• No results found

Simplified approach to dynamic analysis of railway bridges for high-speed trains

N/A
N/A
Protected

Academic year: 2021

Share "Simplified approach to dynamic analysis of railway bridges for high-speed trains"

Copied!
320
0
0

Loading.... (view fulltext now)

Full text

(1)

railway bridges for high-speed trains

(2)
(3)

In this report the analysis of 278 existing railway bridges is presented. The aim is to investigate how many of these bridges that potentially can be upgraded to higher speeds, with a target of 250 km/h. Due to the vast amount of bridges and the limited resources, the analyses are performed using simplified 2D models. The analysis is afflicted with several uncertainties, both regarding input parameters as well as model uncertainties. The results should therefore be interpreted carefully and primarily serve as an indicator for which bridges that may or may not meet the requirements. Large uncertainties are especially expected for portal frame bridges due to its inherently large interaction with the surrounding embankment and 3D behaviour.

The results from the analysis show that a total of 22 bridges theoretically fail to meet the dynamic requirements. A combination of refined analysis and experimental validation is recommended to better assess the dynamic response for these bridges. Among the most critical cases are several steel-concrete composite bridges, that due to a combination of low mass and low natural frequency may be prone to resonant loading. Retrofitting with external dampers may for some bridges be a viable solution.

(4)
(5)

The work presented in this report has been funded by Trafikverket, TRV 2018/109558. The results serve as input for an on-going investigation in estimating the cost of upgrading existing railway lines to higher speeds.

Stockholm, December 2018

(6)
(7)

1 Introduction 1

1.1 Background . . . 1

1.2 Limitations . . . 1

1.3 Structure of the report . . . 3

2 Dynamic analysis of railway bridges 5 2.1 Requirements in EN 1990 and EN 1991-2 . . . 5

2.2 Load distribution . . . 6

2.3 2D beam model . . . 7

2.4 Portal frame bridges . . . 8

2.5 Bridges with end over-sail . . . 10

3 Results 13 3.1 Bridge properties . . . 13

3.2 Results from passing trains . . . 14

4 Conclusions 19 4.1 Results from simplified models . . . 19

4.2 Future work . . . 19 References 21 A Results, HLSM-A 23 A.1 Botniabanan . . . 24 A.2 Mälarbanan . . . 100 A.3 Ostkustbanan . . . 164 A.4 Västkustbanan . . . 209 B Summary of results 303

(8)
(9)

Introduction

1.1

Background

According to Lennefors (2017), SJ have plans to purchase new trains for speeds up to 250 km/h. Parallel to this, Trafikverket has commissioned the consultant Kreera to investigate the possibility of increase the speed on the railway lines between Malmö - Göteborg - Oslo and Stockholm - Sundsvall - Umeå, with a target of 250 km/h. The first stage of this investigation is reported in Sterky et al. (2017), which preliminary indicate significant costs for upgrading the railway bridges. This was however based on very simplified assumptions without any detailed analysis. In the second stage, Kreera has presented a gross list of 278 railway bridges that need further analysis. The aim of this report is to perform simplified dynamic analysis of these bridges, following the design regulations in EN 1990 and EN 1991-2, CEN (2002), CEN (2003).

The bridges in this study are located along Västkustbanan (Malmö - Göteborg), Ostkustbanan (Stockholm - Sundsvall), Mälarbanan (Stockholm - Frövi) and Bot-niabanan (Umeå - Nyland). The position of each bridge is illustrated in Figure 1.1, Figure 1.2 and Figure 1.3. For many of these bridges previous analysis of the dynamic response has been performed, Johansson et al. (2013), Johansson et al. (2011) and Johansson et al. (2014). All bridges have been re-analysed using modi-fied models that are believed to better represent the dynamic behaviour.

(10)

Göteborg Borås Varberg Halmstad Ängelholm Helsingborg Malmö Trelleborg Sundsvall Hudiksvall Söderhamn Gävle Uppsala

Figure 1.1: Railway bridges along Västkustbanan and Ostkustbanan.

Uppsala Stockholm Västerås Eskilstuna Hallsberg Katrineholm Frövi Örebro Kallhäll

Figure 1.2: Railway bridges along Mälarbanan.

(11)

For many bridges the boundary conditions play an important role for the dynamic response, much due to the interaction with the adjacent embankment. This effect is sometimes difficult to accurately assess. System identification is sometimes per-formed based on experimental testing of passing trains or ambient vibrations. Due to the nonlinear response however, the parameters estimated at low amplitudes are not always representative for high amplitudes closer to the design limits. In recent years a framework for performing forced vibration testing on bridges has been devel-oped at KTH, consisting of a hydraulic actuator. This has successfully been tested on several bridges, reported in Andersson et al. (2015), Andersson et al. (2017) and Zangeneh et al. (2018). Especially the study on portal frame bridges and bridges with large over-sail show a significant contribution from soil-structure interaction. Part of these findings have been incorporated in the simplified models with the aim of better predicting the dynamic response. It is still afflicted with large un-certainties, both because of the simplification in the models and the extrapolation to bridges that has not been verified by experimental testing. Further analysis of dynamic soil-structure interaction is found in Zangeneh (2018), Svedholm (2017), Östlund et al. (2017b) and Östlund et al. (2017a).

In this study the train is represented by moving loads. Train-track-bridge inter-action may sometimes result in increased damping, which is accounted for by a factor ∆ζ in EN 1991-2. Research performed by Arvidsson (2018) has however showed that this may be non-conservative and has therefore not been included in this study. Short span bridges with high natural frequencies may be susceptible to parametric excitation originating from the sleeper passing frequency. This has been observed both in experimental testing and simulations, Arvidsson et al. (2017). This is however not accounted for in the present study.

1.3

Structure of the report

In Chapter 2, the basic requirements according to EN 1990 and EN 1991-2 is presented. Throughout the study a modified load distribution has been used, which is motivated by a separate analysis. The models used for different bridge types are described and a brief validation against previous experimental data is presented.

(12)
(13)

Dynamic analysis of railway

bridges

2.1

Requirements in EN 1990 and EN 1991-2

To assure that passing trains at high speed does not induce excessive vibrations in bridges, a set of design limits are stated in EN 1990. In most cases, the limit for vertical bridge deck acceleration or vertical bridge deck displacement is of primary interest. The acceleration criteria aim to limit the risk for ballast instability and is set to 3.5 m/s2. This was originally based on shake-table tests that showed a

risk of track settlement at about 0.7g, the value 3.5 m/s2was obtained by a safety

factor 2. The shake-table tests were performed at 20 Hz, but the frequency content to include according to EN 1990 is fmax = max{30, 1.5f1, f3} Hz. For short span

bridges the third eigenmode may be significantly larger than 30 Hz.

The vertical deck displacement is an indirect requirement for passenger comfort, with a reference vertical car body acceleration bv = 1.0 m/s2denoted as very good comfort level. This results in an allowable bridge deck displacement in the range

600 < L/δ < 2700, depending on the train speed, span lengths and type of bridge. In most cases the dynamic analyses are performed with train load model HSLM-A according to EN 1991-2. These consists of 10 different train sets, each with a total length of about 400 m and an axle load from 17 - 21 ton/axle. This train load model was developed to include dynamic effects from many common high-speed trains in Europe.

(14)

2.2

Load distribution

According to Figure 6.4 in EN 1991-2, the wheel load Qv at the rail may be dis-tributed as 0.5Qv at the centre rail seat and 0.25Qv on the adjacent rail seats. Further load distribution through the ballast to the bridge deck may be done by an assumed load angle 4:1. In dynamic analysis the load distribution will reduce the dynamic response at resonance, especially for short span bridges. This was investigated in ERRI D214, illustrated in Figure 2.1.

0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1

Figure 2.1: Reduction factor R as function of the speed v and first natural frequency

f1 ERRI (1999).

It can be noted that a load distribution of 3 m is significantly larger than recom-mended by EN 1991-2. Based on a simple Winkler-model, Figure 2.2, the load distribution according to Figure 2.3 is obtained. About 90 percent of the load is distributed on the three nearest sleepers, depending mainly in the rail seat stiff-ness ksup. If the sleepers and ballast is modelled with 2D plane stress elements, a continuous load distribution according to the dashed line is obtained. In further analysis in this report, a triangular load distribution with a length 3.0 m is used.

Fz s

(15)

-3 -2 -1 0 1 2 3 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2.3: Load distribution from simulations.

2.3

2D beam model

The analysis presented in this report is based on 2D Euler-Bernoulli beam theory. A typical model is illustrated in Figure 2.4. Input data in form of span lengths

Li, number of spans i, number of tracks and bridge type has been extracted from the bridge management system BaTMan. For each bridge, the flexural rigidity EI and total mass m has been calculated from design drawings. Damping ζ is taken from EN 1991-2 Table 6.6. It has been found that some bridge properties are not reported in a consistent way in BaTMan, requiring some manual changes. One example is the bridge end over-sail, that is sometimes reported as an extra span.

L3 EI, m, ζ

L1 L2

Figure 2.4: 2D beam model of a 3-span continuous bridge.

(16)

im-2.4

Portal frame bridges

The 2D beam model is generally considered to well represent most conventional beam and slab bridges, both single track and double track bridges. Extra attention is however needed for short span bridges, portal frame bridges and bridges with large end over-sail. A simplified 2D model of a portal frame bridge is illustrated in Figure 2.5. The surrounding soil will significantly influence the dynamic be-haviour of these bridges, which is partially accounted for by a vertical stiffness kv, rotational stiffness kr and a contributing mass m0 from the substructure. Simple

static estimates of these parameters, e.g. based on an assumed subgrade modulus, may significantly underestimate these parameters and therefore grossly overesti-mate the dynamic response. In addition, some modes of vibration may experience significant increase in damping owing to the dynamic soil-structure interaction with the adjacent embankment. To accurately include these effects, more refined and computationally demanding models are required ,which is beyond the scope of this study. The aim is instead to find realistic estimates for the parameters in the current model.

EI, m, ζ kv

kr m0 L

Figure 2.5: 2D beam model of a portal frame bridge.

In 2015, experimental testing was performed on a portal frame bridge named Degermyran (3500-5772-1). A hydraulic actuator was used to determine experimen-tal frequency response functions which was later used as input for model updating. A more comprehensive report on that study is found in Zangeneh et al. (2018) and Zangeneh (2018). In the present report, a simplified parametric 3D model has been developed as an extension of the 2D model in Figure 2.5. The bridge deck is modelled with shell elements and the edge beams with beam elements. A model updating scheme has been used to find a best fit of the equivalent parameters for the 2D model. The mode shapes of the 3D model is illustrated in Figure 2.6, which is in relatively good agreement with the experimental results. The experimental

(17)

-1 7 0 6 1 7 54 6 5 32 34 2 10 01 -1 7 0 6 1 7 54 6 5 32 34 2 10 01 -1 7 0 6 1 7 54 6 5 32 34 2 10 01

Figure 2.6: Eigenmodes for Degermyran (3500-5772-1), using a 3D-model. The track is oriented in the y-direction.

GN/m and kr= 4.1 GNm/rad. The relatively high value for the Young’s modulus of concrete may partly be due to inaccurate estimates of the moment of inertia. In Figure 2.7 the peak acceleration as function of the train speed in presented for HSLM A1-A10. The optimized 3D model is denoted model 3 and has a peak acceleration of merely 0.7 m/s2at 300 km/h. Using the same input parameters in

the 2D model results in model 2 with a peak acceleration of 1.06 m/s2. If the 2D

model is used together with initially assumed design parameters, the results are model 1 with a peak acceleration of 3.0 m/s2. Model 1 is used in further analysis

in this report. For two-track bridges the parameters are scaled in proportion to the width of the bridge, generally assumed as 7 m for single track bridges and 12 m for two track bridges.

3 4

(18)

2.5

Bridges with end over-sail

For some bridges the back wall and wing walls are integrated in the bridge deck, often designed with an over-sail from the end support, illustrated as the distance

L1 in Figure 2.8. Similar to the portal frame bridges, significant interaction with

the adjacent embankment is expected for the bridges with end over-sail. Previous research has shown that not only the boundary conditions at the end of the bridge but also the support needs to be accounted for, as a vertical stiffness k1and a mass m1of the pier and foundation slab.

L1 EI, m, ζ kv1 kv kr m0 m1 L L1

Figure 2.8: 2D beam model of a bridge with end over-sail.

During the same experimental campaign as Degermyran, a bridge with large over-sail was tested. The bridge, denoted Aspan (3500-5778-1), is a simply supported slab bridge with 24 m span and 1.7 m over-sail. Based on design drawings, the mass

m0= 90 ton and m1= 180 ton is estimated. From the experimental testing, fexp= {6.6, 17.9} Hz and ζexp= {1.5, 2.7} percent was estimated. Using the same model updating algorithm as for the portal frame bridge, the following parameters are estimated: Ec= 33 GPa, m = 30 ton/m, kv1= 200 GN/m, kv= 7.0 GN/m and kr= 3.5 GNm/rad. The resulting mode shapes are illustrated in Figure 2.9, where both the model and the experiments indicate a partially clamped end condition due to the interaction with the backfill. An example of also comparing the frequency response function is shown in Figure 2.10, indicating that the model may underestimate the response at the first resonance peak. Further optimization of the model is presented in Andersson et al. (2017)

0.5 1

(19)

0 5 10 15 20 25 0 0.01 0.02 0.03 0.04

Figure 2.10: FRF from Aspan, 2D model vs. experiment.

The vertical deck acceleration from passing trains are presented in Figure 2.11 for different models. Model 1 (amax=2.1 m/s2) denotes the reference model that is used in further simulations, based on the boundary conditions for the optimized model but design parameters for the Young’s modulus and mass. Model 2 (amax=3.7 m/s2) is without load distribution, model 3 (a

max=1.7 m/s2) is based on a refined model reported in Andersson et al. (2017) and model 4 (amax=2.0 m/s2) is an optimized model with all updated parameters. Model 5 (amax>10 m/s2) is based on free boundary conditions at the bridge end and model 6 (amax=7.7 m/s2) if the over-sail is excluded from the analysis. In conclusion, the boundary conditions of the bridges with large over-sail is important to account for and a simplified approach by vertical and rotational stiffness seems to give relatively good agreement with experimental data.

4 5

8 10

(20)
(21)

Results

3.1

Bridge properties

Of the total 278 bridges, 170 are portal frames, 72 beam bridges and 34 slab bridges. 6 of the beam bridges are designed as concrete composite bridges, 7 as steel-concrete bridges without composite action and the remaining as steel-concrete bridges. A total of 149 bridges are single track bridges and a total of 188 are single span bridges. A distribution of the maximum span length for each bridge is illustrated in Figure 3.1, portal frame bridges and slab bridges are usually less than 25 m, whereas beam bridges usually are up to 60 m.

5 10 15 20 25 0 10 20 30 40 50 5 10 15 20 25 0 2 4 6 8 10 20 40 60 80 0 5 10 15 20

Figure 3.1: Max span length for all studied bridges.

The cross-sectional properties has been estimated from the design drawings. For pre-stresses concrete bridges and composite bridges, a Young’s modulus of 34 GPa

(22)

range. This is however afflicted with a large uncertainty since it depends on the assumed boundary conditions, especially the vertical support stiffness. Some of the longer beam bridges have a natural frequency below the limit and are likely to be prone to resonance loading. Several of these bridges are single track steel-concrete composite bridges.

Table 3.1: Variation in cross-sectional properties, per track.

Ix(m4) m(ton/m)

min mean max std min mean max std Portal frame 0.03 0.26 1.83 0.25 8.2 15.8 53.3 5.0 Slab bridge 0.19 0.73 2.20 0.52 13.9 19.0 28.7 4.0 Beam bridge 0.31 2.31 17.45 2.46 9.5 20.2 36.9 5.3 0 10 20 30 0 20 40 60 80 100 120 0 10 20 30 0 5 10 15 20 0 20 40 60 80 0 5 10 15 20

Figure 3.2: First natural frequency as function of maximum span length, dashed lines are limits in EN 1991-2.

3.2

Results from passing trains

None of the bridges exceeded the vertical deck displacement limit, but a total of 22 bridges exceeded the acceleration limit. The peak result for each bridge is presented in Figure 3.3. Two of the longer span portal frame bridges exceed the limit, but may

(23)

0 10 20 30 0 2 4 6 8 0 10 20 30 0 2 4 6 8 0 20 40 60 80 0 2 4 6 8

Figure 3.3: Peak vertical deck acceleration as function of largest span.

To further illustrate the dynamic response of the bridges, envelopes of peak ac-celeration vs. train speed is presented. In Figure 3.4 results are presented for an envelope of all portal frame bridges, with the two longest bridges separated with dashed and dash-dotted lines. These bridges may need to be reanalysed with more site-specific data.

The corresponding envelope for slab bridges is presented in Figure 3.5. The bridges presented with dashed and dash-dotted lines are both simply supported concrete slabs without over-sail. Bridge 3500-3605-1 may fulfill the requirements if an in-creased stiffness can be shown. An inin-creased mass of bridge 3500-2940-1 may decrease the resonance peak below the design limit.

Finally the similar results for the beam bridges are presented in Figure 3.6. Several bridges exceed the acceleration limit between 250 - 300 km/h. The three bridges denoted by dashed, dash-dotted and dotted lines are all steel-concrete composite bridges. The natural frequencies are in the range 2.3 - 2.5 Hz which together with a relatively low mass makes them susceptible to excessive vibrations. These bridges may need to be improved in order to allow higher train speeds, e.g. by retrofitting external dampers.

(24)

100 150 200 250 300 0

2 4 6

Figure 3.4: Portal frame bridges, deck acceleration vs. train speed.

100 150 200 250 300

0 2 4 6

Figure 3.5: Slab bridges, deck acceleration vs. train speed.

4 6 8

(25)

Table 3.2: Bridges exceeding the acceleration limit.

Lmax f1 amax dmax vmax

Knr Type (m) Span (Hz) (m/s2) (mm) (km/h) 3500-5780-1 composite 43.0 2 2.3 6.4 29.4 132 3500-5338-1 composite 42.0 1 2.5 7.1 39.2 138 3500-5288-1 composite 48.0 1 2.3 5.9 35.5 152 3500-4499-1 composite 44.0 3 2.6 6.4 22.8 168 3500-2931-1 frame 28.6 1 4.5 4.2 9.2 175 3500-4812-1 beam 29.6 3 3.3 5.0 14.5 185 3500-2940-1 slab 14.2 1 9.3 4.0 2.7 203 3500-5579-1 frame 29.2 1 2.9 5.3 18.2 208 3500-4769-1 composite 43.0 7 2.0 5.2 18.3 213 3500-4601-1 pipe 2.5 1 35.5 5.8 0.3 225 3500-5787-1 composite 46.0 4 2.4 6.1 16.2 228 3500-8014-1 beam 28.0 3 4.3 3.7 6.5 230 3500-5052-1 slab 9.0 1 16.4 3.7 0.9 232 3500-4729-1 frame 13.2 1 8.8 5.0 2.9 232 3500-5786-1 frame 16.2 1 6.9 5.6 4.6 233 3500-3756-1 frame 14.0 1 8.0 4.8 2.7 235 3500-3858-1 frame 17.1 1 5.9 3.8 3.9 235 3500-3605-1 slab 20.5 1 4.8 5.6 7.9 243 3500-5779-1 frame 15.6 1 7.5 3.7 3.0 245 3500-5788-1 frame 15.7 1 7.3 4.9 3.7 245 3500-4963-1 slab 15.5 3 6.4 4.0 5.4 247 3500-5772-1 frame 7.6 1 22.4 4.0 0.6 248

(26)
(27)

Conclusions

4.1

Results from simplified models

The analysis presented in this report essentially follows the design regulations stip-ulated in EN 1990 and EN 1991-2, primarily intended for design of new railway bridges. Especially the train load model HSLM-A often produce much higher dy-namic response compared to most conventional existing trains. EN 1991-2 also gives a lower bound for damping to be used. At resonance, the response is inversely proportional to the damping and a small increase in damping may reduce the re-sponse significantly. Other factors as the boundary conditions are not specifically regulated by the design codes. Especially for portal frame bridges and bridges with large over-sail, the interaction with the embankment needs to be accounted for. This has been done based on a limited set of experimental results, which has been extrapolated to a large set of bridges. As a consequence, the response from some bridges may have been underestimated.

Based on the simulations presented in this report, 22 of 278 bridges fail to meet the dynamic requirements according to EN 1990 and EN 1991-2. For some of these bridges a combination of refined analysis and validation against experimental data may be needed to prove that they can meet the requirements. For others, especially some of the steel-concrete composite bridges, improvements may be required, e.g. by retrofitting external dampers. Simulations has shown that external dampers mounted near the support can increase the damping significantly, Tell (2017) and Rådeström et al. (2017).

(28)
(29)

Andersson, A., Ülker Kaustell, M., Borg, R., Dymén, O., Carolin, A., Karoumi, R., 2015. Pilot testing of a hydraulic bridge exciter. In: EVACES 2015. MATEC Web of Conferences.

Andersson, A., Östlund, J., Ülker Kaustell, M., Battini, J.-M., Karoumi, R., 2017. Full-scale dynamic testing of a railway bridge using a hydraulic exciter. In: EVACES 2017. Springer, pp. 354–363.

Andersson, A., Svedholm, C., 2016. Dynamisk kontroll av järnvägsbroar, inverkan av 3d-effekter. Report 158, KTH, Struct. Eng. and Bridges.

Arvidsson, T., 2018. Train–track–bridge interaction for the analysis of railway bridges and train running safety. Doctoral thesis.

Arvidsson, T., Zhangeneh, A., Andersson, A., 2017. Influence of sleeper passing frequency on short span bridges – validation against measured results. In: 1st Int. Conf. on Rail Transportation.

CEN, 2002. Eurocode EN 1990: Basis of structural Design. European Committee for Standardization.

CEN, 2003. Eurocode EN 1991-2: Actions of structures - part 2: Traffic loads on bridges. European Committee for Standardization.

ERRI, 1999. Rail bridges for speeds >200 km/h. European Rail Research Institute. Johansson, C., Andersson, A., Karoumi, R., Pacoste, C., 2013. Dynamiska kon-troller av järnvägsbroar längs botniabanan för framtida höghastighetståg, etapp 1. Report 145, KTH, Struct. Eng. and Bridges.

(30)

Lennefors, L., 2017. Projektspecifikation för hastighetshöjning av befintliga banor 200 - 250 km/h. Report, Trafikverket.

Rådeström, S., Ülker Kaustell, M., Andersson, A., Tell, V., Karoumi, R., 2017. Application of fluid viscous dampers to mitigate vibrations of high-speed railway bridges. International Journal of Rail Transportation 5 (1), 47–62.

Sterky, P., Thurfjell, F., Wangefjord, F., 2017. Hastighetshöjning av befintliga banor för 200 - 250 km/h. Report, Kreera.

Östlund, J. L., Andersson, A., Ülker Kaustell, M., Battini, J.-M., 2017a. Soil−structure interaction for foundations on high-speed railway bridges. Report 166, KTH, Struct. Eng. and Bridges.

Östlund, J. L., Ülker Kaustell, M., Andersson, A., Battini, J.-M., 2017b. Consid-ering dynamic soil-structure interaction in design of high-speed railway bridges. In: Eurodyn 2017. Elsevier, pp. 2384–2389.

Svedholm, C., 2017. Efficient modelling techniques for vibration analyses of railway bridges. Doctoral thesis.

Svedholm, C., Andersson, A., 2016. Designdiagram för förenklad dynamisk kontroll av järnvägsbroar. Report 157, KTH, Struct. Eng. and Bridges.

Tell, S., 2017. Vibration mitigation of high-speed railway bridges: Application of fluid viscous dampers. Licentiate thesis.

Zangeneh, A., 2018. Dynamic soil-structure interaction analysis of railway bridges: Numerical and experimental results. Licentiate thesis.

Zangeneh, A., Svedholm, C., Andersson, A., Pacoste, C., Karoumi, R., 2018. Identi-fication of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing. Engineering Structures 159 (1), 299–309.

(31)
(32)

A.1

Botniabanan

Table A.1: Arnäsvall, Nederövägen & Torsån km 12+504.

Bridge data Cross-section

knr 3500-5274-1 EI (GNm2) 114.24

material Betong armerad m (ton/m) 24.5 type Balkbro kontinuerlig ζ (%) 1.50

year 2002 1 + 0.5φ0 1.00

span (m) 28.5+7×37.5+28.5

Results: amax = 1.3 m/s2 dmax= 6.8 mm

0 50 100 150 200 250 300 350 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(33)

Table A.2: Bryngeån, km 17+856.

Bridge data Cross-section

knr 3500-5288-1 EI (GNm2) 207.90

material Stål-btg, samverkan m (ton/m) 17.8 type Balkbro kontinuerlig ζ (%) 0.50

year 2000 1 + 0.5φ0 1.00

span (m) 48.0

Results: amax = 5.9 m/s2 dmax = 35.5 mm vkrit= 182 km/h 0 10 20 30 40 50 -1 0 1 100 150 200 250 300 0 2 4 6 40 60 80

(34)

Table A.3: Faresmyren, km 16+376.

Bridge data Cross-section

knr 3500-5302-1 EI (GNm2) 7.34

material Betong armerad m (ton/m) 17.8 type Plattram 0-leds ζ(%) 2.30

year 1999 1 + 0.5φ0 1.38

span (m) 8.6

Results: amax = 2.2 m/s2 dmax= 0.5 mm

0 1 2 3 4 5 6 7 8 9 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10 15

(35)

Table A.4: Gideåbacka, km 28+648.

Bridge data Cross-section

knr 3500-5304-1 EI (GNm2) 51.00

material Betong spännarmerad m (ton/m) 20.1 type Plattbro kontinuerlig ζ(%) 1.00

year 2001 1 + 0.5φ0 1.01

span (m) 22.0+25.0+25.0+22.0

Results: amax = 2.9 m/s2 dmax = 4.7 mm

0 20 40 60 80 100 -1 0 1 100 150 200 250 300 0 2 4 20 40

(36)

Table A.5: Gideälven, km 29+282.

Bridge data Cross-section

knr 3500-5305-1 EI (GNm2) 285.60

material Stål-btg, samverkan m (ton/m) 13.8 type Balkbro kontinuerlig ζ (%) 0.50

year 2003 1 + 0.5φ0 1.00

span (m) 50.0+55.0+80.0+55.0+50.0

Results: amax = 2.1 m/s2 dmax = 25.7 mm

0 50 100 150 200 250 300 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 50 100 150

(37)

Table A.6: Ryssbäcken, km 26+033.

Bridge data Cross-section

knr 3500-5317-1 EI (GNm2) 27.20

material Betong spännarmerad m (ton/m) 19.4 type Balkbro kontinuerlig ζ(%) 1.28

year 2001 1 + 0.5φ0 1.02

span (m) 16.0+23.0+23.0+16.0

Results: amax = 3.0 m/s2 dmax = 5.0 mm

0 10 20 30 40 50 60 70 80 -1 0 1 100 150 200 250 300 0 2 4 20 40

(38)

Table A.7: Skillingsjövägen, km 24+658.

Bridge data Cross-section

knr 3500-5318-1 EI (GNm2) 8.43

material Betong armerad m (ton/m) 18.4 type Plattram 2-leds ζ(%) 2.30

year 2004 1 + 0.5φ0 1.39

span (m) 8.6

Results: amax = 2.2 m/s2 dmax= 0.5 mm

0 1 2 3 4 5 6 7 8 9 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10 15

(39)

Table A.8: Stenberg, km 15+100.

Bridge data Cross-section

knr 3500-5319-1 EI (GNm2) 5.44

material Betong armerad m (ton/m) 15.7 type Plattram 2-leds ζ(%) 2.44

year 1999 1 + 0.5φ0 1.54

span (m) 6.6

Results: amax = 1.4 m/s2 dmax= 0.3 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 5 10

(40)

Table A.9: Strann-Nyland, km 14+510.

Bridge data Cross-section

knr 3500-5320-1 EI (GNm2) 44.34

material Betong armerad m (ton/m) 22.2 type Balkbro kontinuerlig ζ (%) 1.78

year 2002 1 + 0.5φ0 1.02

span (m) 16.3+4×21.7+18.3

Results: amax= 1.2 m/s2 dmax= 1.9 mm

0 20 40 60 80 100 120 140 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(41)

Table A.10: Kasavägen Västra, km 25+654.

Bridge data Cross-section

knr 3500-5321-1 EI (GNm2) 7.07

material Betong armerad m (ton/m) 18.6 type Plattram 2-leds ζ(%) 2.37

year 2004 1 + 0.5φ0 1.44

span (m) 7.6

Results: amax = 2.7 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(42)

Table A.11: Svartvattbäcksvägen, km 25+118.

Bridge data Cross-section

knr 3500-5322-1 EI (GNm2) 17.41

material Betong armerad m (ton/m) 23.1 type Plattram 2-leds ζ(%) 2.00

year 2004 1 + 0.5φ0 1.19

span (m) 12.8

Results: amax = 2.0 m/s2 dmax= 1.1 mm

0 2 4 6 8 10 12 14 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20

(43)

Table A.12: Lillmosjövägen Östra, km 22+913.

Bridge data Cross-section

knr 3500-5323-1 EI (GNm2) 8.98

material Betong armerad m (ton/m) 20.0 type Plattram 2-leds ζ(%) 2.37

year 2001 1 + 0.5φ0 1.46

span (m) 7.6

Results: amax = 2.0 m/s2 dmax= 0.3 mm

0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(44)

Table A.13: Banafjällsån, km 22+392.

Bridge data Cross-section

knr 3500-5338-1 EI (GNm2) 129.43

material Stål-btg, samverkan m (ton/m) 16.9 type Balkbro fritt upplagd ζ (%) 0.50

year 2002 1 + 0.5φ0 1.00

span (m) 42.0

Results: amax = 7.1 m/s2 dmax = 39.2 mm vkrit= 166 km/h 0 5 10 15 20 25 30 35 40 45 -1 0 1 100 150 200 250 300 0 2 4 6 100 150 200 250 300 0 20 40 60

(45)

Table A.14: Hällviken km 538+890.

Bridge data Cross-section

knr 3500-5376-1 EI (GNm2) 73.44

material Betong armerad m (ton/m) 22.7 type Balkbro kontinuerlig ζ (%) 1.50

year 2005 1 + 0.5φ0 1.00

span (m) 24.0+4×33.0+24

Results: amax= 2.2 m/s2 dmax= 6.7 mm

0 20 40 60 80 100 120 140 160 180 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(46)

Table A.15: Brogatan, km 548+180.

Bridge data Cross-section

knr 3500-5377-1 EI (GNm2) 26.93

material Betong armerad m (ton/m) 18.2 type Balkbro kontinuerlig ζ (%) 1.85

year 2006 1 + 0.5φ0 1.03

span (m) 18.0+21.0+21.0+18.0+15.0

Results: amax= 1.9 m/s2 dmax= 3.0 mm

0 20 40 60 80 100 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(47)

Table A.16: Veckefjärden, km 549+110.

Bridge data Cross-section

knr 3500-5378-1 EI (GNm2) 218.40

material Stål-btg, ej samverkan m (ton/m) 15.0 type Balkbro kontinuerlig ζ(%) 0.50

year 2004 1 + 0.5φ0 1.00

span (m) 46.0+6×60.0+47.0+37.0

Results: amax = 3.0 m/s2 dmax = 13.7 mm

0 100 200 300 400 500 -1 0 1 100 150 200 250 300 0 2 4 50 100

(48)

Table A.17: Högland GC-port, km 9+064.

Bridge data Cross-section

knr 3500-5599-1 EI (GNm2) 1.90

material Betong armerad m (ton/m) 21.9 type Plattram 0-leds ζ(%) 2.66

year 2006 1 + 0.5φ0 1.85

span (m) 3.4

Results: amax = 0.4 m/s2 dmax= 0.1 mm

0 0.5 1 1.5 2 2.5 3 3.5 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 2 4 6

(49)

Table A.18: Dombäck, km 29+860.

Bridge data Cross-section

knr 3500-5600-1 EI (GNm2) 173.40

material Betong spännarmerad m (ton/m) 28.8 type Balkbro kontinuerlig ζ(%) 1.00

year 2003 1 + 0.5φ0 1.00

span (m) 33.0+36.0+36.0+36.0+33.0

Results: amax = 1.5 m/s2 dmax= 4.8 mm

0 20 40 60 80 100 120 140 160 180 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(50)

Table A.19: Husum station, km 31+269.

Bridge data Cross-section

knr 3500-5601-1 EI (GNm2) 76.16

material Betong armerad m (ton/m) 24.5 type Balkbro kontinuerlig ζ (%) 1.50

year 2002 1 + 0.5φ0 1.00

span (m) 26.0+31.0+30.0+30.0+5×31.0+24.0

Results: amax= 1.4 m/s2 dmax= 4.4 mm

0 50 100 150 200 250 300 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40 60

(51)

Table A.20: Husån, km 31+925.

Bridge data Cross-section

knr 3500-5602-1 EI (GNm2) 112.20

material Betong spännarmerad m (ton/m) 20.3 type Balkbro kontinuerlig ζ(%) 2.29

year 2002 1 + 0.5φ0 1.02

span (m) 1.6+21.0+35.0+26.0+1.6

Results: amax = 0.8 m/s2 dmax= 3.3 mm

0 10 20 30 40 50 60 70 80 90 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(52)

Table A.21: Ångermanälven, km 484 +396.

Bridge data Cross-section

knr 3500-5671-1 EI (GNm2) 245.70

material Stål-btg, ej samverkan m (ton/m) 18.9 type Balkbro låda kontinuerlig ζ (%) 0.50

year 2006 1 + 0.5φ0 1.00

span (m) 48.0+15×61.0+48.0

Results: amax = 1.9 m/s2 dmax = 12.4 mm

0 200 400 600 800 1000 1200 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 50 100

(53)

Table A.22: Styrnäs, enskild väg Solum, km 489 +823.

Bridge data Cross-section

knr 3500-5672-1 EI (GNm2) 8.98

material Betong armerad m (ton/m) 29.3 type Plattram 0-leds ζ(%) 2.35

year 2007 1 + 0.5φ0 1.40

span (m) 7.8

Results: amax = 2.1 m/s2 dmax= 0.3 mm

0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(54)

Table A.23: Offer, enskild väg Subbersta, km 492 +500.

Bridge data Cross-section

knr 3500-5673-1 EI (GNm2) 10.61

material Betong armerad m (ton/m) 20.8 type Plattram 0-leds ζ(%) 2.15

year 2007 1 + 0.5φ0 1.25

span (m) 10.7

Results: amax = 1.5 m/s2 dmax= 0.8 mm

0 2 4 6 8 10 12 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20

(55)

Table A.24: Offersjön, km 497+132.

Bridge data Cross-section

knr 3500-5674-1 EI (GNm2) 200.60

material Betong spännarmerad m (ton/m) 25.9 type Balkbro kontinuerlig ζ(%) 1.00

year 2006 1 + 0.5φ0 1.00

span (m) 36.0+9×45.0+36.0

Results: amax = 0.7 m/s2 dmax= 5.8 mm

0 100 200 300 400 500 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(56)

Table A.25: Brustjärnsbäcken km 499 +775.

Bridge data Cross-section

knr 3500-5675-1 EI (GNm2) 121.04

material Betong armerad m (ton/m) 21.8 type Balkbro fritt upplagd ζ (%) 2.79

year 2006 1 + 0.5φ0 1.05

span (m) 1.6+30.0+1.6

Results: amax= 1.4 m/s2 dmax= 2.5 mm

0 5 10 15 20 25 30 35 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40 60

(57)

Table A.26: Svarttjärnsvägen, km 501 +500.

Bridge data Cross-section

knr 3500-5676-1 EI (GNm2) 3.26

material Betong armerad m (ton/m) 14.8 type Plattram 0-leds ζ(%) 2.45

year 2006 1 + 0.5φ0 1.48

span (m) 6.5

Results: amax = 3.0 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 5 10

(58)

Table A.27: Leån, km 503+210.

Bridge data Cross-section

knr 3500-5677-1 EI (GNm2) 27.20

material Betong armerad m (ton/m) 18.6 type Balkbro kontinuerlig ζ (%) 2.79

year 2006 1 + 0.5φ0 1.10

span (m) 1.6+18.0+18.0+1.6

Results: amax= 1.4 m/s2 dmax= 1.7 mm

0 5 10 15 20 25 30 35 40 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20 30

(59)

Table A.28: Hinnsjöån, km 522+671.

Bridge data Cross-section

knr 3500-5678-1 EI (GNm2) 111.52

material Betong armerad m (ton/m) 21.0 type Balkbro kontinuerlig ζ (%) 1.50

year 2007 1 + 0.5φ0 1.00

span (m) 28.0+40.0+32.0

Results: amax = 2.7 m/s2 dmax = 11.0 mm

0 20 40 60 80 100 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(60)

Table A.29: Skoterled 1, km 522+900.

Bridge data Cross-section

knr 3500-5679-1 EI (GNm2) 2.45

material Betong armerad m (ton/m) 13.7 type Plattram 0-leds ζ(%) 2.66

year 2007 1 + 0.5φ0 2.05

span (m) 3.4

Results: amax = 0.5 m/s2 dmax= 0.1 mm

0 0.5 1 1.5 2 2.5 3 3.5 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 2 4 6

(61)

Table A.30: Drömmebäckarna, enskild väg, km 524+162.

Bridge data Cross-section

knr 3500-5681-1 EI (GNm2) 5.17

material Betong armerad m (ton/m) 17.1 type Plattram 2-leds ζ(%) 2.37

year 2006 1 + 0.5φ0 1.42

span (m) 7.6

Results: amax = 2.8 m/s2 dmax= 0.5 mm

0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(62)

Table A.31: Skoterled, km 526+090.

Bridge data Cross-section

knr 3500-5682-1 EI (GNm2) 2.45

material Betong armerad m (ton/m) 13.4 type Plattram 0-leds ζ(%) 2.66

year 2007 1 + 0.5φ0 2.06

span (m) 3.4

Results: amax = 0.5 m/s2 dmax= 0.1 mm

0 0.5 1 1.5 2 2.5 3 3.5 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 2 4 6

(63)

Table A.32: Orrvik, väg 890, km 526+493.

Bridge data Cross-section

knr 3500-5683-1 EI (GNm2) 13.06

material Betong armerad m (ton/m) 21.4 type Plattram 2-leds ζ(%) 1.83

year 2006 1 + 0.5φ0 1.09

span (m) 15.3

Results: amax = 3.1 m/s2 dmax= 2.5 mm

0 2 4 6 8 10 12 14 16 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(64)

Table A.33: Käringberget, enskild väg, km 527+990.

Bridge data Cross-section

knr 3500-5684-1 EI (GNm2) 8.70

material Betong armerad m (ton/m) 20.0 type Plattram 2-leds ζ(%) 2.12

year 2006 1 + 0.5φ0 1.22

span (m) 11.1

Results: amax = 1.8 m/s2 dmax= 1.0 mm

0 2 4 6 8 10 12 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20

(65)

Table A.34: Bjällstaån km 529+188.

Bridge data Cross-section

knr 3500-5685-1 EI (GNm2) 111.52

material Betong armerad m (ton/m) 22.9 type Balkbro kontinuerlig ζ (%) 1.50

year 2007 1 + 0.5φ0 1.00

span (m) 32.0+36.0+32.0

Results: amax = 2.7 m/s2 dmax= 9.9 mm

0 20 40 60 80 100 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(66)

Table A.35: Hinnsjövägen, km 529+317.

Bridge data Cross-section

knr 3500-5686-1 EI (GNm2) 47.60

material Betong armerad m (ton/m) 22.4 type Balkbro kontinuerlig ζ (%) 2.77

year 2008 1 + 0.5φ0 1.10

span (m) 1.8+16.0+20.0+16.0+1.8

Results: amax= 0.8 m/s2 dmax= 1.3 mm

0 10 20 30 40 50 60 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20 30

(67)

Table A.36: Västansjövägen, väg 888, km 532+525.

Bridge data Cross-section

knr 3500-5687-1 EI (GNm2) 136.00

material Betong armerad m (ton/m) 25.8 type Balkbro kontinuerlig ζ (%) 1.50

year 2004 1 + 0.5φ0 1.00

span (m) 37.1+39.1+39.1+39.1+39.1+33.1

Results: amax = 1.3 m/s2 dmax= 6.9 mm

0 50 100 150 200 250 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(68)

Table A.37: Kornsjövägen, väg 889, km 534+935.

Bridge data Cross-section

knr 3500-5688-1 EI (GNm2) 54.40

material Betong armerad m (ton/m) 22.4 type Balkbro kontinuerlig ζ (%) 1.50

year 2008 1 + 0.5φ0 1.03

span (m) 20.0+25.0+20.0

Results: amax= 2.3 m/s2 dmax= 3.1 mm

0 10 20 30 40 50 60 70 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(69)

Table A.38: Sidensjövägen, väg 908, km 535+413.

Bridge data Cross-section

knr 3500-5689-1 EI (GNm2) 19.04

material Betong armerad m (ton/m) 22.3 type Plattbro kontinuerlig ζ (%) 2.79

year 2008 1 + 0.5φ0 1.08

span (m) 1.6+13.0+17.0+13.0+1.6

Results: amax = 1.0 m/s2 dmax = 2.0 mm

0 10 20 30 40 50 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(70)

Table A.39: Nätraån km 536+685.

Bridge data Cross-section

knr 3500-5690-1 EI (GNm2) 195.30

material Stål-btg, ej samverkan m (ton/m) 15.4 type Balkbro låda kontinuerlig ζ (%) 0.50

year 2006 1 + 0.5φ0 1.00

span (m) 48.0+15×60.0+48.0

Results: amax = 1.9 m/s2 dmax = 15.1 mm

0 200 400 600 800 1000 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 50 100

(71)

Table A.40: Styrnäs, väg 334, km 485 +165.

Bridge data Cross-section

knr 3500-5691-1 EI (GNm2) 59.84

material Betong armerad m (ton/m) 23.0 type Plattbro kontinuerlig ζ (%) 2.79

year 2008 1 + 0.5φ0 1.21

span (m) 1.6+13.0+17.0+13.0+1.6

Results: amax = 0.7 m/s2 dmax = 0.6 mm

0 10 20 30 40 50 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(72)

Table A.41: Skoterled 2, km 521+270.

Bridge data Cross-section

knr 3500-5693-1 EI (GNm2) 3.26

material Betong armerad m (ton/m) 24.2 type Plattram 0-leds ζ(%) 2.66

year 2007 1 + 0.5φ0 1.96

span (m) 3.4

Results: amax = 0.4 m/s2 dmax= 0.0 mm

0 0.5 1 1.5 2 2.5 3 3.5 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 2 4 6

(73)

Table A.42: Stensmyran, km 37+383.

Bridge data Cross-section

knr 3500-5771-1 EI (GNm2) 7.62

material Betong armerad m (ton/m) 27.4 type Plattram 2-leds ζ(%) 2.33

year 2004 1 + 0.5φ0 1.37

span (m) 8.1

Results: amax = 2.0 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 8 9 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(74)

Table A.43: Degermyran, km 38+863.

Bridge data Cross-section

knr 3500-5772-1 EI (GNm2) 4.08

material Betong armerad m (ton/m) 15.8 type Plattram 2-leds ζ(%) 2.37

year 2004 1 + 0.5φ0 1.40

span (m) 7.6

Results: amax= 4.0 m/s2 dmax = 0.6 mm vkrit= 298 km/h 0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10 15

(75)

Table A.44: Öden, Väg 1077, km 39+966.

Bridge data Cross-section

knr 3500-5773-1 EI (GNm2) 8.98

material Betong armerad m (ton/m) 20.3 type Plattram 2-leds ζ(%) 2.08

year 2004 1 + 0.5φ0 1.19

span (m) 11.7

Results: amax = 1.8 m/s2 dmax= 1.2 mm

0 2 4 6 8 10 12 -1 0 1 100 150 200 250 300 0 2 4 10 20

(76)

Table A.45: Saluån och väg 1078, km 46+344.

Bridge data Cross-section

knr 3500-5775-1 EI (GNm2) 105.00

material Stål-btg, samverkan m (ton/m) 12.4 type Balkbro kontinuerlig ζ (%) 0.50

year 2005 1 + 0.5φ0 1.00

span (m) 34.5+6×43.0+34.5

Results: amax = 2.6 m/s2 dmax = 11.1 mm

0 50 100 150 200 250 300 350 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40 60

(77)

Table A.46: Stridbäcken, km 49+185.

Bridge data Cross-section

knr 3500-5776-1 EI (GNm2) 32.64

material Betong armerad m (ton/m) 27.2 type Plattbro kontinuerlig ζ (%) 2.77

year 2004 1 + 0.5φ0 1.03

span (m) 1.8+19.6+22.0+1.8

Results: amax = 1.2 m/s2 dmax = 2.6 mm

0 10 20 30 40 50 -1 0 1 100 150 200 250 300 0 2 4 20 40

(78)

Table A.47: Ava VP, km 52+546.

Bridge data Cross-section

knr 3500-5777-1 EI (GNm2) 3.81

material Betong armerad m (ton/m) 15.9 type Plattram 2-leds ζ(%) 2.45

year 2004 1 + 0.5φ0 1.49

span (m) 6.5

Results: amax = 2.6 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

(79)

Table A.48: Aspan, km 53+250.

Bridge data Cross-section

knr 3500-5778-1 EI (GNm2) 48.96

material Betong armerad m (ton/m) 28.6 type Plattbro kontinuerlig ζ (%) 2.77

year 2004 1 + 0.5φ0 1.05

span (m) 1.8+24.0+1.8

Results: amax = 1.4 m/s2 dmax = 2.4 mm

0 5 10 15 20 25 30 -1 0 1 100 150 200 250 300 0 2 4 20 40

(80)

Table A.49: Nordmaling, VP, km 53+548.

Bridge data Cross-section

knr 3500-5779-1 EI (GNm2) 12.24

material Betong armerad m (ton/m) 20.7 type Plattram 2-leds ζ(%) 1.81

year 2004 1 + 0.5φ0 1.09

span (m) 15.6

Results: amax = 3.7 m/s2 dmax = 3.0 mm vkrit= 294 km/h 0 2 4 6 8 10 12 14 16 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20 30

(81)

Table A.50: Lögde älv, km 59+950.

Bridge data Cross-section

knr 3500-5780-1 EI (GNm2) 105.00

material Stål-btg, samverkan m (ton/m) 13.8 type Balkbro kontinuerlig ζ (%) 0.50

year 2006 1 + 0.5φ0 1.00

span (m) 43.0+43.0

Results: amax = 6.4 m/s2 dmax = 29.4 mm vkrit= 158 km/h 0 10 20 30 40 50 60 70 80 90 -1 0 1 100 150 200 250 300 0 2 4 6 40 60

(82)

Table A.51: Leduån, km 61+068.

Bridge data Cross-section

knr 3500-5781-1 EI (GNm2) 57.12

material Betong spännarmerad m (ton/m) 31.1 type Balkbro kontinuerlig ζ(%) 2.27

year 2006 1 + 0.5φ0 1.03

span (m) 1.8+23.0+23.0+1.8

Results: amax = 1.0 m/s2 dmax = 2.0 mm

0 10 20 30 40 50 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(83)

Table A.52: Rödviken, GC-port, km 62+593.

Bridge data Cross-section

knr 3500-5782-1 EI (GNm2) 3.54

material Betong armerad m (ton/m) 16.4 type Plattram 2-leds ζ(%) 2.58

year 2007 1 + 0.5φ0 1.71

span (m) 4.5

Results: amax = 0.4 m/s2 dmax= 0.1 mm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -1 0 1 100 150 200 250 300 0 2 4 2 4 6

(84)

Table A.53: Nordmaling, Väg 353, km 62+820.

Bridge data Cross-section

knr 3500-5783-1 EI (GNm2) 9.79

material Betong armerad m (ton/m) 20.0 type Plattbro kontinuerlig ζ (%) 2.79

year 2007 1 + 0.5φ0 1.10

span (m) 1.6+11.0+14.0+11.0+1.6

Results: amax= 1.2 m/s2 dmax = 2.1 mm

0 5 10 15 20 25 30 35 40 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20

(85)

Table A.54: Torsbäcken, km 63+310.

Bridge data Cross-section

knr 3500-5784-1 EI (GNm2) 21.22

material Betong armerad m (ton/m) 45.0 type Plattram 0-leds ζ(%) 1.87

year 2007 1 + 0.5φ0 1.08

span (m) 14.7

Results: amax = 2.6 m/s2 dmax= 1.8 mm

0 5 10 15 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(86)

Table A.55: Prästbäcken, km 64+748.

Bridge data Cross-section

knr 3500-5785-1 EI (GNm2) 3.26

material Betong armerad m (ton/m) 15.5 type Plattram 0-leds ζ(%) 2.55

year 2007 1 + 0.5φ0 1.64

span (m) 5.0

Results: amax = 0.6 m/s2 dmax= 0.2 mm

0 1 2 3 4 5 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

(87)

Table A.56: Håknäs, väg 514, km 72+701.

Bridge data Cross-section

knr 3500-5786-1 EI (GNm2) 11.97

material Betong armerad m (ton/m) 21.1 type Plattram 2-leds ζ(%) 1.77

year 2007 1 + 0.5φ0 1.07

span (m) 16.2

Results: amax = 5.6 m/s2 dmax = 4.6 mm vkrit= 280 km/h 0 2 4 6 8 10 12 14 16 18 -1 0 1 100 150 200 250 300 0 2 4 6 10 20 30

(88)

Table A.57: Öre älv, km 73+054.

Bridge data Cross-section

knr 3500-5787-1 EI (GNm2) 102.90

material Stål-btg, samverkan m (ton/m) 14.6 type Balkbro kontinuerlig ζ (%) 0.50

year 2006 1 + 0.5φ0 1.00

span (m) 35.0+42.0+46.0+37.0

Results: amax = 6.1 m/s2 dmax = 16.2 mm vkrit= 274 km/h 0 20 40 60 80 100 120 140 160 -1 0 1 100 150 200 250 300 0 2 4 6 100 150 200 250 300 0 20 40 60

(89)

Table A.58: Lillån, km 75+720.

Bridge data Cross-section

knr 3500-5788-1 EI (GNm2) 12.24

material Betong armerad m (ton/m) 21.4 type Plattram 2-leds ζ(%) 1.80

year 2007 1 + 0.5φ0 1.08

span (m) 15.7

Results: amax = 4.9 m/s2 dmax = 3.7 mm vkrit= 294 km/h 0 2 4 6 8 10 12 14 16 -1 0 1 100 150 200 250 300 0 2 4 6 10 20 30

(90)

Table A.59: Ängerån, km 81+698.

Bridge data Cross-section

knr 3500-5789-1 EI (GNm2) 155.72

material Betong spännarmerad m (ton/m) 33.4 type Balkbro fritt upplagd ζ(%) 2.29

year 2007 1 + 0.5φ0 1.16

span (m) 1.6+21.0+1.6

Results: amax = 0.8 m/s2 dmax= 0.7 mm

0 5 10 15 20 25 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(91)

Table A.60: Södra Kungsvägen, km 85+163.

Bridge data Cross-section

knr 3500-5791-1 EI (GNm2) 43.52

material Betong armerad m (ton/m) 20.7 type Balkram 0-leds ζ(%) 1.80

year 2008 1 + 0.5φ0 1.18

span (m) 15.7

Results: amax = 2.0 m/s2 dmax= 1.2 mm

0 2 4 6 8 10 12 14 16 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(92)

Table A.61: Hörnån vid Hörnefors stn, km 86+822.

Bridge data Cross-section

knr 3500-5792-1 EI (GNm2) 102.00

material Betong spännarmerad m (ton/m) 26.7 type Balkbro kontinuerlig ζ(%) 1.14

year 2008 1 + 0.5φ0 1.00

span (m) 18.0+9×30.0+24.0

Results: amax = 1.0 m/s2 dmax= 2.5 mm

0 50 100 150 200 250 300 350 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40 60

(93)

Table A.62: Norra Kungsvägen, km 87+336.

Bridge data Cross-section

knr 3500-5793-1 EI (GNm2) 43.25

material Betong armerad m (ton/m) 20.6 type Balkram 0-leds ζ(%) 1.80

year 2008 1 + 0.5φ0 1.18

span (m) 15.7

Results: amax = 2.0 m/s2 dmax= 1.2 mm

0 2 4 6 8 10 12 14 16 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(94)

Table A.63: Bovikenvägen, km 93+454.

Bridge data Cross-section

knr 3500-5794-1 EI (GNm2) 9.25

material Betong armerad m (ton/m) 20.9 type Plattram 0-leds ζ(%) 1.98

year 2008 1 + 0.5φ0 1.13

span (m) 13.2

Results: amax = 3.0 m/s2 dmax= 1.8 mm

0 2 4 6 8 10 12 14 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20

(95)

Table A.64: Sörmjöleån, km 93+855.

Bridge data Cross-section

knr 3500-5795-1 EI (GNm2) 29.92

material Betong armerad m (ton/m) 18.9 type Balkbro kontinuerlig ζ (%) 2.79

year 2008 1 + 0.5φ0 1.06

span (m) 1.6+15.4+21.4+15.4+1.6

Results: amax= 1.0 m/s2 dmax= 2.5 mm

0 10 20 30 40 50 60 -1 0 1 100 150 200 250 300 0 2 4 20 40

(96)

Table A.65: Sörmjöle, GC-port, km 94+485.

Bridge data Cross-section

knr 3500-5796-1 EI (GNm2) 3.54

material Betong armerad m (ton/m) 14.7 type Plattram 0-leds ζ(%) 2.52

year 2008 1 + 0.5φ0 1.61

span (m) 5.5

Results: amax = 0.9 m/s2 dmax= 0.2 mm

0 1 2 3 4 5 6 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

(97)

Table A.66: Åhedån, km 96+338.

Bridge data Cross-section

knr 3500-5797-1 EI (GNm2) 85.00

material Betong spännarmerad m (ton/m) 21.0 type Balkbro kontinuerlig ζ(%) 2.27

year 2009 1 + 0.5φ0 1.01

span (m) 1.8+21.2+35.0+21.2+1.8

Results: amax = 0.5 m/s2 dmax = 4.3 mm

0 10 20 30 40 50 60 70 80 90 -1 0 1 100 150 200 250 300 0 2 4 20 40 60

(98)

Table A.67: Norrmjöleån, km 100+795.

Bridge data Cross-section

knr 3500-5798-1 EI (GNm2) 191.49

material Betong armerad m (ton/m) 36.9 type Balkbro fritt upplagd ζ (%) 2.75

year 2009 1 + 0.5φ0 1.06

span (m) 2.2+29.0+2.2

Results: amax= 0.8 m/s2 dmax= 1.4 mm

0 5 10 15 20 25 30 35 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40 60

(99)

Table A.68: Stöcke samt väg 523, km 106+768.

Bridge data Cross-section

knr 3500-5799-1 EI (GNm2) 31.96

material Betong spännarmerad m (ton/m) 16.8 type Balkbro kontinuerlig ζ(%) 1.21

year 2009 1 + 0.5φ0 1.02

span (m) 16.8+17×21.0+16.8

Results: amax = 1.3 m/s2 dmax = 2.2 mm

0 50 100 150 200 250 300 350 400 -1 0 1 100 150 200 250 300 0 2 4 20 40

(100)

Table A.69: Norbäcksvägen VP, km 107+107.

Bridge data Cross-section

knr 3500-5800-1 EI (GNm2) 22.85

material Betong armerad m (ton/m) 25.7 type Plattram 2-leds ζ(%) 1.57

year 2010 1 + 0.5φ0 1.04

span (m) 19.0

Results: amax = 3.5 m/s2 dmax= 4.6 mm

0 5 10 15 20 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 10 20 30

(101)

Table A.70: Bubäcken, km 107+665.

Bridge data Cross-section

knr 3500-5801-1 EI (GNm2) 146.20

material Betong spännarmerad m (ton/m) 31.5 type Balkbro fritt upplagd ζ(%) 2.29

year 2010 1 + 0.5φ0 1.26

span (m) 1.6+17.0+1.6

Results: amax = 0.9 m/s2 dmax= 0.4 mm

0 5 10 15 20 25 -1 0 1 100 150 200 250 300 0 2 4 10 20 30

(102)

Table A.71: Brukningsväg, km 110+680.

Bridge data Cross-section

knr 3500-5802-1 EI (GNm2) 6.26

material Betong armerad m (ton/m) 18.8 type Plattram 0-leds ζ(%) 2.37

year 2010 1 + 0.5φ0 1.42

span (m) 7.6

Results: amax = 2.6 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 8 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10 15

(103)

Table A.72: Degernäsbäcken. km 111+128.

Bridge data Cross-section

knr 3500-5803-1 EI (GNm2) 156.74

material Betong spännarmerad m (ton/m) 34.0 type Balkbro fritt upplagd ζ(%) 2.29

year 2010 1 + 0.5φ0 1.17

span (m) 1.6+20.5+1.6

Results: amax = 0.8 m/s2 dmax= 0.7 mm

0 5 10 15 20 25 -1 0 1 100 150 200 250 300 0 2 4 20 40

(104)

Table A.73: Nyåkersviken VP, km 51+130.

Bridge data Cross-section

knr 3500-5804-1 EI (GNm2) 3.54

material Betong armerad m (ton/m) 15.1 type Plattram 2-leds ζ(%) 2.45

year 2004 1 + 0.5φ0 1.49

span (m) 6.5

Results: amax = 2.6 m/s2 dmax= 0.4 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

(105)

Table A.74: Obbolavägen, km 111+817.

Bridge data Cross-section

knr 3500-5805-1 EI (GNm2) 103.70

material Betong spännarmerad m (ton/m) 27.6 type Balkbro kontinuerlig ζ(%) 1.00

year 2009 1 + 0.5φ0 1.03

span (m) 20.0+27.0+22.0

Results: amax = 1.9 m/s2 dmax= 2.4 mm

0 10 20 30 40 50 60 70 -1 0 1 100 150 200 250 300 0 2 4 20 40

(106)

Table A.75: Umeälven km 112+945.

Bridge data Cross-section

knr 3500-5806-1 EI (GNm2) 285.60

material Betong spännarmerad m (ton/m) 20.7 type Balkbro kontinuerlig ζ(%) 1.00

year 2009 1 + 0.5φ0 1.00

span (m) 40.5+36×51.0+40.5

Results: amax = 0.6 m/s2 dmax= 5.4 mm

0 500 1000 1500 2000 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 50 100

(107)

Table A.76: Viltpassage, km 83+900.

Bridge data Cross-section

knr 3500-95367-1 EI (GNm2) 5.17

material Betong armerad m (ton/m) 17.4 type Plattram 0-leds ζ(%) 2.33

year 2008 1 + 0.5φ0 1.37

span (m) 8.1

Results: amax = 3.1 m/s2 dmax= 0.6 mm

0 1 2 3 4 5 6 7 8 9 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(108)

A.2

Mälarbanan

Table A.77: Kalmarsand km 43+294.

Bridge data Cross-section

knr 3500-2924-1 EI (GNm2) 2.99

material Betong armerad m (ton/m) 25.6

type Plattram ζ(%) 2.55

year 1995 1 + 0.5φ0 1.53

span (m) 5.0

Results: amax = 0.7 m/s2 dmax= 0.2 mm

0 1 2 3 4 5 -1 0 1 100 150 200 250 300 0 2 4 5 10

(109)

Table A.78: Bro över kommunal gata Enköpings bangård km 73+717.

Bridge data Cross-section

knr 3500-2930-1 EI (GNm2) 10.06

material Betong armerad m (ton/m) 29.4 type Plattbro kontinuerlig ζ (%) 2.56

year 1952 1 + 0.5φ0 1.25

span (m) 4.8+10.1+4.8

Results: amax = 0.7 m/s2 dmax = 0.5 mm

0 5 10 15 20 -1 0 1 100 150 200 250 300 0 2 4 5 10 15

(110)

Table A.79: Enköping Gesällgatan, USP (södra bron) km 74+633.

Bridge data Cross-section

knr 3500-2931-1 EI (GNm2) 62.22

material Betong spännarmerad m (ton/m) 18.0

type Balkram 2-leds ζ(%) 1.00

year 1979 1 + 0.5φ0 1.02

span (m) 28.6

Results: amax = 4.2 m/s2 dmax = 9.2 mm vkrit= 210 km/h 0 5 10 15 20 25 30 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(111)

Table A.80: Enköping Buskvreten USP, Kungsängen - Västerås Km 74+816.

Bridge data Cross-section

knr 3500-2932-1 EI (GNm2) 0.90

material Betong armerad m (ton/m) 11.9 type Plattram 0-leds ζ(%) 2.72

year 1979 1 + 0.5φ0 2.34

span (m) 2.6

Results: amax = 0.5 m/s2 dmax= 0.1 mm

0 0.5 1 1.5 2 2.5 3 -1 0 1 100 150 200 250 300 0 2 4 2 4

(112)

Table A.81: Bro över allmän väg i Enköping vid Enögla, USP km 75+007.

Bridge data Cross-section

knr 3500-2933-1 EI (GNm2) 31.96

material Betong spännarmerad m (ton/m) 14.9 type Balkbro kontinuerlig ζ(%) 1.42

year 1979 1 + 0.5φ0 1.04

span (m) 14.0+23.0+23.0+14.0

Results: amax = 1.8 m/s2 dmax = 3.3 mm

0 10 20 30 40 50 60 70 80 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(113)

Table A.82: Västerås, Hästhovsgatan, NSP km 108+460.

Bridge data Cross-section

knr 3500-2940-1 EI (GNm2) 19.83

material Betong armerad m (ton/m) 13.9 type Plattbro fritt upplagd ζ (%) 1.91

year 1953 1 + 0.5φ0 1.14

span (m) 14.2

Results: amax = 4.0 m/s2 dmax = 2.7 mm vkrit= 244 km/h 0 5 10 15 -1 0 1 100 150 200 250 300 0 2 4 10 20

(114)

Table A.83: Bro över allmän väg E18 Västerås (Tegnergatan) NSP km 109+499.

Bridge data Cross-section

knr 3500-2942-1 EI (GNm2) 41.48

material Betong spännarmerad m (ton/m) 14.4 type Balkbro kontinuerlig ζ(%) 2.06

year 1962 1 + 0.5φ0 1.08

span (m) 4.8+22.8+22.8+4.8

Results: amax = 1.0 m/s2 dmax = 1.9 mm

0 10 20 30 40 50 60 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 20 40

(115)

Table A.84: Västerås Metallverken NSP (Gamla bron) Km 109+694.

Bridge data Cross-section

knr 3500-2943-1 EI (GNm2) 12.24

material Betong armerad m (ton/m) 11.1 type Balkram 0-leds ζ(%) 2.07

year 1961 1 + 0.5φ0 1.33

span (m) 11.9

Results: amax = 2.2 m/s2 dmax= 1.1 mm

0 2 4 6 8 10 12 -1 0 1 100 150 200 250 300 0 2 4 10 20

(116)

Table A.85: Vretabäcken, USP Km 125+143.

Bridge data Cross-section

knr 3500-2949-1 EI (GNm2) 10.77

material Betong armerad m (ton/m) 9.5 type Balkbro fritt upplagd ζ (%) 2.24

year 1874 1 + 0.5φ0 1.36

span (m) 9.4

Results: amax= 3.2 m/s2 dmax= 1.1 mm

0 2 4 6 8 10 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10 15

(117)

Table A.86: Sisshammar, Västerås Norra-Kungsängen Km 58+992.

Bridge data Cross-section

knr 3500-3636-1 EI (GNm2) 12.24

material Betong armerad m (ton/m) 34.1 type Plattram 0-leds ζ(%) 2.47

year 1993 1 + 0.5φ0 1.57

span (m) 6.2

Results: amax = 0.5 m/s2 dmax= 0.1 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 5 10

(118)

Table A.87: Enköping gc-väg km 74+275.

Bridge data Cross-section

knr 3500-3637-1 EI (GNm2) 12.70

material Betong armerad m (ton/m) 33.8 type Plattram 0-leds ζ(%) 2.52

year 1993 1 + 0.5φ0 1.66

span (m) 5.5

Results: amax = 0.3 m/s2 dmax= 0.1 mm

0 1 2 3 4 5 6 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

(119)

Table A.88: Apalboda Västerås norra-Kungsängen km 49+405 ZZZZ.

Bridge data Cross-section

knr 3500-3659-1 EI (GNm2) 10.88

material Betong armerad m (ton/m) 31.9 type Plattram 0-leds ζ(%) 2.44

year 1994 1 + 0.5φ0 1.52

span (m) 6.6

Results: amax = 0.9 m/s2 dmax= 0.2 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 5 10

(120)

Table A.89: Tibble/Lundby, järnvägsbro ö enskild väg km 81+835.

Bridge data Cross-section

knr 3500-3693-1 EI (GNm2) 10.06

material Betong armerad m (ton/m) 31.6 type Plattram 0-leds ζ(%) 2.42

year 1997 1 + 0.5φ0 1.49

span (m) 6.8

Results: amax = 1.3 m/s2 dmax= 0.2 mm

0 1 2 3 4 5 6 7 -1 0 1 100 150 200 250 300 0 2 4 100 150 200 250 300 0 5 10

References

Related documents

As regards concrete and steel reinforcement quantities, fuel and electricity consumption, etc., specific data was collected from these contracts and used as a basis for

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Licentiate of Engineering on Friday

There are some parameters that may affect the results considerable; if possible the amount of blasted rock, the modulus of elasticity for the bridge deck and the thickness of

5.14 Eect of the end supports stiness in the frequencies of the rst ten (left) and three (right) modes of vibration of the Sagån

The highest modal damping ratio and frequency change is seen when the impedance functions from Arnäsvall and Ångermanälven pile groups were applied.. The Arnäsvall impedance

The dynamic increment considered the maximum dynamic response y dyn , and the corresponding maximum static response y stat , at any particular point in the structural element, due

The Fourier series may be used to represent arbitrary periodic functions as series of trigonometric functions. The Fourier transform is used to decompose signals in the time domain

Two strengthening methods for a steel railway bridge have been investigated. The impact on fatigue life was studied together with vertical bridge deck acceleration from high speed