pp. 6280–6290. doi: 10.1016/j.enpol.2011.07.027.

Petrovich, B., Hille, S. L. and Wüstenhagen, R. (2019) ‘Beauty and the budget: A segmentation of residential solar adopters’, Ecological Economics, 164, p. 106353. doi: 10.1016/j.ecolecon.2019.106353.

Power circle (2020) Batterilager i framtidens elsystem. Stockholm. Available at: www.framtidenselsystem.se (Accessed: 19 April 2021).

PVGIS (2021) Photovoltaic Geographical Information System (PVGIS) | EU Science Hub. Available at: https://ec.europa.eu/jrc/en/pvgis (Accessed: 14 May 2021).

Qureshi, T. M., Ullah, K. and Arentsen, M. J. (2017) ‘Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, pp. 754–763. doi: 10.1016/j.rser.2017.04.020.

Rahmann, C., Mayol, C. and Haas, J. (2018) ‘Dynamic control strategy in partially-shaded photovoltaic power plants for improving the frequency of the electricity system’. doi: 10.1016/j.jclepro.2018.07.310.

Rakhshani, E. et al. (2019) ‘Integration of large scale PV-based generation into power systems: A survey’, Energies, 12(1), pp. 2–19. doi: 10.3390/en12081425.

Reddy, C. R. et al. (2020) ‘Review of Islanding Detection Parameters in Smart Grids’, in 8th

International Conference on Smart Grid, icSmartGrid 2020. Institute of Electrical and

Electronics Engineers Inc., pp. 78–89. doi: 10.1109/icSmartGrid49881.2020.9144923. Regeringskansliet (1997) Ellag (1997:857), Regeringskansliets rättsdatabaser.

Regeringskansliet (2020) Industrins gröna omställning i höstbudgeten. Available at: https://www.regeringen.se/artiklar/2020/09/industrins-grona-omstallning-i-

hostbudgeten/?fbclid=IwAR1O_1EUOIer2eT7nT3dTGSMluoK3U2aI0rxrYOSz2iUjhVYmX1 ngsDO25Q.

Reindl, K. and Palm, J. (2021) ‘Installing PV: Barriers and enablers experienced by non- residential property owners’, Renewable and Sustainable Energy Reviews, 141, p. 110829. doi:

10.1016/j.rser.2021.110829.

Rejlers (2020) Regionnät och stamnät.

Roberts, M. B., Bruce, A. and MacGill, I. (2019) ‘Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience’, Renewable and

Sustainable Energy Reviews. Elsevier Ltd, pp. 95–110. doi: 10.1016/j.rser.2018.12.013.

Rogers, E. M. (2003) Diffusion of Innovations. 5th edn. New York: Simon & Shuster New York.

Saxena, N. et al. (2018) ‘Implementation of a Grid-Integrated PV-Battery System for Residential and Electrical Vehicle Applications’, IEEE transactions on Industrial Electronics,

65(8), pp. 6592–6601. Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023763 (Accessed: 19 April 2021).

Schelly, C. and Letzelter, J. C. (2020) ‘Examining the key drivers of residential solar adoption in upstate New York’, Sustainability, 12(6), p. 2552.

Schiera, D. S. et al. (2019) ‘Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings by a Novel GIS- and Agent-Based Modeling Co-Simulation Platform’, IEEE Access, 7, pp. 93404–93432. doi: 10.1109/ACCESS.2019.2927446.

Segundo Sevilla, F. R. et al. (2018) ‘Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration’, Journal of Energy Storage, 17, pp. 73–83. doi: 10.1016/j.est.2018.02.001.

Selvakkumaran, S. and Ahlgren, E. O. (2019) ‘Determining the factors of household energy transitions: A multi-domain study’, Technology in Society, 57, pp. 54–75. doi: 10.1016/j.techsoc.2018.12.003.

Sharma, V. et al. (2020) ‘Reduction of PV curtailment through optimally sized residential battery storage’, in 9th IEEE International Conference on Power Electronics, Drives and

Energy Systems, PEDES 2020. Institute of Electrical and Electronics Engineers Inc. doi:

Related documents