• No results found

Quenched Voronoi percolation

N/A
N/A
Protected

Academic year: 2021

Share "Quenched Voronoi percolation"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Advances

in

Mathematics

www.elsevier.com/locate/aim

Quenched

Voronoi

percolation

Daniel Ahlberga,b, Simon Griffithsc, Robert Morrisa,∗, Vincent Tassiond

a

IMPA,EstradaDonaCastorina110,JardimBotânico,RiodeJaneiro,RJ,Brazil

b

DepartmentofMathematics,UppsalaUniversity,SE-75106Uppsala,Sweden

cDepartmentofStatistics,UniversityofOxford,Oxford,UnitedKingdom dDépartementdeMathématiques, UniversitédeGenève,Genève,Switzerland

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received16January2015 Accepted14September2015 CommunicatedbytheManaging EditorsofAIM

Keywords: Voronoipercolation Noisesensitivity

Quenchedcrossingprobabilities

Weprove that theprobability ofcrossing a large squarein quenchedVoronoipercolationconvergesto1/2 atcriticality,

confirming a conjecture of Benjamini, Kalai and Schramm

from1999.Themainnewtoolsareaquenchedversionofthe box-crossing property for Voronoi percolation at criticality,

and an Efron–Stein type bound on the variance of the

probabilityofthecrossingevent intermsof thesumof the squares of the influences. As a corollary of the proof, we moreoverobtainthatthequenchedcrossingeventatcriticality isalmostsurelynoisesensitive.

© 2015TheAuthors.PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Researchsupportedinpartbypostdoctoral grant 637-2013-7302fromthe SwedishResearchCouncil

(D.A.),EPSRCgrantEP/J019496/1(S.G.),CNPq(Proc. 479032/2012-2andProc. 303275/2013-8)(R.M.), andANRgrantMAC2(ANR-10-BLAN-0123),theSwissNSFandNCCRSwissmap(V.T.).

* Correspondingauthor.

E-mailaddresses:ahlberg@impa.br(D. Ahlberg),simon.griffiths@stats.ox.ac.uk(S. Griffiths),

rob@impa.br(R. Morris),Vincent.Tassion@unige.ch(V. Tassion).

http://dx.doi.org/10.1016/j.aim.2015.09.005

0001-8708/© 2015TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

Thenoisesensitivity ofaBooleanfunctionwasintroducedin1999inaseminalpaper

ofBenjamini,KalaiandSchramm[5],andhassincedevelopedintoanimportantareaof probabilitytheory(see,e.g.,[13,14,22]),linkingdiscreteFourieranalysiswithpercolation theory and combinatorics.Oneof themain resultsof [5]gave asufficientconditionfor asequenceof functionsfn:{0,1}n → {0,1} tobe sensitivetosmall amountsofrandom

noiseinthefollowingprecisesense:ifω∈ {0,1}n ischosenuniformlyatrandom,andωε is obtainedfromω byresamplingeachvariable withsomefixedprobabilityε> 0,then fn(ω) andfn(ωε) areasymptoticallyindependent.Theyusedthistheoremtoshowthat

the sequenceoffunctionswhichencodescrossingsof n× n squares inbondpercolation on Z2 is noisesensitive. Thus, even if oneknows all buta random o(1)-proportion of

theedges,onestill(withhighprobability)hasverylittleinformationaboutthecrossing event.

Theauthorsof[5]furthermoremadeanumberofconjecturesregardingmoreprecise notionsof sensitivityand sensitivityto different typesofnoise.Severalofthese conjec-tures have since played an important role inthe subsequent development of the area, mostspectacularlyin[22]and[13],whereextremelypreciseresultswereobtainedabout the Fourierspectrumofthe crossingevent,andabout the‘dynamical percolation’ pro-cess introduced byHäggström,Peres andSteif[15] and (independently)byBenjamini, see[25].Togiveanotherexample,theymadethefollowingconjectureforBernoullibond percolationonthesquarelattice:evenifyouaretoldthestatusofall theverticaledges, youstillhaveverylittleinformationaboutthecrossingevent.Thisconjecturewasproved byGarban,PeteandSchramm[13,Theorem 1.3],asaconsequenceoftheirveryprecise boundsontheFourierspectrum.Notethatinthistheoremwearegivenadeterministic set ofedges(ofdensity1/2),ratherthanarandom setof edges(ofdensity1− o(1))as intheresultstatedabove.

Inthis paper,wewill proveasimilarresult(alsoconjecturedin[5])inthesettingof

Voronoi percolation: thatknowingthe pointset (but notthe coloursof thecells) gives

asymptoticallynoinformationaboutthecrossingevent.Inordertostateourmainresult precisely, wewillneedafewbasicdefinitions.

Consideraset η ofn pointsinthesquareS = [0,1]2,eachchosenindependentlyand

uniformly atrandom.Foreachu∈ η,define theVoronoi(or Dirichlet)cell1 ofu tobe

C(u) =x∈ [0, 1]2 : u − x2 v − x2 for every v∈ η

 ,

and letω:η → {−1,1} be auniformlyrandom two-colouringof thepointsof η;wewill

call the points u (and the associated cells C(u)) with ω(u) = 1 ‘red’ and those with

ω(u) =−1 ‘blue’. Wesay thatthere isared horizontalcrossing of S if there isapath

1 ThestudyoftheseobjectsdatesbackatleasttoDirichlet[10]in1850,whousedtheminhisworkon

quadraticforms,althoughtheyappeartohavebeenintroducedevenearlier,byKeplerand(independently) Descartes,see[17].Thenaturalgeneralisationtod dimensionswasfirststudiedbyVoronoi[27]in1908.

(3)

fromtheleft- totheright-handsideofS thatonlyintersectsredcells,andwriteHS for

theeventthatthere existssucharedhorizontalcrossingofS.Note thatP(HS)= 1/2,

bysymmetry.Wereferthereader whoisunfamiliarwith Voronoipercolationto [8]for amoreextensiveintroduction.

Thefollowing theorem confirms (in astrong form) aconjecture ofBenjamini, Kalai andSchramm[5].

Theorem1.1. Thereexistsc> 0 suchthat P  1 2− n −c PH S| η   1 2+ n −c 1 − n−c

forallsufficientlylarge n∈ N.

Let:{−1,1}η → {0,1} bethefunctionsuchthatfη(ω)= 1 ifandonlyifH

S holds.

Thekeynew ideaoftheproof ofTheorem 1.1is thefollowing Efron–Steintype bound (seeTheorem 2.1,below)onthevarianceoftheprobabilityofthecrossingeventinterms oftheinfluencesof,whichcanbe viewedasarandomBooleanfunction:

Var  PHS| η   n m=1 E Infm(fη)2 . (1)

Recall that the influence Infm(fn) of the m-th variable of a Boolean function

fn:{−1,1}n → {0,1} is defined to be the expected absolute change in fn when the

signofthem-th variableisflipped,i.e.,

Infm(fn) =P



fn(ω)= fn(ω)

 ,

where ω is chosenuniformly, and ω is obtained from ω by flipping the m-th variable. Benjamini,KalaiandSchramm[5]provedthat

n

m=1

Infm(fn)2→ 0 as n → ∞ (fn)n∈N is noise sensitive, (2)

and moreover introduced a technique (the ‘algorithm method’, see below) which can often be used to bound nm=1Infm(fn)2 when fn encodes crossing events in

percola-tion models. We will use this method (or, more precisely, the ‘randomised’version of it developed by Schramm and Steif [22]), together with anew ‘box-crossing property’ for quenched Voronoi percolation (see below),to bound2 n

m=1Infm(fη)2, and hence

deduceTheorem 1.1.

2

Moreprecisely,sinceisarandomfunctionwewillprovethatourboundon nm=1Infm(fη)2 holds

(4)

As animmediate consequenceoftheproofoutlinedabove,togetherwith(2),wealso obtain the following theorem. Let us say that quenched Voronoi percolation is almost

surely noisesensitiveatcriticality if

E fη(ω)fη(ωε)| η − E fη(ω)| η E fη(ωε)| η → 0 (3)

as n→ ∞ withprobability 1 foreveryε∈ (0,1),whereω andωε areasdefinedabove.

Theorem1.2.QuenchedVoronoipercolationisalmostsurelynoisesensitiveatcriticality. Infact,as aconsequenceof theSchramm–Steifmethod,weobtainastrongerresult: that the noise sensitivity exponent for quenched Voronoi percolation is positive. This meansthatthereexists aconstantc> 0 such that(3)holdseven ifε= n−c.

Remark 1.3. The word ‘quenched’ refers to the fact that we are proving a statement whichholds foralmostallchoicesofη.Thephrase‘atcriticality’refersto thefactthat ω is chosenuniformly at random.We remindthereaderthatthecritical probabilityof Voronoipercolationintheplaneis1/2,as wasprovedbyBollobásandRiordan[9].

We remark that Theorem 1.2 is not the first result of this type for a continuum percolationmodel.Indeed,asimilartheoremforthePoissonBooleanmodel3wasproved bythefirstthree authorswithBroman[2],andthetechniquesintroducedinthatpaper have recently been extended by the first three authors with Balister and Bollobás [1] to thesettings of (annealed) Voronoi percolationand the Poisson Booleanmodel with randomradii.(Ineachcasethepointsetη isperturbed,togetherwiththecolours/radii.) We emphasise, however, that the techniques introduced in this paper are completely different from those used in [1,2], where the method involved choosing the point set in two stages, and applying thealgorithm methodinthe non-uniformsetting. Indeed, noneofthepreviously-introducedtechniquesseemtohaveanychanceofworkinginthe setting ofquenchedVoronoipercolation.

As mentioned above, inorder to usethe algorithm method we will need to provea 1-armestimatethatwillfollowfromaquenchedversionofthebox-crossingpropertyfor Voronoipercolationatcriticality.Thisresultgivesboundsontheprobabilitythata rect-angle(offixedaspectratio)iscrossedatcriticality,andisananalogueofthecelebrated resultsforbondpercolationonZ2ofRusso[21]andSeymourandWelsh[23].

Correspond-ingresultshavebeenobtainedinvariousrelatedsettings, andobtainingsuchboundsis frequently akeystepintheproof ofvarious importantapplications,see e.g.[3,9,11,18, 20,26].Inparticular,animportantbreakthroughwasmadebyBollobásandRiordan[9], who provedan RSW-typetheorem for(annealed) Voronoi percolation,4 and usedit to

3 Inthismodel,apairu,v∈ η isconsideredtobeadjacentifthedistancebetweenthemisatmost 1. 4

Moreprecisely,theyprovedthatthereexistsaninfinitesequenceofvaluesofL suchthattheprobability ofcrossinganL× λL rectangleisboundedawayfrom 0.

(5)

deducethatthecriticalprobabilityforpercolationis1/2.Thefullbox-crossingproperty intheannealed setting wasobtainedonly very recently,bythe fourthauthor [26]. We remarkthatthisresultwillplayanimportantrole inourproofofTheorem 1.4, below.

Asabove,wewriteHRfortheeventthatthere isaredhorizontalcrossingofR.

Theorem 1.4 (The quenched box-crossing property for Voronoi percolation). For every

rectangleR⊂ R2,thereexistsaconstantc> 0 suchthatthefollowingholds.Letn∈ N,

letη⊂ R beasetofn points, each chosenuniformly atrandom,andletω:η→ {−1,1}

beauniform colouring.Then

Pc <PHR| η



< 1− c → 1

asn→ ∞.

We remark that, moreover, for every γ > 0 there exists c = c(γ,R) > 0 such that PHR|η

 /

∈ (c,1−c) hasprobabilityatmostn−γ.Ananalogoustheoremifη isaPoisson

pointprocessintheplane(orinthehalf-plane) followsbyexactlythesameproof. We will prove Theorem 1.4 in three steps. First, we will prove a weaker result for Voronoipercolationintheplane(seeTheorem 3.1):thissaysthatthereexistsaconstant

c> 0 such that P  PHR| η   1 2k   (1 − c)k (4)

for all sufficiently large k. We will then deduce an analogous statement for Voronoi percolationinahalf-plane; somewhatsurprisingly, thededuction is nottrivial,and we will haveto dosomework to dealwith theboundaryeffects (see Section3.2). Finally, we will use these results, together with the algorithm method(see Section 4) and our Efron–Steintypeinequality(1),provedinSection2,to show(seeTheorem 4.1)that

PHR| η



→ E PHR| η



inprobability, as n → ∞. This resultwill imply both Theorem 1.1 and Theorem 1.4, usingthebox-crossingpropertyforannealedVoronoiprovedin[26].

The organisation of the rest of the paper is as follows. First, in Section 2, we will boundthe varianceoftheprobability ofthecrossingeventby theexpectedsumofthe squaresof theinfluencesof .Wewill doso byintroducingamartingale, whosesteps

correspondtochoosingthepointsofη one-by-one,andboundingthevarianceofstepm intermsofthe expectationofthesquare of theinfluenceofthem-th element ofη, see Lemma 2.4.Armedwith thislemma,theclaimedbound(1)follows easily.

Second, in Section 3, we will prove weak bounds for the crossing probabilities in quenchedVoronoipercolation(4)inboththeplane,andthehalf-plane.The keytoolsin

(6)

our(surprisingly simple)proofwillbe the‘box-crossingproperty’forannealedVoronoi percolation, provedin[26], togetherwith colour-switching.Inparticular,we wouldlike to highlightLemma 3.2, whichstatesthat

PHR| η



=E 2−X| η ,

where X is the random variable which counts the number of vertex-disjoint vertical monochromatic crossingsof R.Although this lemma, once stated, is easyto prove, we havefounditto beextremelyuseful,and expectittohavemanyotherapplications.

Finally, inSection4, wewill complete theproof ofthe main theorems, byusing the algorithm method of Benjamini, Kalai and Schramm [5] and Schramm and Steif [22] to bound the sum of the squares of the influences of . (Indeed, once we are armed

withtheresultsofSection3,therequiredboundfollowsbysimplyrepeatingthemethod of [22].) Combining this bound with the results of Section2, we obtainTheorem 1.1. By(2), weobtainTheorem 1.2,andbythebox-crossingproperty forannealedVoronoi percolation[9,26], weobtainTheorem 1.4.

2. Varianceandinfluence

Inthissection,wewillproveasomewhatsurprisingboundonthe(typical)dependence ofthecrossingeventonthepointsetη intermsofthe(expected)influencesofthecolours. Since wewillneedtousetheresultsofthissectionintheproofofTheorem 1.4, aswell asthatofTheorem 1.1,wewillworkinthemoregeneralset-upofanarbitraryrectangle

R ⊂ R2, so letη be aset of n pointsinR,each of whichis chosen independentlyand

uniformly atrandom. Wewill writefRη:{−1,1 → {0,1} for thefunctionthatencodes

whetherornotthereisaredhorizontalcrossingofR inthecorrespondingVoronoitiling. Recall that

Infm(fRη) :=P



fRη(ω)= fRη(ω)η, where ω equalsω exceptonthem-th elementofη.

Themainresultofthissectionisthefollowinginequality,whichishighlyreminiscent of thewell-knowninequalityofEfronandStein[12].

Theorem 2.1.Forevery rectangle R⊂ R2,

VarPHR| η   n m=1 E Infm(fRη)2 .

Note thatthefollowingcorollary isanimmediate consequenceoftheabovetheorem and Chebyshev’s inequality.

(7)

Corollary2.2. Leta(n)=E nm=1Infm(fRη)2  .Then PP(HR| η) − P(HR) a(n)1/3  a(n)1/3.

TheproofofTheorem 2.1usesthefollowingsimplemartingale(qm)nm=0.Letuschoose

theelementsofη one-by-one,andletηm denotethem-th element.Nowwrite

=PHRη

 fortheprobabilityofsuchacrossinggivenη,anddefine

qm:=E

qη| Fm

, whereFmdenotes theσ-algebragenerated byη1,. . . ,ηm.

Observation2.3. Var= n m=1 Varqm− qm−1  .

Proof. Since−E[qη]= n

m=1(qm−qm−1),itwillsufficetoshowthatCov(qi−qi−1,qj−

qj−1)= 0 for every1 i< j n.Toseethis, wesimplyconditiononFi,whichgives

Cov(qi− qi−1, qj− qj−1) =E  E qi− qi−1  qj− qj−1 Fi  = 0, sinceE qj− qj−1|Fi

= 0,and qi− qi−1 isdeterminedbyη1,. . . ,ηi. 2

ByObservation 2.3, thefollowing lemmacompletestheproofofTheorem 2.1. Lemma2.4. Forevery 1 m n,

Varqm− qm−1   E Infm  fRη2 almostsurely.

Proof. Firstobserve that,sinceE qm− qm−1|Fm−1

= 0 almost surely, bythe condi-tionalvarianceformula5 wehave

Varqm− qm−1=E VarqmFm−1 . (5)

Now,letη− beobtainedfromη bydeletingηm.Since

doesnotdependonthem-th elementofη,itfollows that

5

(8)

VarqmFm−1  = Var  E qη| Fm − E qη−| Fm−1 Fm−1 = Var  E qη− qη−| Fm Fm−1 .

Now, sinceVar(X) E[X2] foreveryrandomvariableX,thisisatmost

EE qη− qη−| Fm

2F m−1

 , whichisinturnat most

Eqη− qη−2Fm−1

 ,

byJensen’sinequality.Wemake thefollowing claim,whichcompletestheproof. Claim. |qη− qη−| Inf

m(fRη),almostsurely.

Proof. Letuswriteω+(resp.ω)fortheelementof{−1,1}nobtainedfromω bysetting

the m-th coordinateequal to 1 (resp.−1). Alsodefine fRη−(ω) for ω ∈ {−1,1}n in the

obvious way,byignoringthem-th coordinateofω.Wehave qη− qη−  PfRη(ω) > fRη−(ω)| η

 PfRη(ω+) > fRη(ω−)| η= Infm(fRη),

sincefRη ismonotone(asafunctionon{−1,0,1).6Anidenticalcalculationshowsthat

qη−− qη  Inf

m(fRη),andsotheclaimfollows. 2

Thelemma nowfollowssince,by(5),wehave

Varqm− qm−1  =E VarqmFm−1   EE qη− qη−2Fm−1   EE Infm  fRη2Fm−1 =E Infm  fRη2 , as required. 2

As noted above, Theorem 2.1 follows immediately from Observation 2.3 and Lem-ma 2.4.

6 Indeed,abusingnotationslightly,wecandefineafunctionfη

R:{−1,0,1}

η→ {0,1} bysettingfη

R(ω)= 1

ifthereisaredhorizontalcrossingintheVoronoitilingdefinedbythesetη={u∈ η : ω(u)= 0} with colouringω= ω|η.ThefunctionfRηismonotoneincreasingsince(fromthepointofviewofthecrossing

(9)

3. CrossingprobabilitiesforquenchedVoronoipercolation:weakbounds

Inthis section we will proveaweaker versionof Theorem 1.4 forquenched Voronoi percolationintheplane,anddeducethecorrespondingtheoremwhenη isasubsetofthe half-plane.Crucially,theseresultswillbesufficienttodeduceaboundontheprobability of the one-arm event that is strong enough for our application of the Schramm–Steif methodinSection4.

3.1. Crossing probabilitiesin theplane

Inthissection,η willdenoteaPoissonprocessintheplaneofintensity1,andω:η→

{−1,1} willbe a(uniform) random two-colouring of η.7 Recall that,given arectangle

R withsides parallel to the axes, HR denotes theevent that there is a redhorizontal

crossingofR intheVoronoitilinggivenbyη,colouredbyω.

Theorem3.1. Foreveryrectangle R⊂ R2,thereexistsaconstant c> 0,depending only

ontheaspectratio of R,suchthat

P  PHR| η   1 2k   (1 − c)k

forallsufficientlylarge k∈ N.

We begin by defining the following random variable,whose value depends on both

η and ω,and which counts themaximum number of vertex-disjoint8 vertical crossings

of R:

X = X(η, ω) := maxm∈ N0 : there exist m vertex-disjoint, monochromatic

vertical crossings1, . . . , γm} of R

 .

Thefollowinglemmawill beakey toolinourproofof Theorem 3.1. Lemma3.2. Foralmosteveryη,

PHR| η



=E 2−X| η .

As noted in the Introduction, we have found this lemma to be surprisingly power-ful, and expect it to have many other applications. Despite this, the lemma is very

7 Hereω isacolouringofη,whichiscountable.Foreaseofnotationweusethisconvention,butremark

thatweareonlyinterestedintherestrictionofω toηR,thesubsetofpointswhosecellsintersectR,which

isalmostsurelyfinite.WealsocontinuetouseP todenotetheprobabilitymeasureassociatedwithchoosing thepair(η,ω),andtrustthatthiswillcausethereadernoconfusion.

8

(10)

easyto prove;indeed,itfollowsalmostimmediately fromabasic(andwell-known)fact about‘colour-switching’,see(6)below.Forthosereaderswhoareunfamiliarwith colour-switching,wewillbegin bygivingabriefintroduction.

ConsidertheeventthatX = k,i.e.,thatthere existk,butnotk + 1,vertex-disjoint, monochromatic vertical crossings of R. The following standard algorithm provides a method offinding suchpaths.First,we discover theleft-mostmonochromatic path(in the coloured Voronoi tiling of R given by the pair (η,ω)) starting from the left-most cell whichintersects thelower side ofthe rectangle. Ifit reachesthe topof the rectan-gle, thenwe add this monochromaticpath to ourcollection; otherwisewe discover the wholemonochromaticcomponentofourstarting-point.Ineithercase,wethen discover the left-most monochromatic path entirely to the right of the already-discovered cells, starting fromthenextavailablecellonthelower sideofR (if itexists).Repeating this process untilwe reachtheright-side ofR,weobtainacollection1,. . . ,γk) ofdisjoint

monochromaticcrossings.

An important feature of the algorithm above is that it allows us to use so-called ‘colour-switching’arguments,seee.g.[4,24].Thecrucialobservationisthat,foragiven η, andagivencollectionofpaths1,. . . ,γk) obtainedviathealgorithm,thereisabijection

between the set ofcolourings inwhich γj is red, andthose inwhich itis blue.Indeed,

if we swap thecolours ofall cellsthatare on or to theright of γj, thenthe algorithm

produces exactly the same set of paths. More generally, writing Π ∈ {−1,1}k for the sequenceofcoloursofthepaths1,. . . ,γk),wehavethefollowingsimplefact.Forevery

σ∈ {−1,1}k,wehave

PΠ = σX = k, η= 1

2k (6)

almost surely.Lemma 3.2isanalmost immediateconsequenceof(6).

ProofofLemma 3.2. ObservethattheeventHR holdsifandonlyifallmonochromatic

vertical pathsarered.By(6),itfollowsthat

PHR| η  = k=0 PΠ = (1, . . . , 1)X = k, η PX = kη = k=0 P(X = k | η) 2k =E 2−X| η , as required. 2

InordertodeduceTheorem 3.1,weonlyneedtoshowthatX cannotbetoolarge.This will beaconsequenceofthreepropertiesofannealedVoronoipercolation:theFKGand BKinequalities,andtheboxcrossingproperty,provedrecentlybythefourthauthor[26]. An event A that depends on the pair (η,ω) is said to be red-increasing if removing a

(11)

bluepoint or adding ared point cannot cause the status of A to changefrom trueto false.Foraproofof thefollowing lemma,see[8,Lemma 8.14].

Lemma 3.3 (The FKG inequality for annealed Voronoi percolation). Let A and B be

red-increasingevents. Then

P(A ∩ B)  P(A) · P(B),

andmoreover thereverseinequalityholdsif B isreplacedby itscomplementBc.

The following lemma was proved by van den Berg [6]; his proof, sketched below, can also be found in the PhD thesis of Joosten [16, Section 4.3] (who also refers to van den Berg).Thecorrespondinginequalityinthediscretesettingisacelebratedresult ofvan den BergandKesten[7].

Lemma3.4 (The BK inequalityforannealed Voronoipercolation). LetA and B be

red-increasing events.Then

P(A ◦ B)  P(A) · P(B),

whereA◦ B denotestheevent thatA and B occurdisjointly.9

Proof. LetB denote theeventcorrespondingto B withcoloursreversed.Wehave P(A ◦ B) = E P(A ◦ B | η)  E P(A ∩ B | η)

=P(A ∩ B)  P(A)P(B) = P(A)P(B),

where the first inequality follows from Reimer’s inequality [19, Theorem 1.2], and the secondinequalityfollowsfrom Lemma 3.3. 2

Ourfinaltoolisthefollowing resultof Tassion[26].

Lemma3.5(Thebox-crossing propertyforannealedVoronoipercolation). Thereexistsa

constant c0> 0,depending only ontheaspectratio of R,suchthat

PHR

 > c0.

We are now ready to prove the weak box-crossing property for quenched Voronoi percolationintheplane.

9

Forgeneraleventsonemustbealittlecarefulindefiningdisjointoccurrence,butforeventsinvolving crossingsthedefinitionisstraightforward:thecrossingsmustbevertex-disjoint.

(12)

Proof ofTheorem 3.1. Giventhe pair(η,ω), defineX+ (resp.X−)to be themaximal number of disjoint red (resp. blue) paths from top to bottom in R, so in particular

X = X++ X.ByLemma 3.5andtheBKinequalityforannealedVoronoipercolation,

there existsaconstantc0> 0,dependingonlyontheaspectratioofR,suchthat

PX+  k (1 − c0)k

for all k  0, and similarly P(X−  k)  (1− c0)k. Since the events



X+  i and



X−< jarebothred-increasing,itfollows bytheFKGinequalitythat

PX  k i+jk PX+ iX− j  i+jk (1− c0)i+j  (1− c)k 2 (7)

forsomeconstantc> 0,ifk is sufficientlylarge.Now,byLemma 3.2wehave

PHR| η  =E 2−X| η   1 2 k−1 PX < k| η, almost surely.Thus,byMarkov’sinequalityand(7),we obtain

P  PHR| η    1 2 k  P  PX k | η1 2   (1 − c)k, as required. 2

3.2. Quenchedcrossing probabilities inthehalf-plane

Inorder toboundone-arm eventsstartingat pointsneartheboundaryofR,wewill require aresult analogous to Theorem 3.1 for aPoisson point process η of intensity 1 restrictedto thehalf-plane

H :=(x, y)∈ R2: x 0.

For eachrectangleR ⊂ H withsides parallelto theaxes, letHR denote theeventthat thereisaredhorizontalcrossingofR intheVoronoitilingofH givenbyH∩ η,coloured byω.

Theorem 3.6. Forevery rectangle R⊂ H,there exists aconstant c> 0, depending only

(13)

P  PHR∗| η 1 2k   (1 − c)k,

forallsufficientlylarge k∈ N.

TheproofofTheorem 3.6 isidenticaltothatofTheorem 3.1,exceptwewillneedto replaceLemma 3.5with thefollowing boundintheannealedsetting.

Lemma3.7.ForeveryrectangleR,thereexistsaconstantc1> 0,depending onlyonthe

aspectratio ofR, suchthat

PHR∗

 > c1.

WhentherectangleR issufficiently farfrom theboundary,Lemma 3.7followsfrom Lemma 3.5, since the Voronoitilings of R is (with high probability) the sameinboth cases.Webegin withaneasylemmathatmakesthisstatementprecise.

Lemma3.8.Givenλ> 0,letL> 0 besufficientlylarge.Letη beaPoissonpointprocess

intheplane of intensity 1,andletR be aλL× L rectanglewith

min{x : (x, y) ∈ R}  (log L)2/3.

ThentheVoronoitilingsofR inducedbyη andbyH∩η arenon-identicalwithprobability

atmost1/L3.

Proof. IftheVoronoitilingsofR inducedbyη andbyH∩η arenon-identical,thenthere mustbe apointu∈ R suchthattheclosestpoint ofη tou liesoutsideH.This implies thatthere is anempty ball of radius (log L)2/3 centredin R,the probability of which

(bystandardpropertiesofPoissonprocesses)issuper-polynomiallysmallin L. 2 Wewill assumefrom now on thatR isaλL× L rectangle withL sufficiently large, and suchthat theleft-hand side of R is onthe line x= 0. (Note that,by choosing c1

sufficientlysmall,thismaybeassumedwithoutloss ofgenerality.)Theideaoftheproof of Lemma 3.7 is as follows. Set  = (log L)2/3, and partition10 the set {(x,y) ∈ R :

0 x } intoL/ squares S1,. . . ,SL/.Now observe thatifthere isaredhorizontal

crossingoftherectangle R ={(x,y)∈ R : x },butnoredhorizontalcrossingofR, thentheremustexistasquareSj suchthatthefollowing‘3-armevent’holds(seeFig. 1,

below).

Definition 3.9. For each 1  j  L/, let A(3)(j) denote the event thatthe following

hold:

10

(14)

Fig. 1. IfthereexistsaredhorizontalcrossinginR,butnoredhorizontalcrossingofR,thena‘3-armevent’ mustholdfromasquareSj.(Redandbluepathsarerepresentedbysolidanddottedpaths,respectively.)

(a) thereisaredpathfromSj totheright-handsideofR thatiscontainedinR;

(b) there are blue paths from Sj to the top and the bottom of R that are contained

in R.

ByLemma 3.8andtheobservationsabove,wehave

PHR PHR  L13 L/ j=1 PA(3)(j). (8)

Thus, byLemma 3.5,itwill sufficetoprovethefollowing lemma. Lemma 3.10.Thereexistsc> 0 such that

L/

j=1

PA(3)(j) L−c

forallsufficiently largeL> 0.

IntheproofofLemma 3.10,wewillusethefollowingtwo events:

• A(1)(j) denotes theeventthatthere isaredpath fromSj totheright-handsideof

R thatiscompletelycontainedinsideR.

• A(2)(j) denotestheeventthatthereisaredpathfromS

jtothetopofR,andablue

pathfromSj tothebottomofR,bothofwhicharecompletely containedinside R.

Wearenow readytoproveLemma 3.10.

ProofofLemma 3.10. We firstclaimthat,foreachj∈ [L/],wehave

(15)

To prove (9), we apply colour-switching and the BK inequality for annealed Voronoi percolation (Lemma 3.4). Indeed, the three paths in Definition 3.9 are of alternating colours, so must be vertex-disjoint. Moreover, if such vertex-disjoint, monochromatic paths exist, then by colour-switching theyare eachequally likely to be red or blue.11

Thus,lettingB(2)(j) denotetheeventthatthere arevertex-disjoint redpathsfrom S j

tothetopandbottomofR,bothofwhicharecompletelycontainedinsideR,wehave PA(3)(j)| η=PA(1)(j)◦ B(2)(j)| η and PA(2)(j)| η=PB(2)(j)| η foralmostallη.Takingexpectationoverη,andnotingthatA(1)(j) andB(2)(j) areboth

red-increasingevents,wehave

PA(3)(j) PA(1)(j)· PB(2)(j)=PA(1)(j)· PA(2)(j) bytheBKinequality,as claimed.

By(9), thelemma isanimmediatelyconsequenceofthefollowingtwoclaims. Claim1.PA(1)(j) L−2c forsomeconstant c> 0.

Proof. ByLemma 3.8,theprobabilitythattheVoronoitilingofR byH∩ η differsfrom thatbyη isatmost1/L3.Theclaimthereforefollowsfromthecorrespondingstatement intheplane,whichisastandardconsequenceofLemma 3.5,see[26, Theorem 3]. 2

Claim2.

L/

j=1

PA(2)(j) 2C forsomeconstant C > 0.

Proof. Foreachj ∈ [L/],choosea(distinct)cellu(j)∈ η whichintersectsbothSj and

theleft-handsideofR.ConsidertheeventE(j),illustratedinFig. 2,thatthereisared

pathfrom u(j) tothe topofR,and abluepath fromthe cellu(j) immediately below

u(j) tothebottomofR,bothofwhicharecompletely containedinsideR.

Weclaimthat

PA(2)(j) 2C· PE(j) (10)

foreachj∈ [L/].Toprovethis,wesimplyusebruteforcetotunnelfromtheboundary

ofSj tou(j). Indeed,as longas,foreverypairofpoints{v,w} ontheboundaryofSj,

therearevertex-disjointpaths(intheVoronoitilingofSj)fromu(j) tov andfromu(j)

tow,eachoflengthat mostC/2,thenwecanconnectu(j) andu(j) totheendpoints

11 Tobeslightly moreprecise,ifsuch(vertex-disjoint,monochromatic)pathsexist thenwemay choose

the‘left-most’suchtriple123),andprovearesultcorrespondingto(6)byswitchingthecoloursof

allcellsthatareonortotherightofγj foreachj∈ {1,2,3}.Theleft-mosttripleisobtainedbychoosing

γj tobetheleft-mostmonochromaticpathtothetop/right/bottomofR thatis entirelytotherightof

(16)

Fig. 2. Illustration oftheevent E(j):there existaredpathfromacellu(j) intersectingSj andtheleft

boundaryofR tothetopofR,andabluepathfromthecellu(j) immediatelybelowu(j) tothebottom of R.

of the paths guaranteed by theevent A(2)(j) withprobability at least 2−C. But such

pathsexist unlessthePoissonprocessismuchdenserinSj thanonewouldexpect,and

this occurswithprobabilitythatissuper-polynomiallysmallinL.

Finally,simplynote that,sinceatmostoneoftheeventsE(j) canoccur,wehave

L/ j=1 PA(2)(j) 2C L/ j=1 PE(j) 2C as claimed. 2

Combining Claims 1 and 2with(9),and recallingthat= (log L)2/3,weobtain L/ j=1 PA(3)(j) L/ j=1 PA(1)(j)· PA(2)(j) L−2c· 2C L−c ifL is sufficientlylarge,as required. 2

Forcompleteness,letusspellouthowtodeduceLemma 3.7fromLemmas 3.5 and 3.10. ProofofLemma 3.7. By(8),andLemmas 3.5 and 3.10,wehave

PHR PHR  1 L3 L/ j=1 PA(3)(j) c0 1 L3− L−c c1

ifL is sufficientlylarge,as required. 2

As notedabove, Theorem 3.6 follows by repeating the proof of Theorem 3.1, using Lemma 3.7inplaceofLemma 3.5.

(17)

3.3. A boundontheprobability ofthe1-arm eventin arectangle

To finish the section, let us deduce the following proposition from Theorems 3.1 and 3.6. Let R ⊂ R2 be a rectangle of area n, and let η ⊂ R be a set of n points, each chosen uniformly at random, and let ω be a uniform colouring of η. (Thus, the distributionofη insideR isveryclosetothatofaPoissonprocessofintensity1.)Given

u∈ R andd> 0,wewriteM (u,d) fortheevent(dependingonη andω)thatthereisa

monochromaticpathfromu tosomepointofR at2-distanced from u.

WewillusethefollowingresultinSection4inordertoboundthe‘revealment’ofour randomised algorithm,andhenceto deduceourmain theorems. Sincethededuction of this result from the box-crossing property is standard, we will be fairly brief with the details.

Proposition 3.11. For every γ > 0, there exists ε > 0 such that the following holds.

Supposethat d= d(n)→ ∞ as n→ ∞ and letu∈ R. Then

PPM (u, d)| η d−ε

 d−γ

forallsufficientlylarge n∈ N.

Proof. Fixapointu∈ R,andforeachj∈ N,letAj denotethesquareannulus,centred

onu,withinnerside-length7j andouterside-length3· 7j.LetOj denotetheeventthat

thereisabluecircuitaroundthe(partial)annulusAj∩ R.(Thiscircuitmusteitherbe

closed,orhavebothitsendpointsontheboundaryofR;ineithercase,itmustseparate

u fromtheexteriorofAj.)Let

J =j∈ N : √d 7j+1 d,

andconsider thecollectionofannuli C = {Aj : j∈ J}.Roughlyspeaking, wewill show

thateitherat leasthalftheannuli inC contain an‘unusual’collectionofpoints,or the probabilitythatnoneoftheeventsOj occursis atmostd−ε.

Let c be the constant in Theorems 3.1 and 3.6, and fix a large constant k ∈ N (dependingon c and γ).Foreachj∈ J,letD(1)j denotetheevent(dependingonη)that POj|η



> 2−4k,andletD(2)j denote theeventthatforeveryz∈ Aj,thereexistssome

pointx∈ η atdistance atmostlog d fromz.Define

Dj := D

(1) j ∩ D

(2) j ,

andobserve thattheeventsDj areindependent.Weclaimthat

P(Dj) 1 − 5(1 − c)k (11)

(18)

PDj(2)→ 1

as d→ ∞.Next,observe that,bytheFKGinequality12 andTheorems 3.1 and 3.6,we

have

PPOj| η



 2−4k  4(1 − c)k

forallsufficientlylargek∈ N.ThusP(Dc

j) 4(1− c)k+ o(1) 5(1− c)k,as claimed.

Now, let D∗ denote the eventthatDj holds for at least halfof theelements j ∈ J,

and observethat

P(D∗) 1 − 2|J|5(1− c)k|J|/2 1 − d−γ,

since |J| = Ωlog d, and k was chosen sufficiently largein terms of γ and c. Butfor those η suchthatD∗ holds,wehave

PM (u, d)| η P  j∈J Ojcη  = j∈J POjc| η1− 2−4k|J|/2 d−ε,

forsomeε> 0,asrequired. 2

4. Theproofofthemain theorems

InthissectionwewillusethealgorithmmethodofBenjamini,KalaiandSchramm[5] andSchrammandSteif[22],togetherwiththeresultsprovedintheprevioussections,in order toboundthesumofthesquaresoftheinfluences,andhencededucethefollowing theorem.Throughoutthis section,letusfixarectangleR⊂ R2.

Theorem 4.1. Thereexists c = c(R)> 0 such that the followingholds. Letη ⊂ R be a

set of n points, each chosen uniformlyat random,and letω:η→ {−1,1} be auniform

colouring. Then

PP(HR| η) − P(HR) n−c

 n−c

forallsufficiently largen∈ N.

Theorem 1.1followsimmediatelyfromTheorem 4.1bytakingR = [0,1]2,andrecalling

that inthis caseP(HR)= 1/2. Notethat Theorem 1.4also follows from Theorem 4.1,

together with the RSW theorem for annealed Voronoi percolation, which implies that P(HR) isboundedawayfrom0and 1uniformly in n.

12

Notethat weare applying thisin thequenched world,so the usualFKGinequality (also knownas Harris’lemma)issufficient.

(19)

Therandomisedalgorithmmethodwasintroducedin[22]andusedtheretoshowthat theareexceptionaltimesindynamicalsitepercolationonthetriangularlattice.Sincethis methodiswell-known,andourapplicationisratherstandard,weshallbesomewhatless carefulwiththedetailsthaninearliersections,focusinginsteadonconveyingthemain ideas.Givenarandomised algorithmA thatdeterminesafunctionfn:{−1,1}n → {0,1},

definetherevealmentofA to be δA(fn) := max

i∈[n]P



i is queried byA.

Schramm and Steif [22] proved a very powerful bound on the Fourier coefficients of a real-valued function on the hypercube {−1,1}n in terms of the revealment of any

randomised algorithm thatdetermines f . For monotone Booleanfunctions theirresult easilyimpliesthefollowingtheorem,whichwillbesufficientforourpurposes.

Theorem 4.2 (Schramm and Steif, 2010). Given a monotone function f :{−1,1}n

{0,1},and arandomised algorithmA thatdetermines f ,wehave

n

m=1

Infm(f )2 δA(f ).

By Theorems 2.1 and 4.2, it only remains to show that, with probability at least 1− n−c, there exists an algorithm that determines fRη with revealment that is poly-nomially small inn. (Recallthat fRη:{−1,1 → {0,1} denotes thefunction suchthat

fRη(ω)= 1 if and onlyifHR occurs.) Thealgorithm we will useisessentially thesame

as thatintroducedin[22], so weshalldescribe itinanintuitive(and thereforeslightly non-rigorous)fashion,andreferthereadertotheoriginalpaperforthedetails.

TheSchramm–Steifrandomisedalgorithm.LetA bethealgorithmthat,givenη,queries bitsofω asfollows:

1. Chooseapointx inthemiddlethirdoftheleft-handsideofR uniformlyatrandom. 2. Explore the boundary between red and blue cells, with red on the left, starting from x.Here weplaceboundaryconditionsas follows:theleft-handsideofR isred above x, andbluebelow,andthebottomofR isalsoblue.Ifthispath:

(a) reachestheright-handsideofR,thenfRη(ω)= 1;

(b) reachesthebottomofR,andendsatthetop,thenfRη(ω)= 0; (c) endsatthetopofR withoutreachingthebottom,thengotostep 3.

3. Explore the boundary between red and blue cells, with red on the right, starting fromx.Herewereversetheboundaryconditions,i.e.,theleft-handsideofR isblue abovex,andredbelow,andthetopofR is alsoblue.Ifthis path:

(a) reachestheright-handsideofR,thenfRη(ω)= 1; (b) otherwise fRη(ω)= 0.

(20)

Note thatwe only query bits as needed, i.e., we query those vertices whose cellwe meet along one of our paths. Still following [22], this allows us to immediately bound therevealmentofA asfollows.Recallthat,givenu∈ R andd> 0,wewriteM (u,d) for theeventthatthereisamonochromaticpathfrom u tosomepoint ofR at2-distance

d from u.

Lemma 4.3.LetA be theSchramm–Steifrandomised algorithm.Then δA(fRη) max u∈η P  Mu, n−1/4 η + On−1/4 almostsurely.

Sketch of the proof. Let u ∈ η, and consider the probability thatu is queried by A. First, notethatthe probabilitythattherandomstart-point x iswithindistance n−1/4 of u is O(n−1/4). Butif the distance between u andx is greater than n−1/4, and u is nonetheless queriedbyA,thentheeventMu,n−1/4holds. 2

ToboundtherevealmentofA,itwillthereforesufficetoboundtheprobabilityofthe eventMu,n−1/4. ThisisanimmediateconsequenceofProposition 3.11.

Lemma 4.4.Forevery γ > 0,there existsc> 0 such that Pmax u∈η P  Mu, n−1/4 η  n−c  1

forallsufficiently largen∈ N.

Proof. Renormalising R tohavearean,wefindthatdistancesaremultipliedbyΘ√n, andsowemayapplyProposition 3.11withd= Θn1/4.Theclaimedboundnowfollows from theproposition,usingtheunionboundoverpointsu∈ η. 2

We arenow ready todeduce ourbound onthesumof thesquaresof theinfluences, and hence(byTheorem 2.1 andtheresultsof[5]and[26])ourmain theorems.

Lemma 4.5.Forevery γ > 0,there existsc> 0 such that

P  n m=1 Infm  fRη2 n−c   1

forallsufficiently largen∈ N.

Proof. Thisfollowsimmediately fromTheorem 4.2,togetherwithLemmas 4.3 and 4.4. Indeed,we have

(21)

n m=1 Infm(fRη) 2 δ A(fRη) n−c

withprobabilityatleast1− n−γ,as required. 2 WecannowdeduceTheorem 4.1.

Proofof Theorem 4.1. ByCorollary 2.2 andLemma 4.5 (applied with γ = 1,say), we have

PP(HR| η) − P(HR) n−c

 n−c

forsomec> 0,andallsufficientlylargen∈ N,asrequired. 2

Finally,letus notethatthetheorems statedintheIntroductionallfolloweasily. ProofofTheorem 1.1. Asnotedabove, thisis animmediate corollaryof Theorem 4.1. Indeed,simplysetR = [0,1]2and observethatP(H

R)= 1/2. 2

NextwededucethatquenchedVoronoipercolationisnoisesensitiveatcriticality.We remark that,although wedo notgive thedetails here,it is astandardconsequence of themethodof [22]thatastrongerstatement holds:That(3) holds evenifε= n−c for some(sufficientlysmall)constantc> 0.

ProofofTheorem 1.2. ThetheoremfollowsimmediatelyfromLemma 4.5,togetherwith theBenjamini–Kalai–SchrammTheorem(see(2)). 2

Finally,weprovethequenchedbox-crossingpropertyforVoronoipercolation. ProofofTheorem 1.4. ThisfollowsfromTheorem 4.1,togetherwiththeRSWtheorem forannealedVoronoipercolation,whichwasprovedin[26].Indeed,foreveryrectangle R, thereexists c0> 0 suchthat

c0<P(HR) < 1− c0,

see[26,Theorem 3]. Hence,byTheorem 4.1,wehave,forsomec> 0, Pc <PHR| η



< 1− c  1 − n−c (12)

forallsufficientlylargen∈ N. 2

Notethat,bypartitioningR intoaboundednumberofstripsandtakingc sufficiently small,inequality(12)impliesthattheprobabilityoftheeventPHR|η

 /

∈ (c,1− c) can

(22)

Acknowledgments

TheauthorswouldliketothankRobvandenBergforallowingustoincludehisproof of theBK inequalityforannealedVoronoipercolation.The firstauthor wouldalsolike to thankElchananMossel andGábor Peteforencouraging discussions, andthesecond and thirdauthorswouldlike to thankPaulBalisterandBéla Bollobásforanumberof veryinterestingconversations aboutquenchedVoronoipercolation.

References

[1] D.Ahlberg,P.Balister,B.Bollobás,S.Griffiths,R.Morris,NoisesensitivityinVoronoipercolation andtheGilbertmodelwithrandomradii,manuscript.

[2]D. Ahlberg, E. Broman, S. Griffiths, R. Morris, Noise sensitivity in continuum percolation, Israel J. Math. 201 (2014) 847–899.

[3]K.S. Alexander, The RSW theorem for continuum percolation and the CLT for Euclidean minimal spanning trees, Ann. Appl. Probab. 6 (1996) 466–494.

[4]V. Beffara, P. Nolin, On monochromatic arm exponents for critical 2D percolation, Ann. Probab. 40 (2012) 1286–1304.

[5]I. Benjamini, G. Kalai, O. Schramm, Noise sensitivity of Boolean functions and applications to percolation, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 5–43.

[6] J.vandenBerg,personalcommunication.

[7]J. van den Berg, H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985) 556–569.

[8]B. Bollobás, O. Riordan, Percolation, Cambridge University Press, 2006.

[9]B. Bollobás, O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Related Fields 136 (2006) 417–468.

[10]G.L. Dirichlet, Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math. 40 (1850) 209–227.

[11]H. Duminil-Copin, C. Hongler, P. Nolin, Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Comm. Pure Appl. Math. 64 (2011) 1165–1198.

[12]B. Efron, C. Stein, The jackknife estimate of variance, Ann. Statist. 9 (1981) 586–596.

[13]C. Garban, G. Pete, O. Schramm, The Fourier spectrum of critical percolation, Acta Math. 205 (2010) 19–104.

[14]C. Garban, J.E. Steif, Noise Sensitivity of Boolean Functions and Percolation, Cambridge University Press, 2014.

[15]O. Häggström, Y. Peres, J. Steif, Dynamical percolation, Ann. Inst. Henri Poincaré Probab. Stat. 33 (1997) 497–528.

[16] M.Joosten,Randomfractalsandscalinglimitsinpercolation,PhDthesis,VrijeUniversiteit Ams-terdam,2012,availableathttp://hdl.handle.net/1871/32792.

[17]T.M. Liebling, L. Pournin, Voronoi diagrams and Delaunay triangulations: ubiquitous Siamese twins, Doc. Math. Extra vol. ISMP (2012) 419–431.

[18]E. Lubetzky, A. Sly, Critical Ising on the square lattice mixes in polynomial time, Comm. Math. Phys. 313 (2012) 815–836.

[19]D. Reimer, Proof of the van den Berg–Kesten conjecture, Combin. Probab. Comput. 9 (2000) 27–32. [20]R. Roy, The Russo–Seymour–Welsh theorem and the equality of critical densities and the ‘dual’

critical densities for continuum percolation on R2, Ann. Probab. (1990) 1563–1575. [21]L. Russo, A note on percolation, Z. Wahrsch. Verw. Gebiete 43 (1978) 39–48.

[22]O. Schramm, J.E. Steif, Quantitative noise sensitivity and exceptional times for percolation, Ann. Math. 171 (2010) 619–672.

[23]P.D. Seymour, D.J.A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math. 3 (1978) 227–245.

[24]S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Ser. I Math. 333 (2001) 239–244.

[25]J.E. Steif, A survey on dynamical percolation, in: Fractal Geometry and Stochastics IV, in: Progr. Probab., vol. 61, Birkhäuser, 2009, pp. 145–174.

(23)

[26] V.Tassion,CrossingprobabilitiesforVoronoipercolation,Ann.Probab.,toappear.

[27]G.F. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, J. Reine Angew. Math. 133 (1908) 97–178.

Figure

Fig. 1. If there exists a red horizontal crossing in R  , but no red horizontal crossing of R, then a ‘3-arm event’
Fig. 2. Illustration of the event E(j): there exist a red path from a cell u(j) intersecting S j and the left boundary of R to the top of R, and a blue path from the cell u  (j) immediately below u(j) to the bottom of R.

References

Related documents

Detta synsätt på den egna kulturen som något skrivet i sten, som stagnerat utan möjlighet till utveckling eller progression, tillsammans med ett samhällsklimat där mayakulturen har

The overall objective of this study was to investigate the accuracy of different P saturation indices to predict concentrations of easily dis- solved P in different Swedish

Accordingly, this paper aims to investigate how three companies operating in the food industry; Max Hamburgare, Innocent and Saltå Kvarn, work with CSR and how this work has

Summarizing the findings as discussed above, line managers’ expectations towards the HR department as revealed in the analysis were mainly related to topics such as

In order for the Swedish prison and probation services to be able to deliver what they have undertaken by the government, the lecture that is provided to the

The same thoughts could be applied to the real estate market, where Shiller argues that the real estate market is inefficient today due to personal biases, transparency problems,

Momentum for systems / societal change towards a sustainable future in all systems from individuals to society as a

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller