• No results found

Beam optics study of general ionex model 1545 linear particle accelerator, The

N/A
N/A
Protected

Academic year: 2021

Share "Beam optics study of general ionex model 1545 linear particle accelerator, The"

Copied!
75
0
0

Loading.... (view fulltext now)

Full text

(1)

By Lian He

ARTHUR LAIE^ LIBRARY

COLO$'-M)Q SCHOOL oi

MINES

(2)

All rights reserved

INFORMATION TO ALL USERS

The qu ality of this repro d u ctio n is d e p e n d e n t upon the q u ality of the copy subm itted.

In the unlikely e v e n t that the a u th o r did not send a c o m p le te m anuscript and there are missing pages, these will be note d . Also, if m aterial had to be rem oved,

a n o te will in d ica te the deletion.

uest

ProQuest 10783671

Published by ProQuest LLC(2018). C op yrig ht of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States C o d e M icroform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway P.O. Box 1346

(3)

A t h e s i s s u b m i t t e d to the F a c u l t y and the B o a r d of T r u s t e e s of t h e C o l o r a d o S c h o o l of M i n e s in p a r t i a l f u l f i l l m e n t of the r e q u i r e m e n t s for the d e g r e e of M a s t e r of S c i ence ( P h y s i c s ) . Golden, Color a d o Date: U — i2 — t S i g n e d : Lian He A p p r o v e d : L Dr. F. E. Cecil Th e s i s A d v i s o r Golden, C olorado P r o f e s s o r and Head Physics D e p a r t m e n t ii

(4)

A B S T R A C T

T h e t r a n s p o r t o p t i c s of a G e n e r a l I o n e x M o d e l 1545 L i n e a r P a r t i c l e A c c e l e r a t o r is s t u d i e d by u s i n g a s c a n n i n g t y p e b e a m p r o f i l e monitor. The e x p e r i m e n t a l d ata c o l l e c t e d at t h e t a r g e t c h a m b e r is a n a l y z e d to a t h e o r e t i c a l m o del t h r o u g h a F O R T R A N code, and the r e s ults a g r e e well as the r e s u l t s g i v e n by a t h e o r e t i c a l a c c e l e r a t o r d e s i g n p r o g r a m OPTICIAN.

(5)

TABLE OF CONTENTS

Page

A B S T R A C T ... iii

LIST OF FIGURES ... v

LIST OF TABLES ... vii

A C K N O W L E D G E M E N T S ... vii.i C h a p t e r I. I N T R O D U C T I O N ... 1 C h a p t e r II. B A C K G R O U N D ... 4 2.1 The A c c e l e r a t o r ... 4 2.2 Optical Compo n e n t s ... 7 C h a p t e r III. E X P E R I M E N T ... 14 3.1 Beam Profile M o n i t o r ... 14

3.2 Beam O p tics Study ... 18

C h a p t e r IV. M O D E L FITTING 2 6 4.1 Fitting Data to an E q u a t i o n ... 2 6 4.2 Beam Profile S i m u l a t i o n ... 34 Ch a p t e r V. C O M P A R I S O N 3 8 R E F E R E N C E C ITED ... 4 2 S E L E C T E D B I B L I O G R A P H Y .... ... 4 3 A p p e n d i x A. N O R M A L D I S T R I B U T I O N 4 5 A p p e n d i x B. FORTRAN PROGRAM 4 8 iv

(6)

LIST OF FIGURES

Page Figure 2-1 The General Ionex Model 1545 L i near

P article A c c e l e r a t o r ... 6 Figure 2-2 The Lens A c t i o n of a U n i p o t e n t i a l

Lens ... 9

Figure 3-1 The Detec t o r Cross Sect i o n V i e w ... 15 Figure 3-2 Circ u i t Diag r a m of the M u l t i p l e x i n g

E l e c t r o n i c ... 17 F igu r e 3-3 Best V o l t a g e S e t ting of Grid Einzel

Lens . . ... 19

Figure 3-4 A d j u s t i n g Range of Grid Einzel Lens

V o l t a g e ... 21

Figure 3-5 H o r i z o n t a l Beam Profile at 100 KV

A c c e l e r a t i n g V o l t a g e ... . 2 2 F i gure 3-6 H o r i z o n t a l Beam Profile at 50 KV

A c c e l e r a t i n g V o l t a g e ... 23 Figure 3-7 Beam Profile at 100 KV A c c e l e r a t i n g

V o l t a g e (Vg = 17.0 KV) ... 24 Figure 3-8 Beam Profile at 50 KV A c c e l e r a t i n g

V o l t a g e (Vg = 9.0 KV) ... 2 5 Figure 4-1 R e l a t i v e Beam Intensity as F u n c t i o n of n

and V g at 80 KV A c c e l e r a t i n g V o l t a g e ... 35 v

(7)

F i gure 4-2 R e l a t i v e Beam I n tensity as F u n c t i o n of Sin#

and Vg at 80 KV A c c e l e r a t i n g V o l t a g e ... 3 6 Fi gure 4-3 Beam Profile at 80 KV A c c e l e r a t i n g

V o l t a g e (Vg = 15 KV) ... 3 7 F i g u r e 5-1 Beam Profile G e n e r a t e d by O P T I C I A N ... 40

(8)

LIST OF TABLES Page T a b l e 2-1 A p p l i c a t i o n s of the A c c e l e r a t o r ... 5 T a b l e 2-2 Beam S p e c i f i c a t i o n s ... 7 T a b l e 2-3 T r a n s f e r M a t r i x ... 9 T a b l e 4-1 C o e f f i c i e n t s of P a r ameters in Esti m a t e Model ... 31 T able 4-2 C o e f f i c i e n t s of (j,x in E s t i m a t e Model .... 32 T a b l e 4-3 C o e f f i c i e n t s of P a r ameters in P r e d i c t o r Model 3 3 T a b l e 4-4 C o e f f i c i e n t s of n x in P r e d i c t o r Model .... 3 3 T a b l e 4-5 P e r f o r m a n c e s of P r e d i c t o r M o d e l s ... 34 Ta b l e 5-1 List Outp u t of O P T I C I A N at 100 KV A c c e l e r a t i n g V o l t a g e ... 39 vii

(9)

A C K N O W L E D G E M E N T S

I w o u l d like to a p p r e c i a t e my entire T h e s i s Committee; Dr. F. E d w a r d Cecil for his long stan d i n g e n c o u r a g e m e n t and p a t i e n c e that m a d e this w o r k possible; Dr. J a m e s T. Brown for the k n o w l e d g e w h i c h I learned and for his sense of h u mor w h i c h m a d e my college life m o r e colorful; and Dr. W i l l i a m B. Law for his careful c o n s i d e r a t i o n of my a c a d e m i c background.

I w o u l d also like to t h a n k Mr. Rex R i d e o u t for his help in the e l e c t r o n i c circuit desi g n of the b e a m p r o f i l e m o n i t o r and to t h a n k Mr. H u a i z h u Liu for the helpful d i s c u s s i o n s on this thesis.

Finally, I w o u l d l ike to t h a n k Dr. J. U. T r e f n y w h o b r o u g h t me the o p p o r t u n i t y to c o m e to C S M a n d to t h a n k the P h y s i c s department, the G r a d u a t e School, and the U. S. D e p a r t m e n t of E n ergy for t h e i r financial support.

(10)

C h a p t e r I I N T R O D U C T I O N

S i nce B e c q u e r e l 1s d i s c o v e r y of r a d i o a c t i v i t y in 1896, the e x p e r i m e n t a l and theo r e t i c a l studies in n u c l e a r physics h a v e p l a y e d a p r o m i n e n t role in the d e v e l o p m e n t of t w e n t i e t h c e n t u r y p h y s i c s . F r o m t h e s e s t u d i e s , w e h a v e t o d a y a r e a s o n a b l y good u n d e r s t a n d i n g of p r o p e r t i e s of nuclei and of the stru c t u r e that is r e s p o n s i b l e for those properties.

L a b o r a t o r y e x p e r i m e n t s in n u c l e a r p h y s i c s h a v e b e e n a p p l i e d to the u n d e r s t a n d i n g of an i n c r e d i b l e v a r i e t y of problems, from the i nteractions of quarks, to the p rocesses t h a t o c c u r r e d d u r i n g the e a r l y e v o l u t i o n of the u n i v e r s e j u s t a f t e r the Big Bang. Today, a g o o d u n d e r s t a n d i n g of e x p e r i m e n t a l t e c h n i q u e s and the p r o p e r use of e x p e r i m e n t a l i n s t r u m e n t s are e v e n m o r e i m p o r t a n t for an e x p e r i m e n t a l p h y s i c i s t .

P art i c l e a c c e l e r a t o r s are the m ost useful tools for the r e s e a r c h in n u c l e a r physics. The b e a m s p r o d u c e d from those m a c h i n e s can be u s e d to d i s i n t e g r a t e nuclei, p r o d u c e new u n s t a b l e isotopes, and investigate the p r o p e r t i e s of n u c lear

f o r c e s .

T h e p u r p o s e of an a c c e l e r a t o r of c h a r g e d p a r t i c l e s is to b o m b a r d a t a r g e t w i t h a b e a m of a s p e c i f i c kind of

(11)

p a r t i c l e s of c h o s e n energy. T h e r e a r e m a n y v a r i e t i e s of m e t h o d s for a c c o m p l i s h i n g t h i s task, all u s i n g v a r i o u s a r r a n g e m e n t s of e lectric and m a g n e t i c fields.

As an e l e c t r o n i c device, the a c c e l e r a t o r r e q u i r e s a source of c h a r g e d particles, an e lectric field to a c c e l e r a t e the particles, focu s i n g e l e m e n t s to c o u n t e r a c t the n a t ural t e n d e n c y of the b e a m to diverge, d e f l e c t o r s to aim the b e a m in the d e s i r e d dire c t i o n , a t a r g e t c h a m b e r to h o u s e all the c o m p o n e n t s in h i g h v a c u u m to p r e v e n t the b e a m f rom s c a t t e r i n g in c o l lisions w i t h m o l e c u l e s in the air.

T h e d e s i g n of a c c e l e r a t o r s v a r i e s g r e a t l y w i t h t h e p u r p o s e for w h i c h t h e y w i l l be used. S o m e of t h e m are o p e r a t e d at h i g h e n e r g y r a n g e up to T e V (106 MeV) , the T e v a t r o n at F e r m i l a b has r e c e n t l y b e e n m o d i f i e d to o p e r a t e as a p r o t o n c o l l i d e r w ith each beam h a v i n g an e n e r g y 1 TeV; some of t h e m are p h y s i c a l l y large, the t w o - m i l e long 32 GeV l i n e a r e l e c t r o n a c c e l e r a t o r at Stanford, 2.2 km rings 26 GeV p r o t o n s y n c h r o t r o n a c c e l e r a t o r at CERN (the Cent e r Euro p e a n f o r N u c l e a r R e s e a r c h ) . A l t h o u g h t h e d e t a i l s of t h e s e a c c e l e r a t o r s may be rather t e c h n i c a l l y difficult, they have a b a s i c r e q u i r e m e n t to p r o d u c e h i g h i n t e n s i t y a n d w e l l c o n t r o l l e d b e a m s w h i c h can r e d u c e the s t a t i s t i c a l e r r o r of e x p e r i m e n t a l data and d i f f i c u l t i e s of a c c e l e r a t o r operation. U n d e r s t a n d i n g of the b e a m optics (or b e a m transport) system

(12)

of an a ccelerator, w h i c h c o n s i s t s of a n u m b e r of e l e c t r i c and m a g n e t i c devi c e s that focus the b e a m and b end or deflect it a l o n g the d e s i r e d path, b e c o m e s m o r e i m p o r t a n t for the a c c e l e r a t o r o p e r a t i o n and maintenance.

This t h e s i s will c o n c e n t r a t e on the b e a m o p tics study of the General Ionex Model 1545 linear p a r t i c l e accelerator. A t h e o r e t i c a l b e a m o p t i c s model of the a c c e l e r a t o r w i l l be g i v e n at full o p e r a t i o n conditions.

(13)

C h a p t e r II B A C K G R O U N D

The b e a m t r a n s p o r t in the a c c e l e r a t o r is a p r o c e s s in w h i c h c h a r g e d p a r t i c l e s i n t e r a c t w i t h the e l e c t r o m a g n e t i c f i e l d s p r o d u c e d b y the c o m p o n e n t s of the a c c e l e r a t o r . To st u d y the process, we s h o u l d h a v e a good u n d e r s t a n d i n g of the a c c e l e r a t o r s tructure and functions of its components.

2.1 The A c c e l e r a t o r

T h e G e n e r a l I o n e x M o d e l 1 5 4 5 L i n e a r P a r t i c l e a c c e l e r a t o r s [GE82] are t y p i c a l of the e x p e r i m e n t t o o l s in low e n e r g y n u c l e a r p h y s i c s since it can p r o d u c e 0 -18 0 KeV c o n t i n u o u s l y v a r i a b l e energy high intensity beams. T a b l e 2-1 shows the a p p l i c a t i o n s of the accelerator. T h e a c c e l e r a t o r has a s i m p l e s t r u c t u r e w h i c h c o n s i s t s of an ion source, e x t r a c t i o n gap, E i n z e l lens, c r o s s e d - f i e l d a n a l y z e r (or e l e c t r o m a g n e t i c m a s s a n a l y s i s magnet), a c c e l e r a t i o n tube, g rid Einzel lens, source pump manifold, and a s s o c i a t e d power s upplies as shown in Figure 2-1.

The b a s i c o p e r a t i o n of the a c c e l e r a t o r star t s at the ion source. N e u t r a l (Hydrogen or H e l i u m for example) gas atoms enter the top of the ion source and are ionized in the

(14)

T a b l e 2-1. A p p l i c a t i o n s of the A c c e l e r a t o r [GA89] A p p l i c a t i o n s Features Cross S e c t i o n M e a s u r e m e n t s Plasma D i a g n o s t i c Ion I m p l a n t a t i o n Low E n e r g y B a c k s c a t t e r A n a l y s i s D e t e c t o r C a l i b r a t i o n M a t e r i a l s M o d i f i c a t i o n H i g h C u r rent up to 0.3 mA H i g h Beam S t a b i l i t y H e a v y Ion C a p a b i l i t y

W i d e E n ergy Range 18 0 KeV P recise Beam Optics

P ositive Ions

v i c i n i t y of a h o t f i l a m e n t w h i c h p r o v i d e s an e l e c t r o n discharge. A strong axial m a g n e t i c field p r o d u c e d by a coil a r o u n d t h e ion s o u r c e c o n s t r i c t s t h e ions to a n a r r o w p l a s m a b e a m a l o n g the axis of the e x i t a p e r t u r e and a l s o c o n c e n t r a t e s the electrons leaving the filament to increase the i o n i z i n g effic i e n c y . T h e p o s i t i v e l y c h a r g e d ions are t h e n e x t r a c t e d by the e x t r a c t i o n gap w h i c h is a n e g a t i v e h i g h v o l t a g e p r o b e e l e c t r o d e . A d i v e r g e n t i n i t i a l b e a m h a v i n g an ener g y up to 3 0 KeV is formed. Then, the b e a m is focussed by the first Einzel lens and bent by the a n a l y z i n g m a g n e t to t h e t o p of a c c e l e r a t i o n tube. T h e i m p u r i t i e s , d i f f e r e n t isot o p i c species, are s e p a r a t e d by the a n a l y z i n g m a g n e t due to the m a s s difference. A d d i t i o n a l a c c e l e r a t i o n up to m a x i m u m b e a m e n e r g y or d e c e l e r a t i o n d o w n to m i n i m u m

(15)

Extraction Gap (30 kV) B n zel Lens 1 Ion Source Magnet Source Rack 'T a b le (floats at a c c e le ra tio n p o te n tia l) In s u la tin g

Lucite Rods Glassman™ 150 kV

Power Supply S tepper M o t o r ' Ar r a y Gate Grounded Safety Fence In te rm e d ia te

Control Rack Beam Tube

(16)

b e a m e n e r g y is p r o v i d e d by the a c c e l e r a t i o n tube. Finally, the g r i d E i n z e l lens f o c u s e s the b e a m to an a p p r o p r i a t e s ize (about 0.4 cm diameter) at the t a r g e t p o s i t i o n for e x p e r i m e n t s .

A f t e r t h e b e a m w a s f o r m e d at t h e ion s o u r c e , its p r o p e r t i e s are d e p e n d e n t on t h e f u n c t i o n of t h e o p t i c a l c o m p o n e n t s of the accelerator, E i nzel lenses and a n a l y z i n g m a g n e t , t h a t f o r c e t h e b e a m to a d e s i r e d p a t h w i t h a d e s i g n e d shape. The b e t t e r the opera t i n g c o n d i t i o n s of these components, the b e t t e r the b e a m symmetry achieved. T a b l e 2-2 shows the d e s i g n e d b e a m specifications.

T able 2-2. Beam S p e c i f i c a t i o n s [GA89]

Energy(KV) Current (fiA) D i v e r g e n c e (1/2 angle,mrad)

150 300 15

20 150 20

1 1 100

2.2 Optical C o m ponents

Charged p a r t i c l e optics is similar to light optics. For g e o m e t r i c light optics it has been c u s t o m a r y since the time of N e w t o n to use an a l g e b r a i c formulation for all e q uations

(17)

involved. H owever, t h i s m e t h o d has b e e n r e p l a c e d in m a n y c a s e s b y t h e u s e of t r a n s f e r m a t r i c e s w h i c h o f f e r s an u n e x c e l l e d s i m p l i c i t y a n d c l a r i t y for a c o m p l e x o p t i c a l system.

In t h e m a t r i x r e p r e s e n t a t i o n , w e c a n d e s c r i b e t h e r e l a t i o n s h i p b e t w e e n image space (2) and object space (1) of a b u n d l e rays p a s s i n g t h r ough an optical s y stem as

r- m u m i 2

^ 2 1 ^ 2 2

r r i

(2 - 1 )

w h e r e r is the d i s t a n c e from the axis of the syst e m (z-axis) and d is the angle b e t w e e n the rays and the axis.

The m a t r i x M = [mj, j ] is c a l l e d t r a n s f e r m a t r i x of the system. T a b l e 2-3 shows the t r a n s f e r m a t r i c e s of some simple optical system.

The g r e a t adva n t a g e of this m e thod is that we can write a t r a n s f e r m a t r i x of a c o m plex system as the m u l t i p l i c a t i o n of the t r a n s f e r m a t r i c e s of each comp o n e n t

CM t o t a l ] = CM n3 tM n-i] ' ’ ' ’CM 2 1 1 (2 ~ 2 )

If e a c h t r a n s f e r m a t r i x of the c o m p o n e n t is specified, the o ptical p r o p e r t i e s of a system are determined.

We w ill u s e the t r a n s f e r m e t h o d to s t u d y each o p t ical c o m p o n e n t of the accelerator.

(18)

Table 2-3. T r a n s f e r M a t r i x

Opti c a l S y stem T r a n s f e r M a t r i x Comm e n d

F i e l d Free Drift Space Plane Bound a r y S p h e r i c B oundary T h i n Lens

r

1

d 1

•-

0 1-1

r

1

0

1

L 0 n 1/ n 2 J

r

1

0

1

L (n1/ n 2-l)/r n 1/ n 2 j

r

1

0

1

L -l/f i -1 d = z 2 - z, n - index of r e f r a c t i o n r - radius of surface f>0 c o n v e r g i n g f<0 d i v e r g i n g

T h e u n i p o t e n t i a l e l e c t r o s t a t i c lens (Einzel lens) is a c a s e of t h r e e c y l i n d e r s p l a c e d c o a x i a l l y w i t h t h e same p o t e n t i a l on the two outside cylinders. The focu s s i n g fields are d e r i v e d f r o m v o l t a g e s a p p l i e d b e t w e e n t h r e e a d j a c e n t electrodes, as shown in Figure 2-2.

ii

a

(19)

W h e n a ray (consider p o s i t i v e ions only) p r o c e e d s in th e d i r e c t i o n of i n c r e a s i n g p o t e n t i a l , it e x p e r i e n c e s a r a d i a l e l e c t r o s t a t i c f orce c a u s e d by the g r a d i e n t of the p o t e n t i a l w h i c h d e c e l e r a t e s it and p u s h e s it r a d i a l l y away f r o m t h e a x i s t h a t is a d i v e r g e n t action. The o p p o s i t e p r o c e e d i n g is a c o n v e r g e n t action. In general, w h e n a ray p r o c e e d s in the d i r e c t i o n of i n c reasing potential, a concave e q u i p o t e n t i a l h a s a c o n v e r g e n t e f f e c t a n d a c o n v e x e q u i p o t e n t i a l has a d i v e r g e n t effect. S i n c e the ions w h i c h h a v e a h i g h e r e n e r g y in a conv e x e q u i p o t e n t i a l r e g i o n are e x p o s e d for a s h o r t e r t i m e to the d e f o c u s s i n g f ield t h a n t h e y are k e p t in the c o n c a v e e q u i p o t e n t i a l r e g i o n w h e r e is a f o c u s s i n g field. The net e f fect is that the p o s i t i v e focusing effect always dominate. It is also true if the ions p r o c e e d into an E i nzel lens in the d i r e c t i o n of d e c r e a s i n g potential. The Einzel lens is a l ways a c o n v e r g i n g element. The Einzel lens also has an important feature that the beam enters and leaves the lens w i t h the same energy.

U n d e r the a s s u m p t i o n that ions m o v e alone to the axis, the p araxial ray e quation of m o t i o n for an axia l l y symm e t r i c e l e c t r o s t a t i c field can be w r i t t e n as [BA66]

d 2 r

+ + --- r = 0 (2-3)

(20)

w h e r e V 0 is the axial potential. T h e t r a n s f e r m a t r i x of an E inzel lens is found by s o l ving Equat i o n (2-3) as

w h e r e V x is the p o t e n t i a l of the o u t s i d e electrodes, V 2 is the p o t e n t i a l of t h e c e n t r a l e l e c t r o d e and d is the h a l f l e ngth of the cylinders.

The grid Einzel lens is a symmetrical Einzel lens with the c e n t r a l e l e c t r o d e r e p l a c e d by a m e s h g r i d w h i c h will give a b e t t e r optical qual i t i e s than the Einzel lens.

T h e a n a l y z i n g m a g n e t is a l s o an i m p o r t a n t o p t i c a l e l e m e n t for d e f l e c t i o n and f o c u s s i n g of c h a r g e d p a r t i c l e s in t h e a c c e l e r a t o r . The m a g n e t can focus the ion b e a m in e i t h e r or b o t h r a d i a l a n d v e r t i c a l p l a n e s d e p e n d i n g on t h e f i e l d c o n f i g u r a t i o n . T h e s e p a r a t i o n of the b e a m is d e t e r m i n e d by its m o m e n t u m spread.

In t h e a n a l y z i n g m a g n e t , t h e i ons e x p e r i e n c e the Lorentz force w h i c h causes a p a r t i c u l a r m ass to be selected by the magnet. If the m a g n e t i c field B is p e r p e n d i c u l a r to the m o v i n g d i r e c t i o n of the ions, the s e l e c t e d m a s s can be

2(V

x

V 2)^

M (2-4)

3 V 1- 3 V 2 ( J v 7 - J v j (3Jv7-Jv7) 8 J V 1V 2 - 3 V 1- 3 V 2

(21)

w r i t t e n as

m = (qBR)2 / 2 E 0 (2-5)

w h e r e R is the radius of c u r v a t u r e of the m a g n e t and E 0 is the initial e n e r g y of ions b e f o r e e n t r a n c e the magnet. For ions h a v i n g d i f f e r e n t masses, the paths are d i f f e r e n t w h i c h w i l l a f f e c t t h e o p t i c a l p r o p e r t i e s of the beam. U s i n g a rela t i v e m o m e n t u m spread A P / P as a compo n e n t in the initial and final colu m n v e c t o r in a d d i t i o n to r and 6 , a t r a n s f e r m a t r i x for normal entrance into the sector m a g n e t is [LI69]

M =

Cos (6a) R<S-1 Sin (<Sa) R S ~ 2 [ 1-Cos ( S o l) ]-| •R” 1 <5Sin (6a) Cos(<5a) 6-1 Sin (<5a)

0 0 1

(2 - 6 )

w h e r e a is the b e n d i n g angle of the sector m a g n e t and 6 is g i v e n by

r dB

S = (l - n )h = (1 + ---- )% (2-7)

B dr

in w h i c h n is called the field index. For a u n i f o r m B field, n is zero.

The a c c e l e r a t i o n t ube is a m u l t i - e l e c t r o d e s t r u c t u r e th a t i m p arts e n e r g y to the ions in s u c c e s s i v e l y stages. As th e ions t r a v e l a l o n g the tube, t h e i n c r e a s e d p o t e n t i a l

(22)

e n e r g y of ions c o n v e r t to t h e k i n e t i c e n e r g y t o w a r d a d e s i r e d b e a m energy. M a n y studies h a v e i n d i c a t e d t h a t the o ptics of an a c c e l e r a t i o n tube are e s s e n t i a l l y linear. It is c o n v e n i e n t to r e p r e s e n t a t ube as a l i n e a r s y s t e m in terms of the t r a n s f e r matrix.

All of the above d i s c u s s i o n n e g l e c t s the s p a c e - c h a r g e e f f e c t w h i c h is p r o d u c e d b y the ion b e a m itself. So, the o p t ical p r o p e r t i e s of t h e s e c o m p o n e n t s of the a c c e l e r a t o r are in the p a r a x i a l region. A t 1 mA of b e a m current, the s p a c e - c h a r g e e f f e c t is two orders s m a l l e r t h a n our result. S ince the b e a m current of the a c c e l e r a t o r is less than 1 mA, t h e a p p r o x i m a t i o n of n e g l e c t i n g s p a c e - c h a r g e e f f e c t is a p p r o p r i a t e . T h e h i g h e r o r d e r o p t i c a l p r o p e r t i e s c a n be o b t a i n e d e i t h e r b y s o l v i n g P o s s i o n ' s e q u a t i o n w i t h the s p a c e - c h a r g e d e n s i t y p at a s e t of p r o p e r b o u n d a r y c o n d i t i o n s e x a ctly or by solving E q u a t i o n (2-3) a d d i n g term

(23)

C h a p t e r III E X P E R I M E N T

A s c a n n i n g type b e a m p r o file m o n i t o r has been d e s i g n e d and i n s t a l l e d on the a c c e l e r a t o r . U s i n g the b e a m p r o f i l e m o n i t o r , t h e f i n a l b e a m p a t t e r n s w e r e s t u d i e d . A l l e x p e r i m e n t data w e r e c o l l e c t e d at the targ e t c h a m b e r t h r o u g h the b e a m p r o f i l e m o n i t o r w h e n the E x t r a c t i o n Gap v o l t a g e was set to 20 KV and the first Einzel Lens v o l t a g e was set to 15 KV.

3.1 Beam Profile M o n i t o r

The b e a m p r o f i l e m o n i t o r c o n s i s t s of a d e t e c t o r and an a n a l o g e l e c t r o n i c circuit. The d e t e c t o r was m a d e by A. G a v i r i a [ G A 8 9 ] . T h e e l e v e n c o p p e r r i n g s a c t i n g as c h a r g e collectors, each has the w i d t h of 1/8 inches s e p a r a t e d from one a n o t h e r by 1/32 inches, are m o u n t e d on a c e r a m i c rod w h i c h is p o s i t i o n e d a c ross a d i a m e t e r p e r p e n d i c u l a r to the d i r e c t i o n of b e a m propagation. The cross section v i e w of the d e t e c t o r is shown in Figure 3-1. Each c o p p e r ring intercepts an amou n t of charge that is p r o p o r t i o n a l to the inte n s i t y of the b e a m at that point. W i res from each individual ring w ere b r o u g h t out of the target c h a m b e r and fed into the switc h i n g

(24)

.. CHAMBER FLANGE

SUPPORTING

ROD CERAMIC ROD

a n

ROTATING GRID

COPPER RINGS

ROTATING SHAFT CERAMIC ROD

SLIDES IN AND OUT ROTATING ARM

WIRES TO THE OUTSIDE

BEAM

(25)

e l e c t r o n i c circuit [GA84].

The c h a r g e c o l l e c t e d by each c o p p e r ring is s t o r e d in a 1 iiF c a p a c i t o r (the e l e v e n c a p a c i t o r s w e r e s e l e c t e d for b e t t e r t h a n 1% m a t c h ) , v i a a v a r i s t o r - d i o d e - n e o n - v a r i s t o r p r o t e c t i o n network. The v o l t a g e on each c a p a c i t o r is sampled by an a n a l o g m u l t i p l e x e r IC d r i v e n at a c o n v e n i e n t rate (11 kHz) b y a f r e e - r u n n i n g c o u n t e r . T h e o u t p u t of t h e m u l t i p l e x e r is sent d i r e c t l y to the s t o r a g e o s c i l l o s c o p e w i t h the time base t r i g g e r e d by the c o u n t e r and sweep speed set so t h a t one c o m p l e t e scan of the e l e v e n inputs is one sweep. The s c h e m a t i c of s w i t c h i n g c i r c u i t d i a g r a m is s hown in F i gure 3-2.

The b e a m p r o f i l e w h i c h can be s e e n on the s c o p e was d i v i d e d to e l e v e n channels. Each channel g ives the v o l t a g e across each 1 jiY c a p a c i t o r and is p r o p o r t i o n a l to the amount c h a r g e c o l l e c t e d b y e a c h ring. T h e o u t p u t of a c e r t a i n channel repre s e n t s the relative beam intensity at that p oint of b e a m c r o s s section. By r o t a t i n g the d e t e c t o r c r o s s i n g the a c c e l e r a t e d beam, r e c o r d i n g d ata at each posit i o n , a c o m p l e t e d b e a m p r o f i l e is achieved.

At zero v o l t a g e input of the b e a m prof i l e monitor, the d i f f e r e n c e of output b e t w e e n channels caused by the leaking c u r r e n t of the diodes is less than 20 m V and is m u c h s m a ller t h a n t h e o u t p u t at n o r m a l o p e r a t i o n c o n d i t i o n , w h i c h is

(26)

to scope +15V scope trigger 10M IK ■ **Vv 10K peon * . varistor protection integrator input

for each input clock llKHz counter 7 11 out 8 input analog 1 multiplexer 2 CE out 1 8 input analog 2 multiplexer CE

(27)

b e t w e e n 1 to 15 V. The b e a m p r o f i l e m o n i t o r is test e d stable and r e l i a b l e in the b e a m current range of the accelerator.

3.2 Beam Profile Study

Two e x p e r i m e n t s w e r e d e s i g n e d to s t udy the final b e a m profiles. In the first experiment, the d e t e c t o r was fixed at the c e n t e r of t h e t a r g e t c h a m b e r for w h i c h y is zero and m e a s u r e d the r elative b e a m intensity as the function of the v o l t a g e of the Grid Einzel Lens ( G E L ) , w h i c h gives a c e r tain fo cal s t r e n g t h of t h e beam, at d i f f e r e n t a c c e l e r a t i n g voltage. A b e s t v o l t a g e s e t t i n g of G E L was found for each a c c e l e r a t i n g v o l t a g e w h i c h g a v e t h e h i g h e s t s y m m e t r i c ou tput from b e a m prof i l e monitor. In the second experiment, we m e a s u r e d the beam profile at the best v o l t a g e setting of G E L w h i c h we found in the p r e v i o u s e x p e r i m e n t at d i f f e r e n t a c c e l e r a t i n g voltage. Both e x p e r i m e n t s w e r e p e r f o r m e d w h e n Ex t r a c t i o n Gap v o l t a g e was set to 20 KV, the v o l t a g e of the f irst E i n z e l Lens was set to 15 KV and the a c c e l e r a t i n g v o l t a g e w a s s e l e c t e d at 0 KV, 25 KV, 50 KV, 75 KV and 100 KV.

At t h e b e s t v o l t a g e s e t t i n g of GEL, we f o u n d t h e h i g h e s t s h a r p p e a k from t h e b e a m p r o f i l e m o n i t o r w h i c h i n d i c a t e s t h e b e s t a c h i e v e d o p t i c a l p r o p e r t i e s of t h e

ARTHUR LAKES LIBRARY C O L O A & D O SCsiCOL ot MINES

(28)

B e s t V o lt a g e 20 120 80 100

20

60 0 40

Ac ce lera ting Voltage (KV)

(29)

accelerator. F i g u r e 3-3 shows the r e l a t i o n s h i p b e t w e e n the a c c e l e r a t i n g v o l t a g e (Va ) and the b e s t v o l t a g e s e t t i n g of G E L (Vg) . The g o o d l i n e a r r e g r e s s i o n l e a d s to the l i n e a r o p e r a t i o n c o n d i t i o n of the accelerator.

The b eam spreads out as the v o l t a g e of G E L goes off its b e s t p o s i t i o n . T h e v o l t a g e a d j u s t i n g r a n g e of G E L g r o w s a l m o s t l i n e a r l y as the a c c e l e r a t i n g v o l t a g e i n c r e a s e s as s hown in F i gure 3-4. The h o r i z o n t a l b e a m p r o f i l e s are also s t u d i e d at five d i f f e r e n t a c c e l e r a t i n g v o l t a g e s . Some of th e m are shown in Figure 3-5 and Figure 3-6 in w h i c h we can see c l e arly the p e a k m o v i n g as a function of G E L voltage. In next chapter, we w ill find a t h e o r e t i c a l m o d e l w h i c h will r e p r e s e n t this kind r e l a t i o n s h i p when y is set to zero.

In the s e c o n d exper i m e n t , we m e a s u r e d five c o m p l e t e b e a m p r ofiles, some of t h e m are s h o w n in F i g u r e 3-7 and figure 3-8. From these plots, we found that the shape of the b e a m p r o f i l e is stable for the studied range of a c c e l e r a t i n g v o l t a g e and the p e a k of the b e a m p r o f i l e is a l i t t l e bit b e l o w the c e n t e r of the t a r g e t c h a m b e r w h i c h m a y d e p e n d on the p o s i t i o n setting of the detector.

(30)

20

120

20 40 80

0 60 100

Acc eler ating Voltage (KV)

(31)

45 O E G R E E S R O T A T I O N A B OUT Z-AXIS. k k s % (a) * - 45 O E G R E E S R O T A T I O N A B O U T Z-AXIS. (b) F i g u r e 3-5. H o r i z o n t a l B e a m P r o f i l e at 100 A c c e l e r a t i n g V o l t a g e KV

(32)

IN T E N S I T Y

,

IN T E N S I T Y * 45 D E G R E E S R O T A T I O N A B OUT Z-AXIS. (a) -45 D E C R E E S R O T A T I O N A B O U T Z-AXIS. (b) F i g u r e 3-6. H o r i z o n t a l B e a m P r o f i l e a t 50 K V A c c e l e r a t i n g V o l tage

(33)

S

I

N

C

A

N

G

L

E

)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11 A .26 26 .17 17 08 01 10 19 .19 28 .28 37 .37 .46 55 .55 * CONTOUR INTERVAL 64 LL 1. 0 0 .64 2.00 3.00 4.00 5.00 6.00 7.00

8

00 9.00 1 0 . 0 0 11

00

CHANNEL NUMBER

F i gure 3-7. Beam Profile at 100 KV A c c e l e r a t i n g V o l t a g e (Vg = 1 7 . 0 KV)

(34)

S

I

N

C

A

N

G

L

E

)

> -1.00 2.00 3. 7.00 8.00 9.00 10 * CONTOUR INTERVAL = 2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8 . 0 0 ' 9.00 10.00 1

CHANNEL NUMBER

1.0 0 j n 0.26 - 0.17 ^ 0.08 ^ -0 . 0 1 3 -0 . 1 0 ^ - 0 . 1 9 - - 0 . 2 8 - - 0 . 3 7 : - 0 . 4 6 ^ - 0 . 5 5 ^ - 0 . 64 1. 0 0

Figure 3-8. Beam Profile at 50 KV A c c e l e r a t i n g V o l t a g e (Vg = 9 . 0 KV)

(35)

C h a p t e r IV M O D E L FITTING 4.1 F i t t i n g Data to an E q u a t i o n F r o m the s t u d y of p r e v i o u s c hapter, we f o u n d t h a t t h e r e l a t i v e i n t e n s i t y of t h e final b e a m p r o f i l e is a m u l t i - v a r i a b l e function w h i c h can be w r i t t e n as D = D ( E , V a , v g , x, y) (4-1)

w h e r e E is the final e n e r g y of the p a r t i c l e s , V a is the a c c e l e r a t i n g voltage, Vg is the v o l t a g e of Grid Einzel lens, and, x and y are the c o o r d i n a t e s at the t a rget chamber.

S i n c e the two l e n s e s in the a c c e l e r a t o r are E i n z e l lenses w h i c h incre a s e and d e c r e a s e the e n e r g y of p a r t i c l e s in the same amount, we can w r i t e the final ener g y for a b eam

E = Z e ( V ex + V a )

w h e r e Ze is the total charge of the b e a m p a r t i c l e and V ex is the v o l t a g e of E x t r a c t i o n Gap. In the case of our study, Z is one for phot o n b eam and V ex is 20 KV. E q u a t i o n (4-1) now is s i m p l i f i e d to

(36)

F i t t i n g the e x p e r i m e n t a l data to E q u a t i o n (4-2) is a c o m p l e x problem. A correct w o r k i n g p r o c e d u r e should be made for s o l v i n g the p r o b l e m like this. T h e p r o c e d u r e t h a t we will f o llow is l i sted b e l o w w h i c h indi c a t e s the w o r k to be d one and the deci s i o n s to be made at each stage.

The p r o c e d u r e of fitting: Step 1. O b j e c t i v e

1. Esti m a t e effects 2. Predict responses

S tep 2. C o n s t r u c t Full Equat i o n 1. P revious study results

2. Search for cand i d a t e equation Step 3. S e l e c t i o n of Subsets of Vari a b l e s

1. S a m p l i n g each individual v a r i a b l e in full e quation 2. Study the v a r i a n c e of each v a r i a b l e

3. C o m b i n a t i o n of r e a sonable v a r i a b l e s 4. R e d u c e of functional v a r i a b l e s

5. A p p r o p r i a t e v a l u e s of c o e f f i c i e n t s in l i n e a r or n o n l i n e a r functional form of each r e m a i n i n g v a r i a b l e 6. Find i n g useful estim a t e equation

Step 4. Final P r e d i c t o r E quation

1. A d j u s t i n g all s elected p a r ameters 2. M i n i m i z i n g the total square residual

(37)

Now, w e follow the p r o c e d u r e to find our t h e o r e t i c a l m odel of the final b e a m p r o f i l e of the accelerator.

We h ave a total of 1408 sets of e x p e r imental data w h ich we c o l l e c t e d in the two e x p e r i m e n t s d i s c u s s e d in p r e v i o u s chapter. Each set of data c o n t a i n s five m e a s u r e m e n t s w h i c h are V a , Vg, x, y and D. In the g e n e r a l o p e r a t i o n of the accelerator, for a c e r t a i n a c c e l e r a t i n g voltage, we s h o u l d h a v e a c e r t a i n V g t h a t g i v e s t h e b e s t b e a m p r o f i l e r e g a r d l e s s of a d j u s t i n g Vg from down side or up side. The a d j u s t a b l e range of V g s h o u l d be s y m m e t r i c a r o u n d the its b e s t p o s i t i o n that l eads a n o r m a l d i s t r i b u t i o n of Vg at c e r t a i n a c c e l e r a t i n g v o l t a g e V a . L o o k i n g o v e r the t h r e e d i m e n s i o n a l p lots in C h a p t e r III, we also found t h a t t h ere is a m o r e or less n o r m a l t y p e d i s t r i b u t i o n in the b e a m p r o f i l e in b o t h x a n d y d i r e c t i o n s . S i n c e d i f f e r e n t Vg should also affect x and y parts, the Equa t i o n ( 4 - 2 ) b ecomes

D = D [ V g ( V a ) , x ( V a , V g ), y ( V a , V g )] ( 4 - 3 )

If w e a s s u m e v a r i a b l e V g = V g ( V a ) is i n d e p e n d e n t of v a r i a b l e x and y, use the symbol N to repr e s e n t the normal distribution, we have our full equation of the model

D = D 0 N(Vg) N(x,y) (4-4)

(38)

factor in the c o m p u t e r p r o g r a m (see A p p e n d i x B ) .

An n d i m e n s i o n a l normal d i s t r i b u t i o n can be d e t e r m i n e d c o m p l e t e l y by its w e i g h t p o i n t (/Zj ,/u2 , . . . ,/xn ) and X m a t r i x (see A p p e n d i x A). If we put the normal c o n s t a n t s of N(Vg) and N(x,y) into a function C ( V a/Vg), now the forms of N(Vg) and N(x,y) are

N ( V g ) = C ( V a/V g ) exp <(-v cr - M ( V a ) a ( Vg ) (4-5) N(x,y) = exp <-2 (1 ~p x y 2 ) x - n ( x ) ( ) a(x) x - fji(x) y - jLt(y) - 2 pxy CT(X) o ( Y ) + (' y - m(y) ° ( y ) (4-6)

w h e r e ji is the v a r i a b l e mean, a 2 is the v a r i a b l e v a r i a n c e and px y ( IPx y I ~ 1) c o r r e l a t i o n c o e f f i c i e n t b e t w e e n v a r i a b l e x and v a r i a b l e y. All p s and as are functions of V a and Vg.

B e fore study i n g N(Vg) and N(x,y), we set up c o n v e n i e n t x-y coordinates. In the x-axis, the ceramic rod w i t h eleven c o p p e r rings on, since each ring has the w i d t h of 1/8 inches s e p a r a t e d from one a n o t h e r 1/32 inches, we let 5/32 inches be the u nit of x. So x can be r eplaced by the channel number shown on the scope. If let the length of rotat i n g arm on the

(39)

d e t e c t o r w h i c h is 3/4 inches be the unit of y, we can write y as sin# w h e r e # is the angle from the c e n t e r p o s i t i o n of the detector. For all the calculations, we r e p l a c e x and y by channel n u m b e r n and S i n # .

F o l l o w i n g the p r o c e d u r e Step 3, we s t u d i e d the total 1408 set samples of D(x) , D(y) , and D(Vg), in w h i c h o t her v a r i a b l e s w ere kept as constants. We find our e s t i m a t e model

N(Vg ) = N , (0) expj

-vq - M, (Vq ) -

I

( V g ) + N (0) exp «-r Vg - M 2 (Vg) ^2 (Vg) (4-7) N ( n ,0) = exp \ -2 ( 1 — /? x y 2 ) n - Mx 2

n - /ix Sin# - jiy

- 2 pxy + (■ Sin# - fiy 2-| ax

cr.

a, (4-8) wh e r e is g i v e n by CTx = CTx ( ° ) e x P 1 ---1 (" Vg — fl(O^) ---1 2 2 L o ( o x ) (4-9) and D 0 = 1.000

(40)

p X y = 0.500 My = “ 0.2078

The r e m a i n i n g p a r a m e t e r s in the model are r e g r e s s e d to the p o l y n o m i a l s of V a and V g . The c o e f f i c i e n t s of t h e s e p o l y n o m i a l s are listed in T able 4-1 and Table 4-2.

Based on the o b s e r v a t i o n of Figure 3-5 and Figure 3-6, N (Vg) c o n t r i b u t i o n to t h e b e a m p r o f i l e is not s y m m e t r i c a b o u t its b e s t s e t t i n g w h i c h has a s l o w - r i s i n g f r ont and f a s t - f a l l i n g tail, we w r i t e N ( V g ) as c o m b i n a t i o n of two normal distributions.

T a b l e 4-1. C o e f f i c i e n t s of P a r ameters in Estim a t e Model

C ONSTANT V a (x 1 0 “ 2 ) V a 2 (x10~4 ) V a 3 (x 1 0 “ 6 ) N, (0) 3 .27800 19.1647 -37.310 21.23 N 2 (0) 5.66341 40.7526 -48.962 17 . 85 M, (Vg ) 1. 84860 11.1890 -78 . 890 3 . 51 ( V g ) 2 . 29971 12.4936 1. 094 - 0 . 66 ( V g ) 0.52050 - 0.7460 10.417 - 4 . 8 7 ( V g ) 0.18800 0.7380 3 . 160 - 1.34 o X b 2 . 29776 - 1.5799 2 . 375 - 0.91 M(CTX ) 1.73580 10.7510 - 3.813 - 2.22 a ( o x ) 0.64759 1.2800 6. 954 - 0.23 ° y 0.25551 - 0.1972 0. 502 - 0.35

(41)

Table 4-2. C o e f f i c i e n t s of p x in E s t i m a t e Model

C O N S T A N T V a (10"2 ) > pH O 1 rH V a 2 (10“ 4 ) > pH o 1 CO V aV g (10-3 )

6.51700 5. 7621 -4.8442 -4 . 9774 12 . 476 1.9901

A d j u s t i n g all the p a r a m e t e r s and m i n i m i z i n g the total s q u a r e r e s i d u a l in t h e e s t i m a t e m o d e l b y t h e c o m p u t e r program, the final p r e d i c t o r model is achieved. The final p r e d i c t o r has the s a m e f orm of the e s t i m a t e m o d e l w i t h d i f f e r e n t p a r a m e t e r s w h e r e

D 0 = 1.585

p X y — 0.062

jLty = -0.1989

and rest of them are listed in Table 4-3 and T a b l e 4-4.

T o t e s t if o u r p r e d i c t o r m o d e l is r e a s o n a b l e a p p r o x i m a t i o n or g o o d fit, we i ntroduce a quantity, w h i c h r e p r e s e n t s the r e l i a b i l i t y of the model, R

jX [Dj_ (FIT) -Di (MEASURE) ]2

R T S R Li

R = 1 --- = 1 --- (4-10)

SF X D i(F I T )

i

w h e r e R T S R is the s q u a r e root of the total s q u a r e residual and SF is the sum of function of the p r e d i c t o r model. Since R T S R r e f l e c t s to the e s t i m a t e d s t a n d a r d d e v i a t i o n of the

(42)

T a b l e 4-3. C o e f f i c i e n t s of Parameters in P r e d i c t o r Model CONST A N T V a (xlO- 2 ) V a 2 (x 1 0 “ 4 ) V a 3 (xl0~6 ) N, (0) 3.31266 18.8748 -41.084 24 . 86 N 2 (0) 5.69437 40.3708 -53.568 22 . 97 M. (Vg ) 1.89867 11.0703 -12.164 7 . 82 ^2 (^g) 2.34978 12.9835 - 0.565 0 . 04 (v g) 0.57057 - 0.8734 5 . 921 - 0.55 ^ 2 (Vg) 0.23799 1.1534 4 . 090 - 2.74 a x (0) 2.34714 - 1.9105 2 . 007 0 .20 M ( a x ) 1.78587 11.1331 - 3.491 -10.90 o ( o x ) 0.69766 1.7097 10.264 3 . 15 ° Y 0.28093 - 0.3999 0 . 667 - 0.35 T a b l e 4-4. C o e f f i c i e n t s of n x in P r e d i c t o r Model CO N S T A N T v a (io~2 ) V g (10“ M v a 2 (10~ 4 ) > "tp 1—1 o 1 CO V aV g (10-3 ) 6 . 51838 6 . 0413 -4 .8170 - 5.59 12.730 2 . 173

model, the b i g g e r R is, the b e t t e r fitting is achieved.

T he c o m p u t e r p r o g r a m also can g ive several local m o dels at c e r t a i n o p e r a t i o n cond i t i o n s . T h e p e r f o r m a n c e s of the p r e d i c t o r m o d e l s in d i f f e r e n t range of a c c e l e r a t i n g v o l t a g e

(43)

are l i s t e d in T a b l e 4-5 w h e r e the d a t a w i t h * m a r k are p r o d u c e d by the local models.

T able 4-5. P e r f o r m a n c e s of P r e d i c t o r M o d e l s V a ( K V ) V g ( K V ) SF R T S R R (% ) SF* RTSR* R* (%) 0 2 . 5 303.55 23 . 03 92 . 4 374.56 17 . 52 95.3 25 6.0 335.21 23 . 10 93 . 1 395.77 17 .36 95.6 50 9 . 0 487.69 24 .81 94 . 9 3 9 5.34 17 . 54 95 . 6 75 13 . 5 341.83 21.47 93 . 7 398.36 18 .49 95 . 4 100 17 . 0 396.01 17 . 49 95. 6 375.31 17 . 01 95.5

4.2 Beam Profile Simu l a t i o n

U s i n g the p r e d i c t o r model, we can s i m u l a t e the b e a m p r o f i l e at a n y o p e r a t i o n condition. F i g u r e 4-1 to F i g u r e 4-3 s h o w s t h e r e l a t i v e i n t e n s i t y of t h e b e a m at 80 KV a c c e l e r a t i n g voltage.

F r o m the model, we can p r e d i c t the shape of b e a m spot and best v o l t a g e setting of the Grid Einzel Lens at required o p e r a t i o n c o n d i t i o n w h i c h is h e l p f u l i n f o r m a t i o n for d e s i g n i n g the t a rget and u s ing the accelerator.

(44)

Vg

C

K

V

)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 2 0 . 0 0 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m i i i i i i 2 0 , 18.00 16. 14. 1 2

.

10. 00 8. 4. 2.i * CONTOUR INTERVAL 1. 0 _LL 1 . 2.00 3.00 4.00 5.00 6.00 7.2

CHANNEL NUMBER

18.00 16. 14, 1 2, 1 0, 8.00 9.00 10.00 1 1 F i g u r e 4-1. R e l a t i v e Beam I n t e n s i t y as F u n c t i o n of n and Vg at 80 KV A c c e l e r a t i n g V o l tage

(45)

A

N

G

E

L

(

D

E

G

)

0 . 0 0 2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 7 . 0 0 27. * C O N T O U R INTERVAL 18. 1 8 . 0 0 00 00 - 9 . 0 0 - 1 8 . 0 0 - 1 8 . - 2 7 . 0 0 - 2 7 . - 3 6 . 0 0 - 3 6 . - 4 5 . 0 0 - 4 5 . 0 . 0 0 2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0

Vg ( KV)

Figure 4-2. R e l a t i v e Beam Intensity as F u n c t i o n of Sin# and Vg at 80 KV A c c e l e r a t i n g Voltage

(46)

1 .00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11 .00 15.00 ���������������-,---,-�����-,---,---,-,���--,--,-, 15.00 9.00 3.00 -3. 00 -15.00

w

Z

-21. 00 <( -27.00 -33.00 -J9.00 9.00 3.00 -3. 00 -9.00 -15.00 -21 .00 -27.00 -33. 00 • CONTOUR INTERVAL = 1.0 -39.00 -45. 00 �_.__._..._____._�_,___.._.__...____.__._..._____._�_,___.._.__...___..__.__..._____.___._____.___.____._____,__,...___..__.__..._____.___._____.__.__.____,__,...___..__.__..._, -45. 00 1 .00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11 .00

CHANNEL NUMBER

Figure 4-3. Beam Profile at 80 KV Accelerating Voltage

(V

g

=

15 KV)

A.r\TM1nt LAJLl:3 Lrn�Aii.Y COLC'ff.tJtOO ?}Cr�OOL cl 11:.INEt

(47)

C h a p t e r V C O M P A R I S O N The p r e d i c t o r m o d e l d e v e l o p e d in p r e v i o u s c h a p t e r is c o m p a r e d w i t h a t h e o r e t i c a l a c c e l e r a t o r d e s i g n p r o g r a m O P T I C I A N [WH87], w h i c h is p r o v i d e d by the same a c c e l e r a t o r manufacturer.

F r o m OPTICIAN, we can g e t x and y c o o r d i n a t e s a f t e r each elem e n t of the accelerator. An overall t r a n s f e r m a t r i x of t h e a c c e l e r a t o r c a n be g i v e n by O P T I C I A N at c e r t a i n o p e r a t i n g condition. T a ble 5-1 shows the output of O P T I C I A N at 100 KV a c c e l e r a t i n g v o l t a g e and 17 KV v o l t a g e of GEL.

A s s u m i n g that the d i s t r i b u t i o n of ions e m i t t e d form the ion s o u r c e is a normal d i s t r i b u t i o n of the e m i t t i n g angle, f i x i n g all o t h e r c o n d i t i o n s at the same, a c o m p l e t e b e a m p r o f i l e can be g e n e r a t e d by u sing OPTICIAN. F i gure 5-1 shows the b e a m p r o f i l e p a t t e r n at 100 KV a c c e l e r a t i n g v o l t a g e and 17 KV v o l t a g e of G E L g e n e r a t e d by u sing OPTICIAN.

The results from the p r e d i c t o r model agree well as the results g i ven by O P T I C I A N both in the shape and the size of b e a m p a t t e r n s in the range of opera t i o n conditions.

The shapes of the b e a m patterns, h a v i n g an e l l i p t i c a l s h a p e in the c o n t o u r plots, are f o u n d e x p e r i m e n t a l l y as shown in Figure 3-7 and t h e o r e t i c a l l y as shown in Figure 4-3

(48)

T a b l e 5-1. List Output of O P T I C I A N at V a = 100 KV and V g = 17 KV

File: COPARISON Title: COPARISON

Created: Jun 5, 1990 3:33:15

Ion source 1 M o m e n t u m = 6.104 MeV/c Mass Focal len. Magnet Accel tube Focal len. Drift Inj energy X Focal L. Energy = Radius = Betal = Energy = Leng t h = Charge state Ent lens X Focal L. Energy = Length = Energy = 020 MeV, Current = 1.000 Charge .300mA = 1 . .000m. .020 MeV .229m. . 000 .02 OMeV .600m. 1. 1 .200m. .12 0 MeV 1.500 m. .12 0 MeV Y Focal L. 1.000m. Bend angle Beta2 = Field index Ent dia = Inj energy Exit lens Y Focal L. 90.00 Fringe fid: .00900 .000 .000 Field = .08891 T .070m. V o l t a g e = .100MV .02OMeV 1 1.200m.

COORDINATES AT END OF EACH ELEMENT: X

---After element X mm. , X'mrad Y mm. Y 'mrad DeltaP/P % DeltaL Ion source 1 E n v . 1.0 20. 0 1.0 20.0 . 00 . 0 Focal len. 2 Env. 1. 0 20.0 1.0 20.0 . 00 ' . 0 Magnet 3 Env. 4 . 6 4 . 3 7 . 3 22 . 6 . 00 4 . 7 Accel tube 4 Env. 2 . 6 3 . 1 10. 5 7 . 6 . 00 11-.4 Focal l e n . 5 Env. 2 . 6 3 . 8 10. 5 1.4 . 00 11. 4 Drift 6 Env. 4 . 7 3 .8 8.8 1. 4 . 00 11.4

DISTANCE TO NEXT WAIST TIME

\\ \. /

After element Xdist m Ydist m X mm. , Y mm. microsec Ion source 1 . 00 . 00 1.0 1.0 . 0000 Focal len. 2 . 00 . 00 1.0 1.0 . 0000 Magnet 3 -.08 -.32 4 . 6 . 9 . 1831 Accel tube 4 -.02 -1.37 2 . 6 1.1 .3602 Focal len. 5 . 39 6.23 2.2 5.8 . 3602 Drift 6 -1. 10 4 . 74 2 . 2 5.9 . 6719 OV E R A L L T R A N S F E R MATRIX: -3.2594 .1692 . 0000 . 0000 . 6159 . 0000 -1.0802 .1811 . 0000 . 0000 . 1059 .0000 . 0000 . 0000 -1.0188 .4386 .0000 . 0000 . 0000 . 0000 -.7977 -.0572 . 0000 .0000 . 0000 . 0000 . 0000 . 0000 . 1667 . 0000 1.9222 . 5626 . 0000 . 0000 1.7198 2.4495

(49)

(

m

m

)

- 2 0 . 0 0 - 1 5 . 2 0 - 1 0 . 4 0 - 5 . 6 0 - 0 . 8 0 4 . 0 0 8 . 8 0 13.60 18.40 . 60 . 60 5 . 1 6 5, 16 3. 44 >-- 3 . 4 4 - 3 . 44 - 5 . 1 6 - 5 . 1 6 * CONTOUR INTERVAL = __ 6 0 1 M I I I I I I I I I I I I I I I I 1 M H r - K l I A 1 A I I I I I I I I I I I 1 1 I I I I I I ' - 2 0 . 0 0 - 1 5 . 2 0 - 1 0 . 4 0 - 5 . 6 0 - 0 . 8 0 4 . 0 0 8 . 8 0 13.60 18.40 . 60

X ( mm)

F i g u r e 5-1. Beam P r o f i l e G e n e r a t e d by O P T I C I A N at 100 KV A c c e l e r a t i n g V o l t a g e and 17 KV V o l t a g e of G E L

(50)

and Figure 5-1. The y - s e m i a x i s b is b i g g e r than x - s e m i a x i s a of the ellipse. We also found that b is more s e n s i t i v e than a w h e n the a c c e l e r a t i n g v o l t a g e and the v o l t a g e of G E L were c h a n g e d .

The sizes of the b e a m p a t t e r n s g i v e n by the p r e d i c t o r m o d e l a n d O P T I C I A N a r e a b o u t t h e s a m e . A t 100 K V a c c e l e r a t i n g voltage, the beam spot, g iven by the p r e d i c t o r model, is about 0.96 cm x 1.41 cm and about 0.94 cm x 1.76 cm g i v e n by OPTICIAN.

F r o m the a bove facts, we c o n c l u d e that the p r e d i c t o r model is a useful tool to predict the shape and the size of b e a m p a t t e r n s w h i c h is a p p r o x i m a t e l y as good and relia b l e as t h e b e a m o p t i c s r e s u l t of the G e n e r a l I o n e x M o d e l 1545 L i n e a r Parti c l e Accelerator.

(51)

[B A 6 6 ] [C E 8 9 ] [GA8 9 ] [G A 8 4 ] [ G E 8 2 ] [L I 6 9 ] [ W H 8 7 ] R E F E R E N C E CITED M. Bandford, "The T r a n s p o r t of C h a r g e d P a r t i c l e Beam", Spon Books Ltd., London (1966).

F. E. Cecil, Private Communications.

A. Gaviria, "Beam P r o file M o n i t o r for a 150 KeV Linear Accelerator", Senior Thesis, D e p a r t m e n t of Physics, C o l o r a d o S c h o o l of Mines, G o l d e n , CO 80401 (1989).

J. E. G a l v i n and I. E. Brown, "Ion Beam P r o f i l e Monitor", Rev. Sci. I n s t r . , 55(11), (1984) 1866 - 1867.

"Air I n s u l a t e d A c c e l e r a t o r S y s t e m M o d e l 1545: T e c h n i c a l S p e c i f i c a t i o n s " , G e n e r a l I o n e x Corporation, 19 Graf Road, Newburyport, M A 01950

(1982) .

J. J. Livingood, "The Optics of Dipole Magnets", Acad. Press, N e w York (1969).

N. R. White, " C o m p u t e r s and T h e D e s i g n of Ion Beam Optical System", N u c l . Instr. and Meth., B21

(52)

S E L E C T E D BIBLI O G R A P H Y

[1] J. F. Ziegler and R. F. Level, eds., "Ion I m p l a n t a t i o n E q u i p m e n t and Techniques:, North H o l l a n d (1985).

[2] J. F. Ziegler, ed., "Ion I m p l a n t a t i o n : S c i e n c e and Technology", 2 e d . , Acad. Press (1988).

[3] J. Keller, "Beam O p tics D e sign for Ion I m p lantation", N u c l . Instr. and M e t h . , 189 (1981) 7-14.

[4] H. F. G l a v i s h , " M a g n e t O p t i c s for B e a m T r a n s p o r t " , Nucl. Instr. and Meth., 189 (1981) 43-53.

[5] A. Septier, e d . , "Focussing of C h a rged Part i c l e s V o l .1 and V o l . 2", Acad. Press, N e w Y o r k (1967).

[6] A. Septier, ed., " A p p l i e d C h a r g e d P a r t i c l e Optics: Part C", Acad. Press, New York (1983).

[7] H. W o l l n i k , " O p t i c s of C h a r g e d P a r t i c l e s " , A c a d . Press, New York (1987).

[8] A. J. Boerboom, " Ion O p t i c s of M u l t i p o l e s " , Nucl. Instr. and Meth., A258 (1987) 426-430.

[9] K. Oide, "A Final Focus S y stem for F l a t - B e a m Linear C o l l i d e r s " , N u c l . I n s t r . a n d M e t h . , A 2 7 6 (1989) 427-432.

[10] M. Baril and M. Noel, " M o d i f i c a t i o n of an A c h r o m a t i c M a s s S p e c t r o m e t e r to I n c l u d e T r a n s v e r s e F o c u s i n g " , Nucl. Instr. and Meth., A258 (1987) 318-322.

(53)

[11] N. R. W h i t e and K. H. Purser, "The D e s i g n of M a g n e t s w i t h N o n d i p o l e F i e l d C o m p o n e n t s " , Nucl. Instr. and Meth., A258 (1987) 437-442.

[12] H. Wollnik, J. Brezina and M. B e r z , " G i o s - B e a m Trace: A P r o g r a m P a c k a g e to D e t e r m i n e O p t i c s P r o p e r t i e s of I ntense Ion Beams", Nucl. Instr. and Meth., A258 (1987) 408-411.

[13] G. W. G r i m e a n d J. T a k a c s , "An I o n A c c e l e r a t o r F a c i l i t y for The P r e p a r a t i o n of N u c l e a r B o m b a r d m e n t Targets", Nucl. Instr. and Meth., 189 (1981) 199-203. [14] T. Wada, N. T a k a h a s h i and I. Yamamoto, " E l e c t r o n Beam

P r o f i l e M e a s u r e m e n t by U s i n g T L Sheets", Nucl. Instr. and Meth., A261 (1987) 368-372.

[15] R. R. Silbar, " B eam E l l i p s e M a t c h i n g : W a i s t - t o - W a i s t Transport", Nucl. Instr. and Meth., 87 (1970) 221-227. [16] K. S. Krane, " I n t r o d u c t o r y N u c l e a r Physics", Wiley, New

Y o r k (1987).

[17] J. D. Jackson, " C l a s s i c a l E l e c t r o d y n a m i c s " , 2nd e d ., Wiley, N e w York (1975).

[18] R. W a l p o l e and R. Myers, " P r o b a b i l i t y and S t a t i s t i c s for Engin e e r s and Scientists", 4th e d . , Macm. Pub. Co, N e w Y o r k (1989).

(54)

A p p e n d i x A N O R M A L D I S T R I B U T I O N

T he N o r m a l D i s t r i b u t i o n is t h e m o s t f r e q u e n t l y u s e d c o n t i n u o u s p r o b a b i l i t y d i s t r i b u t i o n in the e n t i r e field of statistics. Its g r a p h c a lled the normal curve, is the bell shaped curve of Figure A-l.

Figure A-l. Normal Curve

A c o n t i n u o u s r a n d o m v a r i a b l e X h a v i n g the b e l l - s h a p e d d i s t r i b u t i o n of F i g u r e A - l is c a l l e d a n o r m a l r a n d o m v a r i a b l e . T h e m a t h e m a t i c a l e q u a t i o n for t h e p r o b a b i l i t y d i s t r i b u t i o n of t h e n o r m a l v a r i a b l e d e p e n d s on the two p a r a m e t e r s ji and a, its m e a n and s tandard d e v i a t i o n

O nce fj, and a are specified, the normal c u r v e is c o m p l e t e l y

X

References

Related documents

Two states that have similar projected temperature changes might thereby differ in projected export change, if the different underlying baseline climate causes the shift in

This study examines the relationship between Israel and the United States, focusing on one of the two actors, the United States, by looking at The United States presidencies

Ja det blir ju dom fördelarna som vi pratade om att man får begrepp och man får en förförståelse kanske för andra ämnen man berör andra ämnen man man kanske inte går in så

Include all work with adults, 4-H Club members, and older youth Home production of family food supply (a).. Food preservation

‘John Kerry’s Opening Remarks at Session on Investing in Climate Solutions - United States Department of State John Kerry Virtual Leaders Summit on Climate Opening Remarks’.

The goal for the diploma work is to give overall proposals and a concrete plan proposal, based on scientific investigations and analysis of the Hengelo inner-city strengths and

Det beror enligt Swen- son inte på att amerikanska löner bestäms lokalt, svenska löner centralt, utan på skill- naden mellan segmentalism och solidarism. Swenson visar att

6 : Heat and contour plot of sammon map of the adult FDC design estimation method euclidean parameter and utility space with 1 breakpoint; including 20 001 randomly sampled points,