• No results found

Measurement of the ω → π+π−π0 Dalitz plot distribution: The WASA-at-COSY Collaboration

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the ω → π+π−π0 Dalitz plot distribution: The WASA-at-COSY Collaboration"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

ω

π

+

π

π

0

Dalitz

plot

distribution

The

WASA-at-COSY

Collaboration

P. Adlarson

a

,

1

,

W. Augustyniak

b

,

W. Bardan

c

,

M. Bashkanov

d

,

F.S. Bergmann

e

,

M. Berłowski

f

,

H. Bhatt

g

,

A. Bondar

h

,

i

,

M. Büscher

j

,

2

,

3

,

H. Calén

a

,

I. Ciepał

k

,

H. Clement

l

,

m

,

E. Czerwi ´nski

c

,

K. Demmich

e

,

R. Engels

j

,

A. Erven

n

,

W. Erven

n

,

W. Eyrich

o

,

P. Fedorets

j

,

p

,

K. Föhl

q

,

K. Fransson

a

,

F. Goldenbaum

j

,

A. Goswami

j

,

r

,

K. Grigoryev

j

,

s

,

4

,

C.-O. Gullström

a

,

L. Heijkenskjöld

a

,

,

V. Hejny

j

,

N. Hüsken

e

,

L. Jarczyk

c

,

T. Johansson

a

,

B. Kamys

c

,

G. Kemmerling

n

,

5

,

F.A. Khan

j

,

G. Khatri

c

,

6

,

A. Khoukaz

e

,

O. Khreptak

c

,

D.A. Kirillov

t

,

S. Kistryn

c

,

H. Kleines

n

,

5

,

B. Kłos

u

,

W. Krzemie ´n

f

,

P. Kulessa

k

,

A. Kup´s ´c

a

,

f

,

A. Kuzmin

h

,

i

,

K. Lalwani

v

,

D. Lersch

j

,

B. Lorentz

j

,

A. Magiera

c

,

R. Maier

j

,

w

,

P. Marciniewski

a

,

B. Maria ´nski

b

,

H.-P. Morsch

b

,

P. Moskal

c

,

H. Ohm

j

,

E. Perez del Rio

l

,

m

,

7

,

N.M. Piskunov

t

,

D. Prasuhn

j

,

D. Pszczel

a

,

f

,

K. Pysz

k

,

A. Pyszniak

a

,

c

,

J. Ritman

j

,

w

,

x

,

A. Roy

r

,

Z. Rudy

c

,

O. Rundel

c

,

S. Sawant

g

,

j

,

∗∗

,

S. Schadmand

j

,

I. Schätti-Ozerianska

c

,

T. Sefzick

j

,

V. Serdyuk

j

,

B. Shwartz

h

,

i

,

K. Sitterberg

e

,

T. Skorodko

l

,

m

,

y

,

M. Skurzok

c

,

J. Smyrski

c

,

V. Sopov

p

,

R. Stassen

j

,

J. Stepaniak

f

,

E. Stephan

u

,

G. Sterzenbach

j

,

H. Stockhorst

j

,

H. Ströher

j

,

w

,

A. Szczurek

k

,

A. Trzci ´nski

b

,

R. Varma

g

,

M. Wolke

a

,

A. Wro ´nska

c

,

P. Wüstner

n

,

A. Yamamoto

z

,

J. Zabierowski

aa

,

M.J. Zieli ´nski

c

,

J. Złoma ´nczuk

a

,

P. ˙Zupra ´nski

b

,

M. ˙Zurek

j

aDivisionofNuclearPhysics,DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box516,75120Uppsala,Sweden bDepartmentofNuclearPhysics,NationalCentreforNuclearResearch,ul.Hoza69,00-681,Warsaw,Poland

cInstituteofPhysics,JagiellonianUniversity,prof.StanisławaŁojasiewicza11,30-348Kraków,Poland

dSchoolofPhysicsandAstronomy,UniversityofEdinburgh,JamesClerkMaxwellBuilding,PeterGuthrieTaitRoad,EdinburghEH93FD,UnitedKingdom eInstitutfürKernphysik,WestfälischeWilhelms-UniversitätMünster,Wilhelm-Klemm-Str.9,48149Münster,Germany

fHighEnergyPhysicsDepartment,NationalCentreforNuclearResearch,ul.Hoza69,00-681,Warsaw,Poland gDepartmentofPhysics,IndianInstituteofTechnologyBombay,Powai,Mumbai400076,Maharashtra,India hBudkerInstituteofNuclearPhysicsofSBRAS,11akademikaLavrentievaprospect,Novosibirsk,630090,Russia iNovosibirskStateUniversity,2PirogovaStr.,Novosibirsk,630090,Russia

jInstitutfürKernphysik,ForschungszentrumJülich,52425Jülich,Germany

kTheHenrykNiewodnicza´nskiInstituteofNuclearPhysics,PolishAcademyofSciences,152RadzikowskiegoSt,31-342Kraków,Poland lPhysikalischesInstitut,Eberhard-Karls-UniversitätTübingen,AufderMorgenstelle14,72076Tübingen,Germany

mKeplerCenterforAstroandParticlePhysics,EberhardKarlsUniversityTübingen,AufderMorgenstelle14,72076Tübingen,Germany nZentralinstitutfürEngineering,ElektronikundAnalytik,ForschungszentrumJülich,52425Jülich,Germany

oPhysikalischesInstitut,Friedrich-Alexander-UniversitätErlangen–Nürnberg,Erwin-Rommel-Str. 1,91058Erlangen,Germany

pInstituteforTheoreticalandExperimentalPhysics,StateScientificCenteroftheRussianFederation,BolshayaCheremushkinskaya 25,117218Moscow,Russia qII.PhysikalischesInstitut,Justus-Liebig-UniversitätGießen,Heinrich-Buff-Ring16,35392Giessen,Germany

rDepartmentofPhysics,IndianInstituteofTechnologyIndore,KhandwaRoad,Indore452017,MadhyaPradesh,India

*

Correspondingauthor.

**

Correspondingauthorat:DepartmentofPhysics,IndianInstituteofTechnologyBombay,Powai,Mumbai400076,Maharashtra,India. E-mailaddresses:lena.heijkenskjold@physics.uu.se(L. Heijkenskjöld),siddhesh.sawant@iitb.ac.in(S. Sawant).

1 Presentaddress:InstitutfürKernphysik,Johannes-Gutenberg-UniversitätMainz,Johann-Joachim-BecherWeg45,55128Mainz,Germany. 2 Presentaddress:PeterGrünbergInstitut,PGI-6ElektronischeEigenschaften,ForschungszentrumJülich,52425Jülich,Germany.

3 Presentaddress:InstitutfürLaser- undPlasmaphysik,Heinrich-HeineUniversitätDüsseldorf,Universitätsstr.1,40225Düsseldorf,Germany. 4 Presentaddress:III.PhysikalischesInstitutB,Physikzentrum,RWTHAachen,52056Aachen,Germany.

5 Presentaddress:JülichCentreforNeutronScienceJCNS,ForschungszentrumJülich,52425Jülich,Germany. 6 Presentaddress:DepartmentofPhysics,HarvardUniversity,17OxfordSt.,Cambridge,MA02138,USA. 7 Presentaddress:INFN,LaboratoriNazionalidiFrascati,ViaE.Fermi,40,00044Frascati(Roma),Italy.

http://dx.doi.org/10.1016/j.physletb.2017.03.050

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

sHighEnergyPhysicsDivision,PetersburgNuclearPhysicsInstitute,OrlovaRosha 2,Gatchina,Leningraddistrict188300,Russia

tVekslerandBaldinLaboratoryofHighEnergiyPhysics,JointInstituteforNuclearPhysics,Joliot-Curie 6,141980Dubna,Moscowregion,Russia uAugustChełkowskiInstituteofPhysics,UniversityofSilesia,Uniwersytecka4,40-007,Katowice,Poland

vDepartmentofPhysics,MalaviyaNationalInstituteofTechnologyJaipur,302017,Rajasthan,India

wJARA-FAME,JülichAachenResearchAlliance,ForschungszentrumJülich,52425Jülich,andRWTHAachen,52056Aachen,Germany xInstitutfürExperimentalphysik I,Ruhr-UniversitätBochum,Universitätsstr.150,44780Bochum,Germany

yDepartmentofPhysics,TomskStateUniversity,36LeninaAvenue,Tomsk,634050,Russia zHighEnergyAcceleratorResearchOrganisationKEK,Tsukuba,Ibaraki305-0801,Japan aaDepartmentofAstrophysics,NationalCentreforNuclearResearch,Box447,90-950Łód´z,Poland

B. Kubis

ab

,

S. Leupold

ac

abHelmholtz-InstitutfürStrahlen- undKernphysik,RheinischeFriedrich-Wilhelms-UniversitätBonn,Nußallee14–16,53115Bonn,Germany acDivisionofNuclearPhysics,DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box516,75120Uppsala,Sweden

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received10October2016

Receivedinrevisedform29January2017 Accepted8March2017

Availableonline25April2017 Editor:V.Metag

Keywords:

Decaysofothermesons Meson–mesoninteractions Lightmesons

Using theproduction reactions pd3He

ω

and pppp

ω

,the Dalitzplotdistributionfor the

ω

π

+

π

π

0 decay is studied with the WASA detector at COSY, based on a combined data sample of

(4.408±0.042)×104events.TheDalitzplotdensityisparametrisedbyaproductoftheP -wavephase

spaceandapolynomialexpansioninthenormalisedpolarDalitzplotvariables Z and φ.Forthefirst time,adeviationfrompureP -wavephasespaceisobservedwithasignificanceof4.1

σ

.Thedeviation isparametrisedbyalinearterm1+2

α

Z ,with

α

determinedtobe+0.147±0.036,consistentwiththe expectationsof

ρ

-meson-typefinal-stateinteractionsoftheP -wavepionpairs.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thepresentworkandforeseeablefollow-upsarebasedontwo motivations:1.Tocheckandimproveonourunderstandingofthe importance of hadronic final-state interactions for the structure anddecaysofhadrons. 2.ToimprovetheStandardModel predic-tionforthegyromagneticratioofthemuon[1].Thepresentwork accomplishesthe first taskconcerning the Dalitz decay ofthe

ω

mesoninto three pions; italso constitutesa significant step for-ward towards providing improved hadronic input for the second task.In thefollowingweshall discussthe twotasksinmore de-tail.

The

ω

-mesonresonance was discovered in1961 [2]. Its main decay branch is

ω

π

+

π

π

0, with a branching ratio of BR

=

(

89

.

2

±

0

.

7

)

%. By now it is well established that the

ω

meson hasspin-parity JP

=

1− [3]. As a consequence,the combination ofBose,isospin,andparitysymmetryofthestronginteraction de-mandsthat for the decay

ω

π

+

π

π

0 every pionpair isin a state of odd relative orbital angular momentum. Given the lim-itedphase spaceofthedecayone cansafelyassume the P -wave

to be the dominant partial wave.8 If a pion pairis in a P -wave

state,then the third pionwill be in P -wave state relativeto the pair.This “ P -wave phase space”distribution has beenconfirmed experimentally. Historically the P -wave dominance of the decay hasactually beenusedtopindownthequantumnumbersofthe

ω

meson[5–8].

Ifthepions,once produced inthedecay, didnot interact fur-ther,then solelythe P -wavephase spacewouldshapethe Dalitz plotofthedecay

ω

π

+

π

π

0.However,apionpairina P -wave showsavery strongfinal-state interaction.The two-pion P -wave

phase shift is dominated by the

ρ

meson, and is now known

very accurately [9–11]; thisis essential in particular for theoret-ical studies of these decays using dispersion theory, which use

8 GenuineF -wavecorrectionshavebeenmodelledtheoretically,andfoundtobe tiny[4].

the phase shifts as input directly [4,12]. In the similar decay

φ

π

+

π

π

0 onecanseethe

ρ

mesonasaresonanceinthe cor-respondingDalitzplot[13,14].Inthedecay

ω

π

+

π

π

0thereis notenoughenergyforapionpairtoreachthe

ρ

resonancemass; yetalreadyfortheavailableinvariantmassesthetwo-pionP -wave

phaseshiftissignificantly differentfromzero.Infact,every theo-reticalapproachthatdealswiththedecay

ω

π

+

π

π

0 includes this non-trivial phase shift and/or the

ρ

meson in one way or theother;see,e.g.,Refs.[15–19,4,20,12]andreferencestherein.In practicethisleadstoanincreaseofpopulationtowardsthe bound-ariesoftheDalitzplot,superimposedwiththepure P -wavephase space, whichdropstowards theboundaries.Thisincrease of pop-ulationisonthelevelofabout20%[19,4],andoughttobetested experimentally.

Interestingly this has not been achieved so far. The highest statistics of a dedicated

ω

π

+

π

π

0 Dalitz plotmeasurement from 1966had 4208

±

75 signal events [21].Due to the limited statistics,fitswithapure P -wavephasespacecouldnotbe distin-guishedfromadistortionbythefinal-stateinteractions,i.e. by in-termediate

ρπ

states.Surprisinglytherewerenofurtherdedicated Dalitzplotstudiesofthe

ω

π

+

π

π

0decay.Inthepresentwork wewillrevealthattheuniversalfinal-stateinteractionsofthepion pairsareindeedpresentinthe

ω

Dalitzdecay.Intheanalysis pre-sentedherewehaveproducedanacceptance-correctedDalitzplot and extracted experimental values for parameters describing the density distribution.This constitutes the firsttask spelled out in thebeginningofthisintroduction.

Thesecond motivationforaprecisemeasurement ofthe

ω

π

+

π

π

0 Dalitz plot consists in improving hadronic input for the theoretical assessment of the hadronic light-by-light scatter-ingcontributiontotheanomalousmagneticmomentofthemuon. Thelargestindividualcontributionisgivenbythelightesthadronic intermediate state,the so-called

π

0 poleterm, whosestrength is determinedbythecorrespondingsinglyanddoublyvirtual transi-tionformfactors.Oneofthefewpossibilitiestogainexperimental access to the doubly virtual

π

0 transitionform factor with high precision consistsinstudyingvector mesonconversion decays,in

(3)

particular

ω

π

0



+



—whichis intimatelylinked, through dis-persion relations, to the

ω

π

+

π

π

0 decay amplitude [22,23,

12]. However, these theoretical descriptions of the

ω

transition form factor (see also Ref. [24]) fail to describe the very precise data on

ω

π

0

μ

+

μ

takenby the NA60 collaboration [25,26],

which may violate very fundamental theoretical bounds [27,28]. Inall thesestudies, the

ω

π

+

π

π

0 decayamplitude is a po-tential looseend, asit is so far only theoretically modelled, not experimentallytested.Incombinationwiththepreciselymeasured

φ

π

+

π

π

0Dalitz plotinformation,itcouldbe usedtofurther constraintheamplitude analysisofe+e

π

+

π

π

0,andhence the

π

0transitionformfactorinawiderrange[29].

Recently, an easy-to-use polynomial parametrisation of the

ω

π

+

π

π

0 Dalitz plotdistributionhasbeensuggested[4],as ageneralisationofthecommonlyusedoneforthedecay

η

3

π

0 (whichhasa similarcrossingsymmetry). Inthepresentworkwe utilise the same parametrisation andcompare to recent theoret-ical approaches [4,20,12] that have provided predictions for the correspondingDalitzplotparameters.

One wayto describe athree-particle Dalitz decaydistribution istouseinvariantmassesofparticlepairs[3].Thiswouldbe par-ticularlyusefulforreadingoffresonancemassesifthedecaywas mediatedbyoneorseveralresonances.However, thereareno in-termediateresonancesinthekinematicallyaccessibleenergyrange of the decay

ω

π

+

π

π

0 that would be compatible withthe symmetriesofthestrong interaction.Forourcaseofinterest,we first split offthe P -wave phase space(see, e.g., Refs. [19,4]) and parametrisetherestbyapolynomialdistributionfollowing[4]. De-notingthe polarisationvector of the

ω

mesonby

(

,

λ

ω

)

and

themomentaof theoutgoingpionsby P+, P, and P0, westart withthemostgeneral matrixelement compatiblewiththe sym-metries,

M

=

i

ε

μναβ

μP+νPαPβ0

F

.

(1)

The dynamics of the final-state interactions is encoded in the scalarfunction

F

[19,4].Aftersummationoverthehelicity

λ

ω of

the

ω

mesononeobtainsaDalitzplotdistributionproportionalto



λω

|M|

2

P

|F|

2 (2)

withthepure P -wavephase-spacedistribution

P

=

m2+m2m20

+

2

(

P+P

)(

PP0

)(

P0P+

)

m2+

(

PP0

)

2

m2

(

P+P0

)

2

m20

(

P+P

)

2

.

(3) Notethat forthe

P

termwe canaccount for“kinematic”isospin violations due to the difference between the masses of the un-chargedandcharged pions,m0 andm±, respectively.For the re-maining distribution

F

, whichcovers thedynamics of the final-stateinteraction,weignoreisospinbreakingeffects.

The quantity

F

and therefore also

|

F|

2 wouldbe a constant iftherewerenofinal-stateinteractionsbetweentheproduced pi-ons.Inreality

|

F|

2 isnotaconstant,butrelativelyflat.Insteadof parameterising

|

F|

2 by invariant massesof pion pairs we follow Ref.[4]andutilisenormalisedvariables X andY ,whichhavetheir originatthecentreoftheDalitzplot.Theyaredefinedby

X

=

3 T+

T

,

Y

=

3T0

1

,

(4) with

=

T+

+

T

+

T0

.

(5)

Here Ti arethekinetic energies ofthepionsin the

ω

restframe (centre-of-massframeofthethree-pionsystem).Finallyone intro-ducespolarcoordinatesby

Table 1

TheDalitzplotparametersfromfitstothetheoreticalpredictionsofRefs.[4,20,12], whereatmosttwoparameterswereusedinthefit.

α×103 β×103 Uppsala[20] 202 – Bonn[4] 84. . .102 – JPAC[12] 94 – Uppsala 190 54 Bonn 74. . .90 24. . .30 JPAC 84 28 X

=

Z cos

φ,

Y

=

Z sin

φ .

(6)

Theexpansionfor

|

F|

2,validintheisospinlimit,reads

|F

|

2

(

Z

, φ)

=

N

·

G

(

Z

, φ) ,

(7) where

N

isanormalisationconstantand

G

containstheexpansion in Z and

φ

[4]:

G

(

Z

, φ)

=

1

+

2

α

Z

+

2

β

Z3/2sin 3

φ

+

2

γ

Z2

+

O



Z5/2



.

(8)

The Dalitz plotdistribution can thenbe fitted usingthisformula toextractthe“Dalitzplotparameters”

α

,

β

,

γ

,. . . .Thefitresults to thetheory predictionsofRefs. [4,20,12],ifEq.(8)istruncated atorderZ (oneparameterfit)oratorder Z3/2(twoparameterfit), are shownin Table 1. The reproduction of the theoretical Dalitz plot distributions is improved significantly in all cases when in-cludingtheterm

∝ β

.

It is worth to point out thequalitative similarities and differ-ences of the theoretical approaches that provide predictions for the Dalitz plot parameters. All three approachesagree on a pos-itive andsizable valuefor

α

.Thisreflectsthe factthat thepion–

pion P -wave phase shift is dominated by the appearance of the

ρ

-mesonresonance;anexperimentalresultpointingtoanegative value of

α

wouldbe spectacularinthesense thatit wouldbeat oddswiththeuniversalityofthefinal-stateinteractions.

Refs. [4,12] are based on dispersion theory: both employ the pion–pion P -wave scattering phase shift as input and describe rescatteringofallthreefinal-statepionsconsistentlytoallorders. Thedispersiveformalismcan bechosenwithonlyonesingle free parameter(a“subtractionconstant”),basedonreasonable assump-tions onthehigh-energy behaviouroftheamplitude;this param-etercanbetakentobetheoverallnormalisationandfixed exper-imentally from the

ω

π

+

π

π

0 partial width. The energy de-pendence ofthedecayamplitude isthenfullypredictedfromthe pion–pionphaseshiftalone.TheDalitzplotparameterscitedfrom Ref. [12]in

Table 1

areobtainedfromsucha scenario.InRef. [4], varioussourcesofuncertaintyrelatedtothepion–pioninteraction havebeenconsidered,leadingtoanestimateofthetheoretical er-rorinthepredictionoftheDalitzplotparameters.Furthermore,an analysisof datafortheanalogous

φ

π

+

π

π

0 Dalitz plot[13] demonstratedthataonce-subtracteddispersiverepresentation de-scribes suchvery-high-accuracydatawell, butnot perfectly, lead-ing to theneed tointroduce asecond subtraction [4].With such a second free parameter also used in the

ω

π

+

π

π

0 decay amplitude, theenergydependenceinprinciplecannot beentirely predicted anymore. However, estimating the size ofsuch a sec-ond constantfromthe

φ

π

+

π

π

0 data analysis,it was found that the uncertainty range for the theoretical prediction of the Dalitzplotparametersisonlymoderatelyincreased[4].Theranges quotedin

Table 1

reflectthisfull,combineduncertaintyestimate.

Ref. [20] is based on an effective Lagrangian for the lightest pseudoscalarandvectormesons.Thestrengthoftheinitial

ω

-

ρ

-

π

interaction is fitted to the decay width of

ω

π

+

π

π

0 and cross-checkedwiththe decaywidthof

ω

π

0

γ

.The Lagrangian

(4)

provides the kernel fora Bethe–Salpeter equation that generates thetwo-pionrescattering.Incontrasttothedispersiveapproaches, crossed-channel rescattering of the three-pion system is not in-cluded.

Whileall theoryapproachesagreeon thesignof

α

,the value predictedby the Lagrangian approach[20] isvery different from the valuesobtained by dispersion theory [4,12]. The same holds trueforthe

β

parameter: thelarger valuesfromRef. [20] reflect a rather strong energy dependence of the matrix element. The same qualitative difference can be observed for the electromag-netictransitionformfactorof

ω

π

0



+



[24,23]:alsoherethe Lagrangianapproachprovidesamuchstrongerenergydependence. Atechnicalreasonforthismightbe foundinthefactthat essen-tiallyfield strengths instead ofvector potentialsare used forthe constructionofinteraction termsin theLagrangian approach[19, 24,20]. If the results of this low-energy Lagrangian were boldly extrapolatedto highenergies—beyond its limit of applicability—, thenonewouldfindthat thereactionamplitudeswouldnot con-verge. In contrast, modest high-energy constraints are automati-cally encodedinthe dispersiveapproaches. Apparentlythis leads to smaller energy variations of the reaction amplitudes even in thelow-energyregimethatisofrelevanceforthe

ω

decays.—At presentitisnotpossibletoobtainaserioustheoreticaluncertainty estimate forthe Lagrangian approach [20]. Additional interaction termshavebeen neglected therein,whichwere considered to be small,butitisnotclearyethowsmalltheyare.

2. Theexperiment

The experimental data was collected using the WASA setup, where the

ω

was produced in the pd

3He

ω

reaction and in the pp

pp

ω

reaction.The WASAdetector[30,31]isan internal target experimentat theCooler Synchrotron (COSY) storagering, ForschungszentrumJülich,Germany. TheCOSYprotonbeam inter-actswith an internal target consisting of smallpellets of frozen hydrogenordeuterium(diameter

35μm).

The WASAdetector consists of a Central Detector (CD)and a ForwardDetector(FD),coveringscatteringanglesof20◦–169◦ and 3◦–18◦, respectively. The CD is used to measure decay products ofthemesons. Acylindricalstraw chamber (MDC)is placed ina magneticfieldof1 T,providedbyasuperconductingsolenoid.The electromagnetic calorimeter (SEC) consists of 1012 CsI(Na) crys-tals whichare read out by photomultipliers. A plastic scintillator barrel(PSB)isplacedbetweentheMDCandtheSEC,allowing par-ticleidentification andaccurate timing for chargedparticles. The FDconsistsofthirteenlayersofplasticscintillatorsforenergyand time determination anda straw tube trackerproviding a precise trackdirection.

When the

ω

mesons were produced using the pd

3He

ω

reaction, two different proton kinetic energies were used: TA

=

1

.

450GeV and TB

=

1

.

500GeV.The cross section ofthe reaction is84(10) nbatthelower energy[32]andwas studiedpreviously bytheCELSIUS/WASAcollaboration.Triggersselecteventswithat leastone trackin theFDwith ahigh energydepositin thethin plasticscintillator layers.Thisconditionallows foran efficient se-lectionof 3He ions and provides an unbiased data sample of

ω

meson decays.The proton beam energy was chosen so that the

3He produced in the pd

3He

ω

reaction stops in the second thick scintillator layer of the FD. The correlation plot



E

− 

E

from a thin layer and the first thick layer of the FD is shown in Fig. 1 (top). The band corresponding to the 3He ion is well separated from the bands for other particles and allows a clear identificationof3He.The3He fromthereactionofinteresthas ki-neticenergies up to 700 MeV andscatteringangles rangingfrom 0◦ to10◦.

Fig. 1. ParticleidentificationintheForwardDetectorisperformedusingthe corre-lationofenergydepositsintheplasticdetectorlayers.(top)For3Heidentification: thecorrelationbetweentheenergydepositsinathin(0.5 cm)layerandthefirst subsequentthicklayer(11 cm).Onlytheregionselectedintheanalysisisshownin thefigure,withthebandfrom3Heparticlesclearlyvisibleinsideit.(bottom)For protonidentification:thecorrelationbetweentheenergydepositinthefirstthick layerandthesummedenergydepositsinallthicklayers(11or15 cm).The correla-tionbandcorrespondingtoenergydepositsmadebyprotonsissurroundedbythe blackline.Alsovisibleisalower,near-horizontal,bandwhichispopulatedbyfast protonspunchingthroughthefirstthicklayer,depositingenergyof20 MeV,and un-dergoingnuclearinteractioninoneofthesubsequentthicklayers,theredepositing anindefiniteamountofenergy.

The pp

pp

ω

experimentwas performedat TC

=

2

.

063 GeV beamkineticenergy,corresponding to60 MeV centre-of-mass ex-cessenergy andcross section 5.7 μb[33]. In the pp collision ex-periment, the selected events were required, at trigger level, to containatleasttwo tracksreaching thesecond thicklayer ofthe plasticscintillatorsintheFD, atleasttwohitsinthe PSB,andat leastoneclusterintheSEC.Intheofflineanalysis, pairsoftracks correspondingtothe



E

− 

E protonbands,shownin

Fig. 1

(bot-tom),indifferentthicklayersoftheFDareselectedasprotonpair candidates.

Fortheparticlesmeasured intheCD,acommonanalysis pro-cedure is usedfor all threedata sets.Events are selected ifthey contain atleast onepairofopposite charge particletracksin the MDC with scattering angles greater than 30◦ and at least two neutralclusterswithenergydepositabove20 MeVintheSEC. Rel-ative time between the tracks is checked to minimise pile ups. The charged particle tracks are assigned the charged pion mass. Combinations of the all the measured charged and neutral par-ticle tracksin the selected eventsare testedusing a constrained kinematicfitassumingtheconservationofenergyandmomentum

(5)

Fig. 2. Missing mass distributions after the full analysis procedure as well as the result of the fit Eq.(9). (a): TA=1.450 GeV. (b): TB=1.500 GeV. (c): TC=2.063 GeV.

with the pd

3He

π

+

π

γ γ

or pp

pp

π

+

π

γ γ

hypothesis, respectively. The combinations with p-values less than 0.05 are rejected. Forthe casewhen morethan one trackcombinationin aneventfulfilsthiscriteria,thecombinationgivinglarger p-value

isselected.Finally,furtherbackgroundsuppressionisachievedby

applying a kinematic fit with the contending hypothesis pd

3He

π

+

π

orpp

pp

π

+

π

,respectively.Iftheresultingp-value

islargerthanforthefirstfit,theeventisrejected.

Themissingmassdistributions,MM

(

3He

)

andMM

(

pp

)

,forthe threedatasetsareshownin

Fig. 2

.Themissingmasses,calculated from the variables corrected by the kinematic fit,are equivalent to the invariant mass of the

π

+

π

γ γ

system. The observed

ω

peakpositionisshiftedfromthenominalvalue ofthe

ω

massby

+

0.7 MeVforMM

(

3He

)

inthetwo pd datasets andby

+

1.1 MeV for MM

(

pp

)

. The observed shifts correspond to deviations from thenominalbeamenergyby0.55 MeVand0.75 MeV,respectively, whichiswell withintheuncertaintyofthe absoluteenergyscale ofCOSY.Toreproducetheexperimental

ω

peakposition,the miss-ing mass distributions fromsimulated data were shifted accord-ingly.Toalsoreachagreementbetweenexperimentandsimulation forthewidthofthe

ω

peak,theresolutionfromsimulated detec-torresponseswereadjusted.

Both thebackgroundshape andthe

ω

peak contentare fitted simultaneouslyto theexperimental distributionusing the follow-ingfitfunction: H

(

μ

)

=

NSHω

(

μ

)

+



a0

+

a1

μ

+

a2

μ

2

+

a3

μ

3



×

H3π

(

μ

),

(9)

where

μ

=

MM

(

3He

)

or MM

(

pp

)

.

(

μ

)

and H3π

(

μ

)

represent

reconstructed distributions of simulated signal and background andcorrespondtoeventsthathavepassedthroughthesame anal-ysisstepsastheexperimentaldata.

(

μ

)

isnormalisedsuchthat thefitgivesdirectlythenumberofsignalevents,NS,andthe re-latederror.The other parameters fittedarea0,a1,a2,anda3 (in caseof pd data a3 is set to 0). The rangein

μ

used forthe fit is

[

0

.

640

,

0

.

832

]

GeV

/

c2 forset A,

[

0

.

640

,

0

.

856

]

GeV

/

c2 forset B, and

[

0

.

608

,

0

.

824

]

GeV

/

c2 forset C.Thelimitsoftheserangesare shownbythedashedlinesin

Fig. 2

,wheretheresultofthesefits tothefulldatasamplesaregiven.Theresultingnumberofevents is:14600(200)forset A,13500(200)forset B,and16000(300)for set C.

3. Dalitzplot

TheDalitzplotdensityisrepresentedusingatwo-dimensional histogramin the Z and

φ

variables, defined in Eq.(6). The size oftheselectedbinsisdeterminedby theexperimentalresolution

of Z and

φ

and the statistics of the collected data sample. The

numberofeventsineachbinshouldbesufficientfordetermining

Fig. 3. TheArabicnumeralsshowthebinnumberstobeusedwhenpresentingthe resultingDalitzplots.Thecolourplotshowsthekinematicallyallowedregionofthe

ωπ+ππ0reactionwithωnominalmassaswellasthedensitydistribution from P -wavedynamics.TheRomannumeralsdisplaythesectorsusedin consis-tencychecks.

thesignalyieldandtocarryouta

χ

2 fitoftheDalitzplotdensity parametrisation. The

φ

variablerange

[−

π

, π

]

isdivided intosix binstopreservethethreefoldisospinsymmetryandtobesensitive toapossiblesin 3

φ

dependence.The Z variablerange

[

0

,

1

]

isalso divided intosix bins.Onlythe 21bins fullycontainedinside the kinematic limitsof the decayare used. Fig. 3introduces the bin numberingusedforthepresentationoftheresults.

A smallshiftoftheDalitz plotalong the Y axisisdueto the massdifferencebetweentheneutralandchargedpions.Itismost visible in Fig. 3 when comparing the regions at

φ

=

π

/

2 to the onesat

φ

= −

π

/

6 and

2

π

/

3.Thepictureshowsalsoseven sec-torsI–VIIthatareusedtotesttheconsistencyofthefitresults.

ForeachDalitz plotbin,theexperimentalmissingmass distri-bution isconstructedandthenumberofentriesinthe

ω

peakis extractedby fittinga simulated

ω

π

+

π

π

0 signal alongwith backgroundcontributionsusingEq.(9).

Since the P -wavedistribution reproduces thegeneral features ofthe

ω

π

+

π

π

0 Dalitzplotverywell andthedeviationsare expected to be small, the efficiency correction is obtained using signal simulationwiththe P -wave. Theefficiency, i,isextracted usingtheratio i

=

Ni

/

NiG.NGi isthenumberofeventswith gen-eratedkinematicvariablescorrespondingtobini intheDalitzplot.

Ni is the content of the bin i when the reconstructed values of the kinematic variables are used for events passing all analysis steps. Theextractedefficiencies forthe threedatasetsareshown in Fig. 4.Forthe pd data setsthe overallefficiencyis11%, while

for pp it is 20 times lower.This low efficiency for the pp data

(6)

Fig. 4. TheresultingefficienciesforeachDalitzplotbinforthethreedatasets.The relationbetweenthebinnumbersusedhereandthebinsofthetwo-dimensional DalitzplotisshowninFig. 3.Thesolidlinecorrespondstoset A,thedashedline toset B,andthedottedlineistheacceptanceforthepp dataset C,whichis mul-tipliedbyafactorof10.

thetwo fastprotontracksdepositonly afractionof their kinetic energyinthe detector,leading toa lowerprecision ofthekinetic energydeterminationandan asymmetricresolutionfunction.The eventsfrom the tails will likely be rejected by the kinematic fit procedure.Ontheother handforthe pd

3He

ω

reaction,there isonlyonedoublycharged3He stoppinginthedetector.Another causeforthelowefficiencyisthelargercentre-of-massvelocityin

the pp reaction,which decreases the average emission anglefor

decayparticles,inparticularforthechargedpions.Thepionswill bemoreoftenemitted atangles below30◦ andwillthereforebe rejectedintheanalysisprocedure.

TheDalitzplotparameters(

α

,

β

,

. . .

)andnormalisationfactors forthethreedatasets(

N

A,

N

B,

N

C)aredeterminedby minimis-ingthefollowing

χ

2

=

χ

2

A

+

χ

B2

+

χ

C2function,where

χ

2A

=



i



˜

Ni A

N

A

·

Hi

(

α

, β, . . .)

˜

σ

i A



2

.

(10)

˜

Ni and

σ

˜

iaretheefficiencycorrectedexperimentalDalitzplotbin contentanderror,respectively. Hiisgivenbyanintegral overbin

i: Hi

(

α

,

β,

. . .)

=

i

P(

Z

,

φ)G(

Z

,

φ)

d Zd

φ

.

P(

Z

,

φ)

is the P -wave phase space term given by Eq. (3), calculated using the nomi-nalmassofthe

ω

mesonof782.65 MeV,and

G(

Z

,

φ)

isgivenby Eq.(8).

Theparametrisation procedure ofthe Dalitz plot istested us-ing106signaleventssimulatedwithP -wavephasespaceonly(i.e.

G =

1) andwithout detector smearing.The extracted parameters arefoundto beconsistentwithzeroandthereforetheprocedure doesnotintroduceanybiasatthepresentstatisticalaccuracy.

The three independent data sets and the Dalitz plot symme-triesallowfordetailedchecks oftheexperimental efficiency and thebackgroundsubtractionproceduresincethebackground distri-butionsandefficienciesaredifferentinthecorrespondingbins.

The method of background subtraction for the missing mass

μ

distributions istested by preparingsimulated distributions af-terfull detector reconstruction, consistingof a sumof

π

+

π

π

0 productionbackgroundeventsandthe

ω

signal generatedusinga

P -wavephasespacedistribution.Thebackgroundisobtainedfrom the



a0

+

a1

μ

+

a2

μ

2

+

a3

μ

3



×

H3π

(

μ

)

distributionswithai de-termined from the fits using Eq. (9) and by setting the average signal-to-background ratio to be the same asin the experimen-taldata.Thegenerated

μ

distributionswiththenumberofevents similarasintheexperimentarethensubjectedtothesame back-groundsubtractionastheexperimental data.Thecombinedfitof

Fig. 5. TheexperimentalDalitzplotdistributionafterapplyinganefficiency correc-tion.Therelationbetweenthebinnumbersusedhereandthebinsofthe two-dimensionalDalitzplotisshowninFig. 3.Circlescorrespondtoset A,squaresto set B,andtrianglestoset C.Thesolidredlineisthestandardfitresult(withα

parameter),andthedashedlineisP -waveonly.

Table 2

Dalitzplotbincontentforthethreedatasets.Therelativenormalisationbetween thesetsisbasedonthenormalisationfactors(NA,NB,NC)obtainedfrom

individ-ualfitsoftheαparametertothethreedatasets.Theoverallnormalisationfactor isarbitrary.

bin# set A set B set C

1 5.51(34) 6.09(33) 6.76(45) 2 6.71(35) 6.58(34) 5.63(38) 3 5.86(35) 5.30(36) 6.23(42) 4 6.07(37) 6.68(38) 6.29(43) 5 5.31(36) 5.17(35) 5.59(39) 6 6.48(36) 5.73(34) 5.41(41) 7 4.24(29) 4.55(29) 3.91(35) 8 4.63(30) 4.41(29) 4.83(31) 9 4.47(31) 4.03(32) 4.54(33) 10 4.23(33) 4.64(36) 4.59(38) 11 4.03(33) 4.72(34) 4.25(36) 12 4.96(32) 4.85(31) 5.19(42) 13 2.25(23) 2.09(22) 2.22(28) 14 3.36(25) 3.36(25) 3.51(28) 15 2.53(24) 2.90(27) 2.55(24) 16 3.66(30) 3.90(34) 2.93(32) 17 2.52(28) 2.86(30) 2.93(37) 18 3.98(28) 3.66(28) 3.55(38) 19 2.14(21) 2.38(21) 2.60(21) 20 2.26(26) 1.89(27) 2.19(32) 21 2.63(24) 2.33(23) 2.27(32)

theDalitz plotparametrisationtothesamplesA andB withonly the

α

parameter gives

α

= (

10

±

35

)

·

10−3 and

χ

2

=

36

/

39.For set C

α

= (

25

±

59

)

·

10−3 and

χ

2

=

24

/

19. Therefore the back-groundsubtractionproceduredoesnotintroduceanyexperimental bias.

Onecan alsostudythebias andaccuracyoftheefficiency de-terminationbyconsidering X - orY -dependentcorrectionsforthe efficiency:

i

i

· (

1

+ ξ

AX

)

or

i

i

· (

1

+ ζ

AY

)

,where

ξ

A,...,

ζ

A,...aresingle parametersforeachdataset.Fitstoseparate data sets show that all

ζ

coefficientsare consistent withzeroand do not change the value of the

χ

2. On the other hand,

ξ

B and

ξ

C werefoundtosignificantlydeviatefromzero,althoughwith oppo-sitesigns.Applyingthesetwocorrectionstotheefficiencybeforea fitoftheDalitzplotparametrisationyieldsasignificantlyreduced

χ

2value.However,thedeterminedvaluesoftheDalitzparameters arenotaffected,e.g.

α

= (

147

±

35

)

·

10−3and

α

= (

147

±

36

)

·

10−3 without and with correction, respectively. This comes from the fact that the fitted parametrisationis preserving isospin symme-try. In conclusion, we apply the X -dependentcorrections to the efficiencycorrectionsofdatasets BandC,asitensuresthe antic-ipatedchargesymmetryoftheDalitzplotandleadstoadecrease

(7)

Table 3

TheresultingDalitzplotparametersafteraindividualfitstothethreedatasets, whereatmosttwoparameterswereusedinthefit.

Data set α×103 β×103 χ2/d.o.f.

A – – 28.7/20 142(59) – 22.2/19 102(66) 109(87) 20.7/18 B – – 35.4/20 146(59) – 28.5/19 154(69) −21(92) 28.5/18 C – – 26.5/20 154(69) – 20.8/19 149(78) 14(102) 20.8/18 Table 4

Dalitzplotparametersfromsimultaneousfitstothethreedatasets,whereatmost twoparameterswereusedinthefit.

α×103 β×103 χ2/d.o.f.

– – 90.6/60

147(36) – 71.5/59

133(41) 37(54) 71.0/58

ofthe

χ

2 aswell asthecorrect statisticalsignificance when fit-tingthe Dalitz parameters. Theresulting efficiencycorrected and normalisedDalitzplotbincontentsareprovidedin

Table 2

.

The extracted Dalitz plot parameters and goodness of fit for each data set separately are reported in Table 3. There is a sig-nificantdecreaseofthe

χ

2valuewhenincludingthe

α

parameter and the results from the three data sets are consistent. The re-sults of the fits for all data sets combined are givenin Table 4. The p-valuesignificantlyimproves afterincludingthe

α

parame-ter,while inclusion ofan additional parameter doesnot improve the p-value any further. The efficiency corrected Dalitz plots for thethreedatasetsareshownin

Fig. 5

,wheretheyarecompared tothe P -wavedistributionaswell asthefitwiththe

α

parame-ter.Weconsidertheresultwiththe

α

parameterourmainfinding. The differencebetween theresults fromthefirst andsecond fits in

Table 4

indicates theonsetofdynamicsinthe reactionontop ofthe P -wavephasespacedistribution.Thisfollowstheexpected behaviourofanincreasetowardstheedgesofphasespacedueto theattractive

π π

final-stateinteraction (approachingthe

ρ

reso-nance),yieldingapositivevalueforthe

α

parameter.

Fig. 6showsatestofdataconsistencyforthesameDalitzplot sectors,markedwithRomannumeralsin

Fig. 3

.Arithmetical aver-agesofthenormalisedresiduals withrespect tothe

α

parameter fitfrombinscorresponding tothesamesectorsarecalculatedfor the separate data sets and forall three data sets combined. The errorbars correspond to thecalculated rootmean square values, which are expectedto be 1for a random datasample with cor-rectlyestimateduncertainties.

Herefollowsashortsummaryofthechecksforsystematic ef-fectsreportedinthissection.Twoinput–outputcheckswere per-formed,whichverifiedthattheparametrisationprocedureaswell asthemethodofbackgroundsubtractionsdoesnot introduceany bias at the present statistical accuracy. The efficiency correction wascheckedandadjustedtoensurechargesymmetryintheDalitz plot.Lastly,theconsistencybetweenthethreedatasetsaswellas thedifferentsectorsoftheDalitzplotwaschecked.Theresultfrom thesechecksisthat theaccuracy oftheDalitz plotparametersis dominatedbystatisticuncertainty.

Fig. 6. Arithmeticaveragesand rootmeansquareofthenormalisedresidualsin separateDalitzplotsectorsforalldatasets(crosses)andfortheseparatedatasets (A–circles,B–squares,C–triangles)forthestandardfit.

Fig. 7. Comparisonofourresultfortheαparameter(shadedarea)withthethree theoreticalpredictions[20,4,12].

4. Summaryanddiscussion

Forthefirsttime adeviationfromapure P -wavedistribution in

ω

π

+

π

π

0isobservedandquantifiedbythedetermination of theparameter

α

= (

147

±

36

)

·

10−3,i.e. a positivevalue with 4

.

1

σ

significance.

Fig. 7

comparestheexperimentalresultofthe

α

parametertothetheoreticalpredictions.Theexperimental

α

value isclearlyinthevicinityofthepredictionsmadebydispersion the-ory[4,12]andtheeffective-Lagrangianapproach[20].Howeverthe experimental uncertaintyis still toosizeableto allowfordefinite conclusions concerning the validity of these contrasting predic-tions.Thesystematiceffectswerestudiedbycomparingthreedata sets usingtwo production reactions, which differ significantly in resolution and acceptance. The chosen Z ,

φ

parametrisation to-gether withisospinsymmetry allowsformoretestsofsystematic effects,andtheprecision oftheresultisdominatedbythe statis-ticaluncertainty.

Acknowledgements

This work was supported inpart by theEU Integrated Infras-tructure Initiative HadronPhysics Project under contract number RII3-CT-2004-506078;bytheEuropeanCommissionunderthe7th Framework Programme through the Research Infrastructures ac-tion of the Capacities Programme, Call:

FP7-INFRASTRUCTURES-2008-1, Grant Agreement N. 227431; by the Polish National

Science Centre through the grants DEC-2013/11/N/ST2/04152,

2011/01/B/ST2/00431, 2011/03/B/ST2/01847, and the Foundation

for Polish Science (MPD), co-financed by the European Union

within the European Regional Development Fund. We gratefully acknowledge thesupport givenby theSwedish ResearchCouncil,

(8)

theKnutandAliceWallenbergFoundation,andthe Forschungszen-trumJülichFFEFundingProgram.Thisworkis basedonthePhD thesesofLenaHeijkenskjöldandSiddheshSawant.

References

[1]G.Colangelo,M.Hoferichter,B.Kubis,M.Procura,P.Stoffer,Phys.Lett.B738 (2014)6–12,arXiv:1408.2517.

[2]B.C. Magli ´c,L.W.Alvarez,A.H. Rosenfeld,M.L. Stevenson,Phys. Rev.Lett. 7 (1961)178–182;

B.C.Magli ´c,L.W. Alvarez,A.H.Rosenfeld, M.L.Stevenson, Adv.Exp.Phys. 5 (1976)106.

[3]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. [4]F.Niecknig,B. Kubis, S.P. Schneider,Eur. Phys. J.C 72(2012) 2014, arXiv:

1203.2501.

[5]M.L.Stevenson,L.W.Alvarez,B.C.Magli ´c,A.H.Rosenfeld,Phys.Rev.125(1962) 687–690.

[6]C.Alff,etal.,Phys.Rev.Lett.9(1962)325–327. [7]N.-h.Xuong,G.R.Lynch,Phys.Rev.128(1962)1849–1867.

[8]J.S.Danburg,M.A.Abolins,O.I.Dahl,D.W.Davies,P.L.Hoch,J.Kirz,D.H.Miller, R.K.Rader,Phys.Rev.D2(1970)2564–2588.

[9]B.Ananthanarayan,G.Colangelo,J.Gasser,H.Leutwyler,Phys.Rep.353(2001) 207–279,arXiv:hep-ph/0005297.

[10]G.Colangelo,J.Gasser,H.Leutwyler,Nucl.Phys.B603(2001)125–179,arXiv: hep-ph/0103088.

[11]R.García-Martín,R.Kami ´nski,J.R.Peláez,J.RuizdeElvira,F.J.Ynduráin,Phys. Rev.D83(2011)074004,arXiv:1102.2183.

[12]I.V.Danilkin,C.Fernández-Ramírez,P.Guo,V.Mathieu,D.Schott,M.Shi,A.P. Szczepaniak,Phys.Rev.D91(2015)094029,arXiv:1409.7708.

[13]A.Aloisio,etal.,KLOE,Phys.Lett.B561(2003)55–60,arXiv:hep-ex/0303016; A.Aloisio,etal.,KLOE,Phys.Lett.B609(2005)449(Erratum).

[14]R.R.Akhmetshin,etal.,Phys.Lett.B642(2006)203–209. [15]M.Gell-Mann,D.Sharp,W.G.Wagner,Phys.Rev.Lett.8(1962)261. [16]F.Klingl,N.Kaiser,W.Weise,Z.Phys. A356(1996)193–206,arXiv:hep-ph/

9607431.

[17]M.Harada,K.Yamawaki,Phys.Rep.381(2003)1–233,arXiv:hep-ph/0302103. [18]P.D.Ruiz-Femenía,A.Pich,J.Portolés,J.HighEnergyPhys.07(2003)003,arXiv:

hep-ph/0306157.

[19]S.Leupold,M.F.M.Lutz,Eur.Phys.J.A39(2009)205–212,arXiv:0807.4686. [20]C.Terschlüsen,B.Strandberg,S.Leupold,F.Eichstädt,Eur.Phys.J.A49(2013)

116,arXiv:1305.1181.

[21]S.M.Flatté,D.O.Huwe,J.J.Murray,J.Button-Shafer,F.T.Solmitz,M.L.Stevenson, C.Wohl,Phys.Rev.145(1966)1050–1061.

[22]G.Köpp,Phys.Rev.D10(1974)932–940.

[23]S.P. Schneider,B. Kubis, F.Niecknig,Phys.Rev.D 86(2012) 054013,arXiv: 1206.3098.

[24]C.Terschlüsen,S.Leupold,Phys.Lett.B691(2010)191–201,arXiv:1003.1030. [25]R.Arnaldi,etal.,NA60,Phys.Lett.B677(2009)260–266,arXiv:0902.2547. [26]R.Arnaldi,etal.,NA60,Phys.Lett.B757(2016)437–444.

[27]B.Ananthanarayan,I.Caprini,B.Kubis,Eur.Phys.J.C74(2014)3209,arXiv: 1410.6276.

[28]I.Caprini,Phys.Rev.D92(2015)014014,arXiv:1505.05282.

[29]M.Hoferichter,B.Kubis,S.Leupold,F.Niecknig,S.P.Schneider,Eur.Phys.J.C 74(2014)3180,arXiv:1410.4691.

[30]H.H.Adam,etal.,WASA-at-COSY,arXiv:nucl-ex/0411038,2004.

[31]C.Bargholtz,etal.,CELSIUS/WASA,Nucl.Instrum.Methods,Sect. A594(2008) 339–350,arXiv:0803.2657.

[32]K. Schönning, et al., CELSIUS/WASA,Phys. Rev.C79 (2009) 044002,arXiv: 0902.3905.

Figure

Fig. 1. Particle identification in the Forward Detector is performed using the corre- corre-lation of energy deposits in the plastic detector layers
Fig. 2. Missing mass distributions after the full analysis procedure as well as the result of the fit Eq
Fig. 5. The experimental Dalitz plot distribution after applying an efficiency correc- correc-tion
Fig. 6 shows a test of data consistency for the same Dalitz plot sectors, marked with Roman numerals in Fig

References

Related documents

•  NUGENIA is an association dedicated to the research and development of nuclear fission technologies, with a focus on Generation II and III nuclear plants.. •  It

In Experimental modal analysis, we excite the structure (location depend on the selection of excitation) and measure the response at all the points. Different methods are available

A number of different ef- fective field theories predict the branching ratio for this decay, and a precise measurement can be used to test their accuracy.. The asymmetry parameter

The conclusion here is that the results from using the different bin sizes all agree with the input values, however using a bin size of 0.02 gives identical uncertainties and using

This thesis aimed at analysing if and how much the use of value models could support early-stage decision making in the conceptual design of product-service systems. The

Thesis submitted for completion of Master of Science in Mechanical Engineering with emphasis on Structural Mechanics at the Department of Mechanical Engineering, Blekinge Institute

Aims: (1) To analyse clinicopathological characteristics, treatment and outcome of liposarcoma, and to determine whether, and how, the Scandinavian Sarcoma Group

Figure 3.8: Impulse force and response of a nonlinear system The estimated and the theoretical parameters for a transient force agree well with each other as can be seen in