• No results found

Search for muoproduction of X(3872) at COMPASS and indication of a new state (X)over-tilde(3872)

N/A
N/A
Protected

Academic year: 2021

Share "Search for muoproduction of X(3872) at COMPASS and indication of a new state (X)over-tilde(3872)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Search

for

muoproduction

of

X

(

3872

)

at

COMPASS

and

indication

of

a

new

state



X

(

3872

)

.

COMPASS

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received6July2017

Receivedinrevisedform4July2018 Accepted6July2018

Availableonline11July2018 Editor:M.Doser Keywords: COMPASS X(3872) Photoproduction Tetraquark Exoticcharmonia

We have searched for exclusive production of exotic charmonia in the reaction

μ

+N

μ

+(J/ψ

π

+

π

)

π

±N usingCOMPASS datacollectedwithincomingmuonsof160 GeV/c and200 GeV/c momentum.Inthe J/ψ

π

+

π

− massdistributionweobserveasignal withastatistical significanceof4.1

σ

.Itsmass and widthareconsistentwiththoseofthe X(3872).Theshapeofthe

π

+

π

−massdistributionfromthe ob-serveddecayinto J/ψ

π

+

π

−showsdisagreementwithpreviousobservationsforX(3872).Theobserved signal may be interpretedas a possible evidenceof anew charmoniumstate. It could be associated withaneutralpartnerof X(3872) withC= −1 predicted byatetraquarkmodel.Theproductofcross sectionandbranchingfractionofthedecayoftheobservedstateinto J/ψ

π

+

π

−isdeterminedtobe 71±28(stat)±39(syst) pb.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

The exotic hadron X

(

3872

)

was first discovered in 2003 by the BelleCollaboration [1] and constitutesthe firstin a long se-riesofnewcharmonium-likehadronsatmassesabove3.8 GeV/c2. The X

(

3872

)

was observed as a narrow peak in the J

π

+

π

− mass spectrum originating fromthe decay B±

K±J

π

+

π

−. Subsequently, thisstate hasalso been observed innumerous re-actionchannelsandfinalstates:ine+e− collisionsbyBelle[2–5], Babar [6–12] andBESIII [13] and inhadronicinteractions byCDF [14–17],D0[18],LHCb[19–21],ATLAS[22] andCMS[23].The cur-rentworld average forthe massof the X

(

3872

)

is 3871.69

±

0.17 MeV/c2 [24], which is very close to the D0D

¯

∗0 threshold at 3871.81

±

0.09MeV/c2.However,thedecaywidthofthisstatewas

not determined yet as in all experiments the measured widths were compatible withthe experimental resolution.Thus only an upperlimitforthenaturalwidth



X(3872)ofabout1.2MeV/c2 (CL

=

90%) exists [5]. The spin, parity andcharge-conjugation quan-tumnumbers JP C ofthe X

(

3872

)

weredeterminedbyLHCbtobe 1++ [20,25].Charged partnersofthe X

(

3872

)

havenot been ob-served[26].The X

(

3872

)

hadronispeculiarinseveralaspectsand itsnatureisstillnotwellunderstood.Inparticular,approximately equalprobabilities to decayinto J

3

π

and J

2

π

final states

B(

X

(

3872

)

J

ω

)/

B(

X

(

3872

)

J

π

+

π

)

=

0

.

8

±

0

.

3 [27] indicatelarge isospin-symmetrybreaking.There areseveral inter-pretationsofthishadron:purecc-state,

¯

tetraquark,meson–meson molecule,cc g meson,

¯

glueball,orothers(seereviews[28–30]).In additiontoknowingmassandquantumnumbersofthisstate,the measurementofitswidthwouldprovideacrucialinputtonarrow down speculations on its nature. Currently such a measurement

canonlybedonebyperformingenergyscansin pp annihilations,

¯

asitisforeseenatFAIR[31,32].

InthisLetter, wereport ona search for X

(

3872

)

produced by virtualphotonsinthecharge-exchangereaction

γ

N

X0

π

±N (1)

at COMPASS. Here, N denotes the target nucleon, N the unob-served recoilsystemand X0 an intermediate state decaying into

J

π

+

π

−.The possibilitytoobserve theproductionof X

(

3872

)

inthisreactionwasfirstmentionedinRef. [33].

The COMPASS experiment [34] is situated at the M2 beam lineof theCERN SuperProton Synchrotron.The dataused inthe present analysis were obtained by scattering positive muons of 160 GeV/c or 200 GeV/c momentum off solid 6LiD or NH3

tar-gets.The totaldatasetaccumulatedbetween2003and2011was used. The target material was arranged intwo or three cylindri-cal cells placed along the beam direction. It was longitudinally or transversely polarized with respect to this direction. The po-larization isoppositeinconsecutivetarget cells,anditisreversed periodicallyduringdatataking.Aftercombiningdatawithopposite polarization,possibleeffectsfromresidualtargetpolarizationhave negligibleinfluenceonthisanalysis. Particletrackingand identifi-cationwereperformedusingatwo-stagespectrometer,coveringa wide momentumrangefromabout1 GeV/c up tothebeam mo-mentum. The eventtrigger was based on scintillator hodoscopes andhadron calorimeters.Differenttrigger schemeswere usedfor the different data sets. Possible differencesin trigger efficiencies areexpectedtocancelinthedeterminationofabsoluteproduction https://doi.org/10.1016/j.physletb.2018.07.008

0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

recordedinparallel,seebelow.Beamhalomuonswererejectedby vetocounterslocatedupstreamofthetarget.

ThemainsubjectofthisLetter isthestudyofmuoproduction ofan X0 intheprocess

μ

+N

μ

+X0

π

±N

μ

+

(

J

π

+

π

)

π

±N

μ

+

(

μ

+

μ

π

+

π

)

π

±N

,

(2) the diagram of which is schematically shown in Fig. 1. In order to select such events, we first require a reconstructed vertex in thetarget regionwithan incomingbeammuon track, three out-going muon tracks (two

μ

+, one

μ

−) and three outgoing pions (

π

+

π

π

+or

π

+

π

π

−).Reconstructedparticlesareidentifiedas muonsifthey havemomentum above 8 GeV/c andhave crossed more than 15 radiation lengths of material. The muon identifi-cation efficiency for such energetic particles is higher than 90%. Otherchargedparticlesareassumedtobepions.Sincethedimuon massresolutionofthesetupforthe J

peakisabout50MeV/c2

[35],candidatesfor J

decayingintoapairofoppositelycharged muonsare acceptediftheir reconstructed mass liesin therange from3.02 GeV/c2 to3.18 GeV/c2.Withtwo

μ

+ ina givenevent, wemayreconstructtwo J

candidatesinthe

μ

+

μ

− finalstate, inwhichcasetheeventis rejected(

3% ofevents).Thenominal

J

mass[24] isassignedtoaccepteddimuons.Inordertoselect exclusiveproductioninprocess(2), werequire



E tomatchthe energyEbeamofthebeamparticle,exceptforasmallrecoilenergy

to the target. Here,



E isthe sum ofenergies of the scattered muon,ofthe J

,andofthethreepions inthefinal state.Since atCOMPASStheexperimentalresolutionfor



E

=



E

Ebeam is

about2 GeV,werequire

|

E

|

<

4 GeV inordertoselectexclusive productionofthe J

3

π

finalstate.Thetotalnumberofselected exclusive

μ

+J

2

π

+

π

−and

μ

+J

π

+2

π

−eventsis72and49, respectively. The ratio (72/49) corresponds approximately to the ratiooftheaveragenumbersofprotonsandneutronsinthetarget materialthatis

1

.

3.

Fig.2(a)showsthemassspectrum forthe J

π

+

π

− subsys-teminreaction(2) fromthresholdto5 GeV/c2 afterthe aforemen-tioned selection criteria were applied. As there are two equally charged pions per event, this mass spectrum contains contribu-tionsfromthetwopossible

π

+

π

− combinations.Themass spec-trumexhibitstwopeakstructuresbelow4 GeV/c2,withpositions

andwidthsthatarecompatiblewiththeproductionanddecayof

ψ(

2S

)

and X

(

3872

)

. However, forreasons that will be described below,we prefer to namethe particle corresponding to the sec-ondpeak observedforthereaction(2) as



X

(

3872

)

.Wedetermine theresonanceparametersbyamaximumlikelihoodfittothemass spectrumfromthresholdto5 GeV/c2,usingasumoftwoGaussian

functionsforthetwosignalpeaksandthebackgroundterm

B

(

M

)

=

c1

(

M

m0

)

c2ec3M

,

(3)

Fig. 2. (a) The J/ψπ+π− invariantmassdistributionforthe J/ψπ+ππ± final state(twoentriesperevent)forexclusiveevents(|E|<4 GeV).Thefittedcurve isshowninred.Thebluedashedlineshowsafitofthebackgroundcontribution [Eq. (3)]tothedataexcludingthesignalrange.(b)Theprobabilitytoobtainthe observedoralargernumberofeventsduetoastatisticalfluctuationofthe Poisso-nianbackgroundwithameanvaluedescribedbyEq. (4).(Forinterpretationofthe coloursinthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

whereM

=

MJ/ψπ+π− andm0

=

MJ/ψ

+

2mπ .Weignorepossible contributions from other stateslike

ψ(

3770

)

,

ψ(

4040

)

,

ψ(

4160

)

,

X

(

4260

)

,X

(

4360

)

andX

(

4660

)

sincetheirbranchingfractionsinto

J

π π

are too small [24] to significantly impact the shape of theobservedmassdistribution.Thefitfunctionhaseightfree pa-rameters: the resonancemass andthenumber ofevents ineach mass peak, the same width

σ

M for both peaks and the param-eters c1, c2, c3 describing the background shape. The yields for

ψ(

2S

)

and



X

(

3872

)

are determined to be Nψ (2S)

=

24

.

2

±

6

.

5 and NX(3872)

=

13

.

2

±

5

.

2 events, andtheir massesare Mψ (2S)

=

3683

.

7

±

6

.

5 MeV/c2andMX(3872)

=

3860

.

4

±

10

.

0 MeV

/

c2, respec-tively. The estimated mass values are consistent with the world average values for

ψ(

2S

)

and X

(

3872

)

[24]. The fit yields

σ

M

=

22

.

8

±

6

.

9 MeV/c2 for the width. As this value is dominated by theexperimental resolution,itappears sufficienttousethe same widthparameterforeachGaussian.Inordertoestimatethe statis-ticalsignificanceoftheobservedsignals, thebackgroundfunction

B

(

M

)

inEq. (3) wasfittedtothemassspectrumshowninFig.2(a) in the region below 5 GeV/c2, excluding the signal range from

3.62 GeV/c2 to3.90 GeV/c2.Theprobability p

(

M

)

tofinda num-ber ofevents equalorlarger than observedin themass window

M

± 

M,where



M

=

30MeV

/

c2,duetoastatisticalfluctuation,

isshowninFig.2(b).Inordertocalculatep

(

M

)

weassumea Pois-sonianbackgroundwiththemeanvalue

¯

N

(

M

)

=

M



+M

M−M

B

(

M

)

dM

.

(4)

The statistical significance for

ψ(

2S

)

and



X

(

3872

)

, expressed in terms of the Gaussian standard deviation, is 6.9

σ

and 4.5

σ

, respectively. A possible contribution of systematic effects is not taken into account here and will be discussed later. We have repeated the fit keeping the mass separation of the two Gaus-sians fixed to the mass difference between

ψ(

2S

)

and X

(

3872

)

fromRef. [24], whichdid not significantlyalter neither the mass value for the

ψ(

2S

)

nor the number of observed events for ei-therstate:Mψ (2S)

=

3680

.

9

±

5

.

7 MeV/c2,Nψ (2S)

=

24

.

9

±

5

.

7 and

(3)

Fig. 3. The J/ψπ+π−invariantmassdistributionfortheexclusive J/ψπ+π−final statefromreaction(5).

Inorderto selectanon-exclusive datasample forprocess (2), werequirealargermissingenergy,i.e.

12 GeV

<



E

<

4 GeV. TheresultinginvariantmassdistributionisshowninFig.4(a). Ex-cept for

ψ(

2S

)

, we observe no statistically significant signal of charmonium(-like)production.

Inparalleltoreaction(2),weinvestigatethereactionwith neu-tralexchange,

μ

+N

μ

+X0N

μ

+

(

J

π

+

π

)

N

μ

+

(

μ

+

μ

π

+

π

)

N

,

(5) byrequiringinthefinalstate onlytwochargedpionswith oppo-sitecharge.Hence the schematic representationofreaction(5) is similartotheone showninFig.1,butwithoutthebachelorpion. Theinvariant mass distributionfortheexclusive J

π

+

π

− final state is shown in Fig. 3. The parameters of the

ψ(

2S

)

peak are determined fromafit usingthe modeldescribed above withthe massof the X

(

3872

)

Gaussian fixed to thenominal value ofthe

X

(

3872

)

mass.TheyareNψ (2S)

=

314

±

18,Mψ (2S)

=

3687

.

1

±

0

.

8 MeV/c2 and

σ

M

=

13

.

3

±

0

.

7 MeV/c2.The X

(

3872

)

yieldobtained fromthefitis

2

.

9

±

2

.

5 events,i.e.nostatisticallysignificant evi-denceforanX

(

3872

)

signalwasfoundinreaction(5).Astatistical simulation was used to determine the upper limit for NX(3872). Sampleswere generatedaccordingtothefitresultsforthe

ψ(

2S

)

peak and the background continuum, while the strength of the

X

(

3872

)

Gaussian signal was varied.Theupperlimit NU L X(3872) for thenumberofeventsNX(3872),whichisrequiredtoobtainthe re-sultof

2.9 eventsor lower, is 0.9 eventsat a confidence level of 90%. Similar studies were performed for the exclusive reac-tionwiththefinalstate

μ

+J

2

π

+2

π

N.Itwasfoundthatthe massspectrumofthe J

π

+

π

−subsystemdoesnotexhibit any glimpseofX

(

3872

)

.

Inordertoinvestigatetheoriginsof



X

(

3872

)

and

ψ(

2S

)

in re-action(2),we add the bachelor pionto bothstates todetermine theinvariantmassesofthe



X

(

3872

)

π

±and

ψ(

2S

)

π

±systems.For thisstudy,weconsideronlythetwo narrowmassregionsof

±

30 MeV/c2 aroundtheestimatedmassvaluesof



X

(

3872

)

and

ψ(

2S

)

.

The fraction of background events in the samples is 40% and 25%, respectively. Although no significant structure can be seen in the mass distribution shown in Fig. 5(a), some enhancement of

ψ(

2S

)

π

± eventsmaybespottedatmassesofabout4 GeV

/

c2, wheretheZc±(4020)charmonium-likestatewasobservedbyBESIII [36–39].Fig.5(b)showsdistributionsforthemissingmass,defined asM2miss

= (

+

PN



PX0

)

2,forreactions(5) and(2).Note that accordingtothisdefinition,thebachelor pioncontributesto the missing mass of reaction (2). The mean value of the miss-ingmassfor

ψ(

2S

)

producedinreaction(5) isabout1.4 GeV

/

c2.

Fig. 4. (a) The J/ψπ+π−invariantmassdistributionsforthe J/ψπ+ππ±final state(twoentriesperevent)fornon-exclusiveevents(−12 GeV<E<−4 GeV) and (b)forexclusiveevents(−4 GeV<E<4 GeV)with missingmass Mmiss

above3 GeV/c2(seetextforthedefinitionofM miss).

When

ψ(

2S

)

and



X

(

3872

)

are produced together witha bache-lor pionin reaction (2), the mean value for the missingmass is 2.7 GeV

/

c2 and4.3 GeV

/

c2,respectively. The apparent difference

thatcanbeseenbetweenthemissingmassdistributionsfor

ψ(

2S

)

and



X

(

3872

)

producedinreaction(2) mayindicatedifferent pro-duction mechanisms. The J

π

+

π

− invariant mass distribution for exclusive J

π

+

π

π

±N eventsfromreaction (2) using the additionalrequirementMmiss

>

3 GeV

/

c2isshowninFig.4(b).By

thisrequirement the

ψ(

2S

)

peak andthebackgroundcontinuum are reducedinrespectto the



X

(

3872

)

signal whilethestatistical significanceofthelatterdecreasesto4

σ

.

Reactions(2) and(5) are characterizedby twokinematic vari-ables:thenegativesquaredfour-momentumtransferQ2

= −(



)

2 andthe centre-of-mass (CM) energy of the virtual-photon – nucleon system,

sγN. The distributions of these two vari-ables are shown in Figs. 6(a) and 6(b). Most events occur at smallvaluesof Q2.TheCMenergyisdistributedbetween8 GeV and 18 GeV, while the kinematic limit for beam momenta of 160 GeV/c and 200 GeV/c is17.3 GeV and19.4 GeV, respectively. We testedthe hypothesis that the observed



X

(

3872

)

peak is an artificialstructure appearinginthereaction

γ

N

→ ψ(

2S

)

N

(

J

π

+

π

)(

N

π

±

)

, where one mixed up the pion from

ψ(

2S

)

decay withthe pion from N∗ decay inthe reconstruction of the

J

π

+

π

− mass.TheresultsofatoyMonte-Carlosimulation dis-favourthishypothesis.

Themassspectrumofthetwopionsresultingfromthedecayof the X

(

3872

)

waspreciselystudied,e.g. bytheBelle[5],CDF[15], CMS[23] and ATLAS [22] collaborations.Theyfound apreference forhigh

π

+

π

−massesandadominanceofthe X

(

3872

)

J

ρ

0

decaymode.Themeasuredtwo-pionmassspectraforevents pro-ducedinreaction(2) withina

±

30MeV/c2 masswindowaround

the

ψ(

2S

)

(blue) and the



X

(

3872

)

(red) are shown in Fig. 7(a). The result for

ψ(

2S

)

is in a good agreementwith former obser-vations,whiletheshapeofthe

π π

massdistributionfor



X

(

3872

)

looksverydifferentfromthewell-knownresultsfor X

(

3872

)

.The comparisonofthetwo-pionmassdistributions from



X

(

3872

)

de-cay obtainedby COMPASS and from X

(

3872

)

decay obtained by ATLAS [22] (the ATLAS resultis takenasa typical high-precision example)ispresentedinFig.7(b).ThecutMmiss

>

3 GeV/c2 is

ap-pliedforFig.7(b)toreduceunderlyingbackgroundcontributionin the



X

(

3872

)

sample. Our studies show that the observed

(4)

differ-Fig. 5. (a) InvariantmassspectraforX(3872±(red)andψ(2S)π±(blue)ofreaction(2).(b)Missingmassdistributionsfortheexclusivereactions(2) and(5).Theyellow histogramshowstheeventsintherange±30 MeV/c2aroundtheψ(2S)peakofreaction(5).Bluecirclesandredsquaresshowtheeventsintherange±30 MeV/c2around

theψ(2S)andX(3872)peaksofreaction(2).

Fig. 6. Kinematic distributionsforQ2(a)ands

γN(b)forreactions(2) and(5).Theyellowhistogramscorrespondtotheeventsintherange±30 MeV/c2aroundtheψ(2S)

peakofreaction(5).Bluecirclesandredsquaresshowtheeventsintherange±30 MeV/c2aroundtheψ(2S)andX(3872)peaksofreaction(2). encecannot be explainedbyacceptanceeffects. Withinstatistical

uncertainties, the shape of the COMPASS

π π

mass distribution is in agreement with a three-body phase–space decay andwith the expectation for a state with quantum numbers JP C

=

1+− [40], while the quantum numbers previously determined for the

X

(

3872

)

are1++.Apossibledistortionofthetwo-pionmass spec-trumbynon-resonant backgroundunderthe peakwas estimated usingthe sPlot procedure [43] and was found to be unlikely for reaction (2). The statistical significance of the disagreement be-tween the observed two-pion mass spectrum and the expected onefromtheknowndecay X

(

3872

)

J

ρ

0 was estimated

us-ing the maximum likelihood approach andwas found to be be-tween4.7

σ

and7.3

σ

depending onthetreatmentoftheresidual backgroundunder the



X

(

3872

)

peak. We investigated the possi-bilityto obtain the observed two-pion spectrum fromthe decay

X

(

3872

)

J

ω

J

π

+

π

π

0 where the

π

0 has beenlost,

and excluded it. A possibility to have visible contribution from the

χ

c0,1,2

J

γ

decay,followedbythephotonconversioninto

e+e− misidentifiedas

π

+

π

−,wasalsoinvestigatedandexcluded. A possible interpretation of the observed



X

(

3872

)

signal is that it is not the well-known X

(

3872

)

but a new charmonium state withsimilarmass.Thiswouldbeinagreementwiththetetraquark modelofRefs. [41,42] whichpredictsaneutralpartnerofX

(

3872

)

thathasasimilarmass,negativeC -parity,anddecaysinto J

σ

. In order to estimate the Breit–Wigner width of the



X

(

3872

)

statethefittingprocedureforthe J

π

+

π

−invariantmass

distri-butionshowninFig.2(a)wasredone. AGaussianshapewasused tofitthe

ψ(

2S

)

peakwhiletheconvolutionofaGaussian distribu-tionofthesamewidthasfor

ψ(

2S

)

andaBreit–Wignerfunction havingthesamemassastheGaussianonewasusedfor



X

(

3872

)

. The obtained resultfor the width of



X

(

3872

)

is the upperlimit



X(3872)

<

51MeV/c2CL

=

90%.

Thepreviouslymentionedstatisticalsignificanceofthe



X

(

3872

)

signal was evaluated without including systematic effects. As a resultofthecomprehensivestudiesofsystematiceffects,we con-cludethat thesystematicuncertaintyrelatedtoourchoice ofthe backgroundshape [Eq. (3)]andthe fittingrangeisthe dominant one. Weestimate thisuncertainty tobe equivalent to15% ofthe Gaussianuncertaintyofthe N value

¯

[Eq. (4)].Takingintoaccount thissystematicuncertaintybyusingthefrequentistapproach pro-posedinRef. [46],thesignificanceofthe



X

(

3872

)

signalshownin Fig.2(b)isreducedfrom4.5

σ

to 4.1

σ

.We quotethelattervalue astheestimateofsignificanceofthe



X

(

3872

)

signal.

In order to determine the cross section of exclusive



X

(

3872

)

productioninreaction(2),weusetheexclusiveproductionof J

offthetargetnucleon,

μ

+N

μ

+J

N

,

(6)

asnormalization.The samedataareusedandthesameselection criteriaareappliedasforreactions(2) and(5).Themethodusedto determinethecrosssectionforreaction(2) reliesonthe

(5)

assump-Fig. 7. (a) Invariantmassspectrafortheπ+π−subsystemfromthedecayofX(3872)(redsquares)andψ(2S)(bluecircles)producedinreaction(2).Thecorresponding distributionsforthree-bodyphase–spacedecaysareshownbythecurves.(b)Invariantmassspectrafortheπ+π− subsystemfromthedecayofX(3872)measuredby COMPASSwiththeappliedcutMmiss>3 GeV/c2(redsquares)andfromthedecayofX(3872)observedbyATLAS[22] (bluepoints).Bothdistributionsarenormalisedto

thesamearea.

tionthatthefluxesofvirtualphotonsforreactions(2) and(6) are the same.Thisassumption is supported by thesimilar shapes of the Q2 and

N distributions in both cases. We can therefore relatethephoto- andleptoproductioncrosssectionsasfollows:

σ

μNμX(3872)πN

σ

μNμJ/ψN

=

σ

γN→X(3872)πN

σ

γ NJ/ψN

.

(7)

Thecrosssectionofthereaction

γ

N

J

N isknownforour range of

sγN; it is 14

.

0

±

1

.

6

(

stat

)

±

2

.

5(syst) nb at

sγN

=

13

.

7 GeV [44].Sincethisvaluewasobtainedfortheproductionby areal-photonbeam,wereduceitbyafactorof0.8inordertotake intoaccountthe Q2 dependenceofthecrosssectionbyusingthe

parameterisationofRef. [45] andtheaverage photonvirtualityin oursamplesofabout1

(

GeV

/

c

)

2.Sincethethreechargedpions ap-pearonlyinthefinalstateofreaction(2),theratioofacceptances of the two reactions is in first approximation equal to the pion acceptanceaπ cubed.Based onprevious COMPASSmeasurements andMonteCarlosimulations,weestimate

=

0

.

6

±

0

.

1

(

syst

)

as averageover thegeometricaldetectoracceptance andboth target configurations.Thusweset

σ

γN→X(3872)πN

×

B

X(3872)J/ψπ π

σ

γNJ/ψN

=

NX(3872) a3πNJ/ψ

,

(8)

whereNX(3872) andNJ/ψ aretherespectivenumbersofobserved



X

(

3872

)

and J

eventsfromexclusiveproductiononquasi-free nucleons.ThenumberNJ/ψ isdeterminedas9

.

6

×

103,witha sys-tematicuncertaintyofabout10%duetonon-exclusivebackground in our data sample. The amount of COMPASS data used in this analysisisequivalenttoabout14 pb−1oftheintegrated

luminos-ity,whenconsideringa real-photonbeamofabout100 GeV inci-dentenergy scatteringofffree nucleons. Usingthe normalization procedure described in Ref. [35], we determine thecross section forthereaction

γ

N

→ 

X

(

3872

)

π

±N multipliedbythebranching fractionforthedecay



X

(

3872

)

J

π

+

π

−tobe

σ

γN→X(3872)πN

×

B

X(3872)J/ψπ π

=

71

±

28

(

stat

)

±

39

(

syst

)

pb

.

(9) Thestatisticaluncertaintyisgivenbytheuncertaintyinthe num-berof



X

(

3872

)

signalevents,whilethemaincontributionstothe systematicuncertainty are: (i) 36 pb from the estimation ofa3

π ,

(ii) 14 pbfrom thecross section forreaction (6), (iii)7 pbfrom theestimationofNJ/ψ.

Also, an upper limit is determined for the production rateof

X

(

3872

)

inthereaction

γ

N

X

(

3872

)

N,mentionedinRef. [33], using the same procedure for normalization as described above. Theresultis

σ

γNX(3872)N

×

B

X(3872)J/ψπ π

<

2

.

9 pb (CL

=

90%

).

(10)

In summary, in our study of the process depicted in Fig. 1

we observedthemuoproductionofthestate



X

(

3872

)

witha sta-tistical significance of 4.1

σ

. The absolute production rateof this statein J

π

+

π

−modewasalsomeasured.Itsmass MX(3872)

=

3860

.

0

±

10

.

4 MeV/c2andwidth



X(3872)

<

51MeV/c2CL=90%and decaymode



X

(

3872

)

J

π π

areconsistentwiththe X

(

3872

)

. Our observedtwo-pion mass spectrumshowsdisagreement with previousexperimentalresultsfortheX

(

3872

)

.Apossible explana-tioncouldbethattheobservedstateistheC

= −

1 partnerofthe

X

(

3872

)

aspredictedbyatetraquarkmodel.Thepresentedresults demonstratethephysicspotentialofstudyingexotic charmonium-like statesin(virtual) photoproduction.However, an independent confirmation of the nature of the observed



X

(

3872

)

signal from high-precision experiments withhigh-energy virtual orreal pho-tonsisrequired.

We gratefully acknowledge the support of theCERN manage-ment andstaff aswell astheskillsandeffortsofthetechnicians ofthecollaboratinginstitutions.WearealsogratefultoDmitry De-dovich,SimonEidelman,ChristophHanhart,LucianoMaiani, Sebas-tian Neubert,MikePennington, EricSwansenandAdam Szczepa-niakforfruitfuldiscussions.

References

[1]S.K. Choi, et al., Belle Collaboration, Phys. Rev. Lett. 91 (2003) 262001. [2]G. Gokhroo, et al., Belle Collaboration, Phys. Rev. Lett. 97 (2006) 162002. [3]T. Aushev, et al., Belle Collaboration, Phys. Rev. D 81 (2010) 031103. [4]V. Bhardwaj, et al., Belle Collaboration, Phys. Rev. Lett. 107 (2011) 091803. [5]S.K. Choi, et al., Belle Collaboration, Phys. Rev. D 84 (2011) 052004. [6]B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 71 (2005) 071103. [7]B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 73 (2006) 011101. [8]B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 74 (2006) 071101. [9]B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 77 (2008) 011102. [10]B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 77 (2008) 111101. [11]B. Aubert, et al., BaBar Collaboration, Phys. Rev. Lett. 102 (2009) 132001. [12]P. del Amo Sanchez, et al., BaBar Collaboration, Phys. Rev. D 82 (2010) 011101. [13]M. Ablikim, et al., BESIII Collaboration, Phys. Rev. Lett. 112 (2014) 092001. [14]D. Acosta, et al., CDF Collaboration, Phys. Rev. Lett. 93 (2004) 072001.

(6)

PANDA:arXiv:0903.3905 [hep-ex].

COMPASSCollaboration

M. Aghasyan

y

,

R. Akhunzyanov

g

,

M.G. Alexeev

z

,

G.D. Alexeev

g

,

A. Amoroso

z

,

aa

,

V. Andrieux

ac

,

u

,

N.V. Anfimov

g

,

V. Anosov

g

,

A. Antoshkin

g

,

K. Augsten

g

,

s

,

W. Augustyniak

ad

,

A. Austregesilo

p

,

C.D.R. Azevedo

a

,

B. Badełek

ae

,

F. Balestra

z

,

aa

,

M. Ball

c

,

J. Barth

d

,

R. Beck

c

,

Y. Bedfer

u

,

J. Bernhard

m

,

j

,

K. Bicker

p

,

j

,

E.R. Bielert

j

,

R. Birsa

y

,

M. Bodlak

r

,

P. Bordalo

l

,

1

,

F. Bradamante

x

,

y

,

A. Bressan

x

,

y

,

M. Büchele

i

,

V.E. Burtsev

ab

,

W.-C. Chang

v

,

C. Chatterjee

f

,

M. Chiosso

z

,

aa

,

I. Choi

ac

,

A.G. Chumakov

ab

,

S.-U. Chung

p

,

2

,

A. Cicuttin

y

,

3

,

M.L. Crespo

y

,

3

,

S. Dalla Torre

y

,

S.S. Dasgupta

f

,

S. Dasgupta

x

,

y

,

O.Yu. Denisov

aa

,

,

L. Dhara

f

,

S.V. Donskov

t

,

N. Doshita

ag

,

Ch. Dreisbach

p

,

W. Dünnweber

4

,

R.R. Dusaev

ab

,

M. Dziewiecki

af

,

A. Efremov

g

,

21

,

P.D. Eversheim

c

,

M. Faessler

4

,

A. Ferrero

u

,

M. Finger

r

,

M. Finger jr.

r

,

H. Fischer

i

,

C. Franco

l

,

N. du Fresne von Hohenesche

m

,

j

,

J.M. Friedrich

p

,

,

V. Frolov

g

,

j

,

E. Fuchey

u

,

5

,

F. Gautheron

b

,

O.P. Gavrichtchouk

g

,

S. Gerassimov

o

,

p

,

J. Giarra

m

,

F. Giordano

ac

,

I. Gnesi

z

,

aa

,

M. Gorzellik

i

,

16

,

A. Grasso

z

,

aa

,

A. Gridin

g

,

M. Grosse Perdekamp

ac

,

B. Grube

p

,

T. Grussenmeyer

i

,

A. Guskov

g

,

,

D. Hahne

d

,

G. Hamar

y

,

D. von Harrach

m

,

F.H. Heinsius

i

,

R. Heitz

ac

,

F. Herrmann

i

,

N. Horikawa

q

,

6

,

N. d’Hose

u

,

C.-Y. Hsieh

v

,

7

,

S. Huber

p

,

S. Ishimoto

ag

,

8

,

A. Ivanov

z

,

aa

,

Yu. Ivanshin

g

,

21

,

T. Iwata

ag

,

V. Jary

s

,

R. Joosten

c

,

P. Jörg

i

,

E. Kabuß

m

,

A. Kerbizi

x

,

y

,

B. Ketzer

c

,

G.V. Khaustov

t

,

Yu.A. Khokhlov

t

,

9

,

Yu. Kisselev

g

,

F. Klein

d

,

J.H. Koivuniemi

b

,

ac

,

V.N. Kolosov

t

,

K. Kondo

ag

,

K. Königsmann

i

,

I. Konorov

o

,

p

,

V.F. Konstantinov

t

,

A.M. Kotzinian

z

,

aa

,

O.M. Kouznetsov

g

,

Z. Kral

s

,

M. Krämer

p

,

P. Kremser

i

,

F. Krinner

p

,

Z.V. Kroumchtein

g

,

29

,

Y. Kulinich

ac

,

F. Kunne

u

,

K. Kurek

ad

,

R.P. Kurjata

af

,

I.I. Kuznetsov

ab

,

A. Kveton

s

,

A.A. Lednev

t

,

29

,

E.A. Levchenko

ab

,

M. Levillain

u

,

S. Levorato

y

,

Y.-S. Lian

v

,

11

,

J. Lichtenstadt

w

,

R. Longo

z

,

aa

,

V.E. Lyubovitskij

ab

,

12

,

A. Maggiora

aa

,

A. Magnon

ac

,

N. Makins

ac

,

N. Makke

y

,

3

,

G.K. Mallot

j

,

S.A. Mamon

ab

,

B. Marianski

ad

,

A. Martin

x

,

y

,

J. Marzec

af

,

J. Matoušek

x

,

r

,

13

,

H. Matsuda

ag

,

T. Matsuda

n

,

G.V. Meshcheryakov

g

,

M. Meyer

ac

,

u

,

W. Meyer

b

,

Yu.V. Mikhailov

t

,

M. Mikhasenko

c

,

E. Mitrofanov

g

,

N. Mitrofanov

g

,

Y. Miyachi

ag

,

A. Nagaytsev

g

,

F. Nerling

m

,

D. Neyret

u

,

J. Nový

s

,

j

,

W.-D. Nowak

m

,

G. Nukazuka

ag

,

A.S. Nunes

l

,

A.G. Olshevsky

g

,

I. Orlov

g

,

M. Ostrick

m

,

D. Panzieri

aa

,

14

,

B. Parsamyan

z

,

aa

,

S. Paul

p

,

J.-C. Peng

ac

,

F. Pereira

a

,

M. Pešek

r

,

M. Pešková

r

,

D.V. Peshekhonov

g

,

N. Pierre

m

,

u

,

S. Platchkov

u

,

J. Pochodzalla

m

,

V.A. Polyakov

t

,

J. Pretz

d

,

10

,

M. Quaresma

l

,

C. Quintans

l

,

S. Ramos

l

,

1

,

C. Regali

i

,

G. Reicherz

b

,

C. Riedl

ac

,

N.S. Rogacheva

g

,

D.I. Ryabchikov

t

,

p

,

A. Rybnikov

g

,

A. Rychter

af

,

R. Salac

s

,

V.D. Samoylenko

t

,

A. Sandacz

ad

,

C. Santos

y

,

S. Sarkar

f

,

I.A. Savin

g

,

21

,

T. Sawada

v

,

G. Sbrizzai

x

,

y

,

P. Schiavon

x

,

y

,

K. Schmidt

i

,

16

,

H. Schmieden

d

,

K. Schönning

j

,

15

,

E. Seder

u

,

A. Selyunin

g

,

L. Silva

l

,

L. Sinha

f

,

S. Sirtl

i

,

M. Slunecka

g

,

J. Smolik

g

,

A. Srnka

e

,

D. Steffen

j

,

p

,

M. Stolarski

l

,

O. Subrt

j

,

s

,

M. Sulc

k

,

H. Suzuki

ag

,

6

,

A. Szabelski

x

,

ad

,

13

,

T. Szameitat

i

,

16

,

P. Sznajder

ad

,

M. Tasevsky

g

,

S. Tessaro

y

,

F. Tessarotto

y

,

A. Thiel

c

,

J. Tomsa

r

,

F. Tosello

aa

,

V. Tskhay

o

,

S. Uhl

p

,

B.I. Vasilishin

ab

,

A. Vauth

j

,

J. Veloso

a

,

A. Vidon

u

,

M. Virius

s

,

S. Wallner

p

,

T. Weisrock

m

,

M. Wilfert

m

,

J. ter Wolbeek

i

,

16

,

K. Zaremba

af

,

P. Zavada

g

,

M. Zavertyaev

o

,

E. Zemlyanichkina

g

,

21

,

N. Zhuravlev

g

,

M. Ziembicki

af

aUniversityofAveiro,Dept.ofPhysics,3810-193Aveiro,Portugal

bUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany17,18

cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany17

(7)

NagoyaUniversity,464Nagoya,Japan

rCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic19

sCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic19

tNRC«KurchatovInstitute»IHEP,142281Protvino,Russia uIRFU,CEA,UniversitéParis-Saclay,91191Gif-sur-Yvette,France18

vAcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan24

wTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel25

xUniversityofTrieste,Dept.ofPhysics,34127Trieste,Italy yTriesteSectionofINFN,34127Trieste,Italy

zUniversityofTurin,Dept.ofPhysics,10125Turin,Italy aaTorinoSectionofINFN,10125Turin,Italy

abTomskPolytechnicUniversity,634050Tomsk,Russia26

acUniversityofIllinoisatUrbana-Champaign,Dept.ofPhysics,Urbana,IL61801-3080,USA27

adNationalCentreforNuclearResearch,00-681Warsaw,Poland28

aeUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland28

afWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland28

agYamagataUniversity,Yamagata992-8510,Japan23

*

Correspondingauthors.

E-mailaddresses:oleg.denisov@cern.ch(O.Yu. Denisov),jan@tum.de(J.M. Friedrich),alexey.guskov@cern.ch(A. Guskov).

1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

2 AlsoatDept.ofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDept.,BrookhavenNationalLaboratory,Upton,NY11973,USA. 3 AlsoatAbdusSalamICTP,34151Trieste,Italy.

4 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe -cluster.de)(Germany). 5 SupportedbytheLaboratoired’excellenceP2IO(France).

6 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.

7 AlsoatDept.ofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli32001,Taiwan. 8

AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.

9 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia. 10 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany. 11 AlsoatDept.ofPhysics,NationalKaohsiungNormalUniversity,KaohsiungCounty824,Taiwan. 12 AlsoatInstitutfürTheoretischePhysik,UniversitätTübingen,72076Tübingen,Germany. 13 AlsoatTriesteSectionofINFN,34127Trieste,Italy.

14 AlsoatUniversityofEasternPiedmont,15100Alessandria,Italy. 15 Presentaddress:UppsalaUniversity,Box516,75120Uppsala,Sweden.

16 SupportedbytheDFGResearchTrainingGroupProgrammes1102and2044(Germany). 17 SupportedbyBMBFBundesministeriumfürBildungundForschung(Germany). 18 SupportedbyFP7,HadronPhysics3,Grant283286(EuropeanUnion).

19 SupportedbyMEYS,GrantLG13031(CzechRepublic). 20 SupportedbySAIL(CSR)andB.Senfund(India). 21 SupportedbyCERN-RFBRGrant12-02-91500.

22 SupportedbyFCTFundaçãoparaaCiênciaeTecnologia,COMPETEandQREN,GrantsCERN/FP116376/2010,123600/2011andCERN/FIS-NUC/0017/2015(Portugal). 23 SupportedbyMEXTandJSPS,Grants18002006,20540299,18540281and26247032,theDaikoandYamadaFoundations(Japan).

24 SupportedbytheMinistryofScienceandTechnology(Taiwan). 25 SupportedbytheIsraelAcademyofSciencesandHumanities(Israel).

26 SupportedbytheRussianFederationprogram“Nauka”(ContractNo.0.1764.GZB.2017)(Russia). 27 SupportedbytheNationalScienceFoundation,Grantno.PHY-1506416(USA).

28 SupportedbyNCN,Grant2017/26/M/ST2/00498(Poland). 29 Deceased.

Figure

Fig. 3. The J /ψ π + π − invariant mass distribution for the exclusive J /ψ π + π − final state from reaction (5).
Fig. 6. Kinematic distributions for Q 2 (a) and √ s
Fig. 7. (a) Invariant mass spectra for the π + π − subsystem from the decay of  X ( 3872 ) (red squares) and ψ( 2S ) (blue circles) produced in reaction (2)

References

Related documents

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton &amp; al. -Species synonymy- Schwarz &amp; al. scotica while

Doing research through material based art making responds to one of the purposes of my project, namely to shed new light on the history of women’s textile work in the home..

Almina Kalkan, Kerstin Roback, Eva Hallert and Per Carlsson, Factors influencing rheumatologists prescription of biological treatment in rheumatoid arthritis: an

För det tredje har det påståtts, att den syftar till att göra kritik till »vetenskap», ett angrepp som förefaller helt motsägas av den fjärde invändningen,

Samtidigt som man redan idag skickar mindre försändelser direkt till kund skulle även denna verksamhet kunna behållas för att täcka in leveranser som

Psychological stressors on the other hand display a sudden drop of average perceived stress severity from Day 11 to 20 that then increases again in the last term of

Vad gäller lekens betydelse för den kognitiva utvecklingen påvisade resultatet av undersökningen att samtliga pedagoger ansåg att leken främjar denna, vilket även

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller