• No results found

Transforming Knowledge Into Usefulness

N/A
N/A
Protected

Academic year: 2022

Share "Transforming Knowledge Into Usefulness"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

SCOS  2012  

Transforming  Knowledge  Into  Usefulness   Nina  Fowler  

Uppsala  University    

Introduction    

With  ever-­‐increasing  energy  costs,  international  pressure  for  the  reduction  of   carbon  emissions  and  the  supply  of  existing  fossil  fuels  looking  increasingly   unstable,  research  into  renewable  energy  technologies  has  grown  from  a  garden   shed  hobby  project  to  a  European  Commission  supported  research  area  

(European  Commission,  2012),  incorporating  policy  makers,  university  and   industry.  Of  particular  interest  due  to  its  abundance  and  non-­‐invasive  nature,   ocean  energy  is  now  seen  as  a  viable  option  in  the  energy  supply  mix  of  the   future  (European  Commission,  2012).      

 

This  paper  is  a  continuation  of  previous  research  efforts  into  the  

commercialisation  of  academic  knowledge  focusing  on  two  organisations,  

specifically  Oceanic  Institute  and  the  Division  of  Electricity  at  Uppsala  University.    

 

The  Wave  Energy  Converter  (WEC)  is  one  such  renewable  energy  technology   that  has  been  developed  at  Uppsala  University  at  the  border  of  academia  and   industry  for  the  past  decade.  Throughout  the  development  a  core  team  of  

research  engineers  at  the  university  has  been  complimented  by  a  steady  influx  of   new  academic  researchers  and  industry  located  employees,  some  sourced  from   the  university,  at  a  spin-­‐off  company.    

 

The  researchers,  drawing  upon  their  understanding  of  various  wave  climates,   applying  for  funding,  conducting  experiments  and  designing  WECs  and  

supporting  systems,  are  uniquely  placed  within  a  large  and  complex  network.  As   such  they  are  able  to  utilise  this  system,  and  their  role  within  it,  to  achieve  their   goals:  to  produce  knowledge  and  transform  it  into  commercial  products  and   activity.    

 

As  part  of  these  goals  they  must  translate  their  knowledge  across  the  academia-­‐

industry  border  and  ensure  the  continuation  of  their  research  by  transferring  the   knowledge  to  the  new  researchers  within  the  university.  This  is  achieved  partly   through  engineers  translating  their  scientific  knowledge  into  the  WECs  as  they   are  designed,  committing  it  to  paper  in  internal  reports  and  disseminating  it   through  the  research  community  by  conference  participation  and  journal   articles,  as  well  as  by  demonstrating  to  and  assisting  less  experienced   researchers  and  commercially  located  partners.  As  the  researchers’  practice   translating  this  knowledge  it  develops  as  a  competency,  acknowledged  by  other   actors  in  the  network  such  as  commercial  partners.  By  understanding  how  this   translation  of  knowledge  changes  and  develops,  affects  the  project  and  the   researchers  involved  as  the  project  progresses,  we  can  begin  to  describe  the   commercialisation  process.    

 

(2)

This  initial  study  tells  the  story  of  the  technology  in  this  phase  of  

commercialisation  through  the  illustrations  of  the  subjective  experiences  of  the   organisation,  artefacts  and  self  throughout  the  life  of  the  project  created  by  the   researchers  at  the  university.  Centrally,  the  researchers  sketch  representations   of  their  perceived  roles  and  the  position  of  their  knowledge  within  the  project.    

Presented  with  the  task  of  drawing  the  project  at  three  crucial  points  –  the  time   the  individual  joined  the  project,  the  present  state  and  the  future  –  the  

researchers  depict  their  knowledge  as  a  part  of  a  network,  varied  in  size  and   scope,  expanding  and  diversifying  in  the  future.  The  study  will  be  repeated  in  the   future  to  follow  the  project  as  it  unfolds  in  this  commercialisation  phase.      

   

Research  Motivation    

The  production  of  localized  knowledge  (Knorr-­‐Cetina,  1999)  teaches  us  firstly   that  knowledge  is  a  situational  creation  and  secondly  reiterates  that  social   worlds  (Bucher  and  Strauss,  1961,  Glaser,  1964)  exist.  The  cross  fertilization  of   these  understandings  has  lead  to  work  by  Latour  on  the  stabilization  of  

knowledge  (1987),  by  Star  and  Giesemer  (1989)  on  boundary  objects  and   subsequently  to  “standardized  packages  (Fujimura,  1992).    

 

Derived  in  part  from  Callon  and  Latour’s  “interessement”  (2002)  boundary   objects  problematize  the  tension  in  science  and  knowledge  creation  across   interest  boundaries  (Star  and  Giesemer,  1989).  The  museum  example  discusses   the  negotiations  and  agreements  to  be  made  surrounding  the  acquisition  of   artifacts,  in  this  case  physical  manifestations  of  current  or  future  knowledge,  but   the  boundary  object  need  not  be  physical  to  be  classed  as  such.  Fujimura  (1992)   developed  “standardized  packages”,  a  more  robust  change  of  practices  for  actors   working  across  social  worlds  (Guston,  2001),  as  an  alternative  to  boundary   objects  which  she  claimed  disadvantageous  for  the  development  of  knowledge   due  to  their  adaptability.  Standardized  packages  however  are  more  than  an   object  with  which  to  traverse  boundaries;  they  are  a  set  of  boundary  objects   combined  with  standardized  methods,  which  work  together  to  restrict   modification  and  refine  their  own  definitions.  In  her  example,  Fujimura  

describes  a  standardized  package  in  scientific  research  into  cancer  development   as  genes,  cancer  and  cancer  genes  (the  objects)  and  DNA  technologies,  probes   and  sequence  information  (the  methods).  Neither  boundary  objects,  though  they   imply  adaptability,  nor  standardized  packages,  explain  how  knowledge  moves   between  these  social  worlds  and  what  processes  it  undergoes  as  it  moves  from   inception  to  a  commercialized  product.  In  this  paper  I  aim  to  explore  how   knowledge  translation  for  technology  commercialization  processes  could  be   understood  in  terms  of  the  organization  properties  of  so  called  boundary  objects   and  standardized  packages.  

 

So  why  explore  this  through  visual  media?  Harper  (1988)  describes  the  origins   of  visual  research  methods  in  conjunction  with  anthropology,  discussing  the   democratization  and  mass-­‐distribution  of  a  new  kind  of  knowledge  through   photography  in  European  research.  Prior  to  this,  the  sociologists  such  as  Karl   Marx  produced  work  based  on  descriptions  and  statistics  and  left  the  reader  to  

(3)

form  his  own  mental  images  of  the  subjects.  This  is  an  important  part  of  the   equation:  words  can  describe  but  they  are  only  ever  imperfect  mental  short  cuts   to  enable  communication,  and  are  linguistically  and  culturally  subjective  

(Urciuoli,  1995).  The  problems  occurring  through  the  difference  in  language   never  mean  so  much  as  when  an  individual  from  one  culture  must  describe   something,  perhaps  abstract  in  nature,  to  individuals  from  another  (Bourque,   1971).    

 

Objects  and  acts  are  created  with  the  purpose  of  communicating  something  to   the  observer,  according  to  Ruby  (2005).  He  also  asserts  that  culture  is  

manifested  in  visual  symbols  embedded  in  gestures,  ceremonies  and  artifacts,   supported  by  several  studies  including  for  example  a  decade-­‐long  photographic   documentation  of  the  American  Depression  on  the  1930’s,  depicting  families   performing  such  patriotic  rituals  as  Thanksgiving,  even  with  empty  tables   (Harper,  1988).  The  metaphor  of  the  visual  in  anthropology  is  discussed  by   MacDougall  (1997),  who  describes  the  photographs  of  “primitives”  displaying   the  use  of  feathers,  hair  and  bones  in  personal  adornment  as  symbolic  indicators   of  their  close  relationship  with  the  natural  world.  Modern  academic  

anthropology  employs  a  wide  range  of  sources,  such  as:  

 

“…historical  photographs,  news  photography,  sports  events,  comic  books,   postcards,  stereographs,  body  decoration,  indigenous  painting,  'tourist   art',  home  movies,  family  snapshots,  itinerant  theatre,  vernacular   architecture,  children's  drawings,  political  regalia,  court  ceremony,   gesture  and  facial  expression,  advertising,  costume  and  personal   adornment,  industrial  design,  and  so  on.”  (MacDougall,  1997)    

So  why  ask  academic  researchers  to  draw  their  work  rather  than  to  photograph   or  film  it,  as  modern  visual  sociologists  (Hockey  and  Collinson,  2006,  Pink,  2008)   do?  Margolis  (1998)  described  how  photographs  “emphasize  science,  

engineering,  system  and  sequence”,  but  that  to  understand  social  divisions  he   had  to  talk  to  the  labourers,  using  words  to  explain  their  understanding  of  their   role  changes.  Perhaps  with  paper  and  pen  they  could  have  illustrated  their  social   reality.  Henderson  (1991)  describes  the  way  engineers  use  technical  drawings  as   boundary  objects  to  act  as  “social  glue”  between  the  different  groups  in  the   design  process.  By  illustrating  their  interpretation  of  the  activities  taking  place,   the  researchers  have  the  opportunity  to  describe,  without  the  potential  

misunderstandings  of  language  (across  both  the  Swedish-­‐English  and   Engineering-­‐Sociology  social  worlds),  the  movement  of  knowledge,  the  

communities  who  use  this  knowledge  and  the  processes  it  undergoes  to  facilitate   the  commercialization  process.  

   

Methodology    

Research  to  date  has  consisted  of  observations  of  meetings,  participating  in   discussions,  formal  interviews  and  informal  conversations.  The  departure  into   visual  research  methods  is  an  attempt  to  draw  information  from  the  participants   in  a  way  that  stimulates  them  to  consider  their  environment  in  a  manner  to  

(4)

which  they  are  not  accustomed.  This  has  two  main  motivations;  the  first  is  that   by  deviating  from  the  narrative  or  organisational  voice  in  which  the  participants   normally  engage  with  each  other  and  myself  they  may  reveal  details  that  are   better  suited  to  visual  research  methods  such  as  complex  relationships,   knowledge  movement,  etc.  Secondly,  by  encouraging  the  description  of  a  

particular  object  or  arrangement  in  a  different  manner  it  enables  a  rough  form  of   triangulation  of  existing  data.    

 

Participants  were  approached  with  a  brief  description  of  the  project  through  the   group’s  internal  e-­‐mail,  followed  with  face-­‐to-­‐face  requests  for  participation.  Of   the  full  research  group  a  number  were  off-­‐site  or  on  parental  leave,  a  number   declined  and  a  few  agreed  to  take  part  but  found  it  difficult  to  arrange  to  meet.  

Those  taking  part  included  early  stage  PhD  candidates,  a  post-­‐doctoral   researcher  and  the  research  leader.    

 

Presented  with  an  A2  flip  pad  and  a  set  of  pens  participants  were  asked  to  

illustrate  the  project  from  their  understanding  at  three  points  in  time:  when  they   joined  the  project,  their  current  observations  and  the  future  they  imagined  could   happen.  Each  interview  was  videotaped  and  participants  were  prompted  to   explain  or  expand  upon  their  drawings.    The  empirical  data  presented  here  is   sourced  only  from  these  interviews.  

   

Empirical  data    

Drawings    

The  drawings  provided  by  the   researchers  were  rich  in  detail,   although  artistically  left  much  to   be  desired.  Although  a  much   fuller  story  exists  for  the  project   so  far,  it  is  important  that  the   drawings  are  not  obscured  by   the  stories  told  previously.  As   such,  it  would  be  beneficial  for   the  reader  initially  to  observe   and  attempt  to  understand  the   resultant  illustrations  without   the  supplementary  data  gathered   in  verbal  form  during  the  

interviews.    

 

One  of  the  first  sketches  (fig.  1)   shows  the  knowledge  almost   literally  inside  someone’s  brain.  

The  hemispheres  are  labeled  

“ABB”,  indicating  that  the  brain   and  its  contents  belonged  to  

Figure  1:  Participant  2,  Professor,  2012  

(5)

something  else.  The  next  image  in  the  same  sketch  shows  movement,  and  then   the  brain  becomes  a  head  with  small,  unlabeled,  nodes  of  information.  The  head   has  a  face  with  a  small  smile,  which  could  suggest  that  it  is  now  human,  

independent  rather  than  owned.  The  final  face  shows  a  large  smile  as  it  looks   over  a  box  labeled  “Department”  containing  six  people.    

 

Figure  2,  Participant  3,  Post-­‐doctoral  researcher,  2012    

Figure  2  depicts  an  idea  in  a  thought  bubble  above  an  individual’s  head,  then   being  shared  with  three  other  figures.  An  eye  is  drawn  in  front  of  these  figures,   suggesting  looking  forwards.  An  arrow  points  to  a  currency  sign  with  a  question   mark,  indicating  that  the  people  considered  how  they  should  fund  this  activity,   drawn  in  simple  form  on  the  right.  The  tower  with  a  string  and  a  disc  is  a  very   simplified  representation  of  the  wave  energy  converter,  showing  the  foundation,   the  cylinder,  cone,  rope  and  buoy  on  the  water.  Question  marks  surround  it,   perhaps  showing  a  lack  of  knowledge.  A  strong  arrow  points  to  further  questions   marks  and  a  number  of  the  same  devices  in  a  building  with  a  wagon  heading  into   it,  and  then  on  a  boat.  A  large  circle  around  these  sketches  is  labeled  “University”  

and  a  smaller  circle  on  the  edge  is  labeled  “Company”.    

   

(6)

Figure  3:  Participant  1,  PhD  student  2012    

At  the  center  of  figure  3  there  is  a  roughly  circular  shape,  representative  of  a   buoy.  Around  this  there  are  figures  reading  from  books,  perhaps  illustrative  of   knowledge.  Each  book  has  one  slightly  larger  figure  marked  in  black  and  three   smaller  figures  marked  in  green.  Each  sub-­‐group  has  an  arrow  directly  into  the   middle  of  the  buoy.      

 

Figure  4,  Participant  1,  PhD  student  2012    

Two  half-­‐buildings  are  draw  in  figure  4,  with  a  waving  figure  in  front  of  each  in   the  corresponding  colour,  indicating  a  difference  between  the  two.  Each  building   is  labeled,  one  as  UU  and  the  other  as  OI.  The  figure  in  the  middle  holds  his  arms   out  to  the  sides.      

 

Figure  5,  Participant  4,  PhD  student,  2012    

Here  a  messy  scrawl  divides  “facilities”  and  “research,  broken  buoy?”,  but  the   line  was  original  drawn  straight.  This  could  mean  that  the  distinction  is  unclear   even  to  the  researcher  who  drew  this  diagram.  Arrows  cross  between  the  two  

(7)

main  areas,  some  straight  across  and  others  curling  back  on  themselves  after  a   brief  trip  into  the  opposite  area.  They  could  be  representative  of  knowledge,   resources  or  equipment.    

 

Figure  6,  Participant  2,  Professor,  2012    

Figure  6  shows  a  mass  of  lines  on  the  left  and  an  arrow  leading  to  a  small  bundle   on  the  right.    

 

Figure  7,  Participant  3,  Post-­‐doctoral  researcher,  2012    

When  asked  to  illustrate  the  future  of  the  project,  one  researcher  drew  figure  7.  

Here  there  are  several  circles  enclosing  similar  words.  Words  describing   activities  link  these  larger  circles  together  and  arrows  fit  between  them.    

       

(8)

Interviews  and  background    

Past    

In  2001  ABB  signed  a  document  granting  one  of  their  program  managers  the   rights  and  freedom  to  develop  his  ideas  outside  of  the  organisation.  After   considering  various  options  he  chose  Uppsala  University  with  its  relative  

strength  in  mathematical  modelling  as  the  new  base  for  his  activities,  taking  with   him  a  number  of  ABB  employees.  Initially  with  only  six  staff  the  Department  for   Electricity,  later  growing  into  the  Division  of  Electricity,  focused  on  a  few  key   areas  including  wind  power,  computer  systems  and  wave  power.  After  a  six   month  rest  period  stipulated  by  ABB  the  group  established  an  external  company   by  the  name  of  Energy  Futures  and  a  daughter  company,  Oceanic  Institute,  in   2001  and  by  2002  the  wave  project  had  been  given  the  first  of  many  academic   research  grants  (Participant  2,  Professor,  2012).    

 

The  perceived  future  activity  of  the  organisations  was  sketched  by  one  of  the   researchers  when  asked  to  describe  what  the  project  looked  like  when  he  first   joined.  The  project  was  planned  around  a  single  idea  –  to  provide  a  cost-­‐effective   wave  energy  conversion  system.  The  idea  generated  lots  of  questions  that  were   formulated  into  research  projects  at  the  university,  and  the  future  manufacture   and  deployment  systems  were  imagined.  The  structure  of  the  overall  project  was   already  determined  to  contain  a  joint  university-­‐  spin-­‐off  company  (Participant   3,  Post-­‐doctoral  researcher,  2012),  however  the  boundaries  of  the  activities  were   not  entirely  clear.    

 

Initially  the  research  focused  on  determining  the  design  framework.  Based  on  his   experience  of  cabling  the  project  leader  decided  that  any  connection  to  the  grid   must  be  placed  on  the  ocean  floor,  limiting  the  opportunities  for  damage  

(Participant  2,  Professor,  2012).  With  the  same  thoughts  regarding  damage   limitation  he  also  placed  any  expensive  or  delicate  equipment  on  the  sea  bed.  

Since  the  energy  of  the  wave  is  located  at  the  surface  there  had  to  be  a  relatively   cheap  and  hardwearing  device  that  could  float  and  transfer  the  wave  energy  to   the  electricity  converter.  

 

At  this  point  the  people  in   the  research  project  were   highly  competent  in  the   required  electronic  systems   and  so  efforts  were  focused   on  the  areas  in  which  the   team  had  weaknesses;  

construction  of  the  WEC   body  and  production   methods.  

   

The  wave  energy  conversion  technology  was  transformed  from  an  idea  to  a   series  of  laboratory  simulations  and  wave  tank  tests  before  being  combined  in  

  Figure  8,  Participant  2,  Professor,  2012  

(9)

the  first  of  a  number  of  prototypes.  The  first  deployment  at  Lysekil  was   completed  in  early  Spring  2006.    

 

The  project  continued  to  recruit  in  both  the  academic  research  department  and   at  Oceanic  Institute,  and  individuals  moved  between  the  two  organisations  at   various  points,  for  example  upon  completion  of  a  Masters  degree.  Although  ABB   had  lost  a  number  of  employees  to  this  new  project  they  benefited  from  a  supply   of  new,  highly  skilled  employees  moving  from  the  University  (Participant  2,   Professor,  2012).  Despite  the  high  number  of  industry  experienced  individuals   joining  the  research  project  the  organisation  took  a  rather  flat  structure  rather   than  a  clear  hierarchy  (Participant  4,  PhD  student,  2012).  Individuals  joining  the   project  more  recently  described  their  initial  perception  of  the  research  group  as   like  a  round  table,  referring  to  a  buoy  as  the  imaginary  focal  point.  They  saw  a   collection  of  knowledge  to  which  everybody  in  the  project  contributed  and  had   access.    

 

Present    

Once  researchers  became  more  familiar  with  the  way  the  organisation  worked  it   was  described  a  little  differently.  Where  once  knowledge  was  a  collective  

singular  object,  now  it  was  a  distributed  set  of  information  and  experiences  only   brought  into  a  collective  when  a  decision  needed  to  be  made.  Important  to  the   understanding  of  the  organisational  structure  is  the  realisation  that  although   individuals  can  move  between  the  loosely  arranged  sub-­‐groups  to  ask  about  the   knowledge,  since  each  set  of  knowledge  is  individually  researched  any  

understanding  by  another  researcher  not  familiar  with  the  research  area  is   superficial  at  best  (Participant  1,  PhD  student  2012).  

 

The  understanding  described  here  of  how  knowledge  is  shared  between  sub-­‐

groups  within  the  academic  research  group  goes  some  way  to  explaining  the   relationship  between  the  two  organisations  in  the  project.  One  researcher   described  Oceanic  Institute  as  being  a  very  thin  organisation;  they  have  a  set  of   competencies  in  marketing  and  little  else  (Participant  2,  Professor,  2012).  

Academic  researchers  describe  how  knowledge  is  created  at  the  university  and   provided  to  Ocean  Institute  in  a  neatly  packaged  answer  to  a  query,  however  the   scientific  reasoning  and  research  behind  the  summarised  knowledge  is  rarely   transported  across  the  organisational  boundary.    

 

With  a  more  experienced  understanding  and  privileged  viewpoint  of  the  project,   researchers  began  to  describe  the  many  actors  involved  across  the  industry-­‐

academia  border,  illustrating  relationships  between  financing  partners,  students,   EU  initiatives  and  individual  researchers  (Participant  3,  Post-­‐doctoral  

researcher,  2012).  Relationships  and  boundaries  were  illustrated  as  less  clear,   marked  last  on  the  page  rather  than  as  initial  definitions  of  the  activities  taking   place.    

 One  reoccurring  image  was  that  of  a  broaching  character,  an  individual  who   could  easily  traverse  the  industry-­‐academia  boundary  and  guide  the  activities  of   Oceanic  Institute  away  from  the  mistakes  they  are  making  due  to  these  

(10)

summarised  knowledge  packages  and  towards  more  profitable  activities   (Participant  2,  Professor,  2012).  Alternatively  this  character  was  illustrated  as   belonging  to  both  organisations,  standing  still  and  acting  as  a  bridge  rather  than   a  moving  individual.  When  asked  to  describe  this  character  two  individuals   involved  with  the  project  were  named,  although  the  research  leader  stressed   that  it  was  not  necessary  to  have  the  same  person  playing  this  role  on  a   permanent  basis.  One  named  individual  has  acted  in  this  space  between  the   organisations  for  some  time,  however  lately  he  has  moved  further  into  his   industry-­‐based  role  at  the  expense  of  his  academic  role.  Another  has  more   recently  been  occupying  this  space,  advising  Oceanic  Institute  of  risks  with   pursuing  lines  of  action,  which  are  based  on  misinterpretation  of  the  packaged   knowledge  (Participant  2,  Professor,  2012).    

 

Increasingly  the  research  motivation  is  to  determine  the  optimum  design  for  an   economically  viable  wave  energy  converter.  The  current  prototypes  provide   around  five  times  the  energy  output  for  three  fifths  of  the  cost  by  using  less   material  and  a  more  efficient  design  (Participant  2,  Professor,  2012).    

   

Future    

There  are  several  advantages  to  the  project  being  developed  at  Uppsala  and  in   the  Swedish  sea.  One  of  these  is  the  economic  awareness  of  the  engineering   researchers;  a  trait  the  research  leader  considers  as  rare.  With  the  department   founded  by  individuals  who  themselves  originated  from  industry  though  it  can   hardly  be  a  surprise  that  researchers  are  aware  of  the  economic  potential  of   their  work.  The  mobility  of  individuals  between  academia  and  Oceanic  Institute   could  also  be  a  contributing  factor.  The  second  advantage  is  technological  in   nature.  The  calm  sea  states  surrounding  Lysekil  and  other  test  sites  necessitated   the  development  of  an  energy  conversion  technology  which  could  not  only   withstand  extreme  conditions;  ice  and  high  waves  for  example,  but  that  could   convert  energy  from  relatively  calm  sea  states.  Other  wave  energy  projects  have   focused  on  converting  energy  from  much  greater  wave  amplitudes  and  so  have   not  put  effort  into  making  waves  with  less  energy  a  commercially  viable  

operating  environment.  As  such,  the  Oceanic  Institute  is  well  placed  to  serve   markets  their  competitors  have  considered  worthless.  This  market  encompasses   India,  Arabia,  Japan,  the  Baltic  countries  and  islands  around  the  equator;  areas   that  currently  rely  on  fossil  fuels  and  will  soon  need  a  price  comparable  energy   solution  (Participant  2,  Professor,  2012).    

 

When  asked  to  describe  the  future  of  the  project,  the  researchers  presented   some  very  different  expectations.  One  researcher  described  how  knowledge   might  be  distributed  amongst  the  academic  researchers  in  a  more  organised,   hierarchical  fashion,  with  clear  lines  of  responsibility.    

 

Another  hoped  for  a  more  open  knowledge  sharing,  with  Oceanic  Institute   actively  participating  in  the  round  table  discussions.  Each  party  should  bring   their  own  knowledge  such  as  technical  from  the  university  and  market   knowledge  from  Oceanic  Institute.  This  was  partly  motivated  by  her  wish  to  

(11)

understand  how  industry  works;  unlike  many  others  in  the  academic  research   group  she  has  neither  worked  in  industry  prior  to  beginning  her  PhD  nor  crossed   the  academia-­‐industry  border  by  working  for  Oceanic  Institute  (Participant  1,   PhD  student  2012).    

 

Others  were  keen  for  the  border  between  Oceanic  Institute  and  the  research   department  to  be  clarified  and  the  two  organisations  distanced  further.  One   explained  that  she  felt  there  was  too  much  ambiguity  in  who  was  responsible  for   work,  with  some  tasks  being  invoiced  and  others  performed  for  free.  With  no   accountability  she  felt  that  it  was  difficult  for  those  in  the  research  project  to   focus  on  the  type  of  work  that  warranted  the  awarding  of  a  PhD  (Participant  4,   PhD  student,  2012).  Another  felt  that  for  a  variety  of  reasons  the  two  

organisations  should  be  further  apart.  In  particular  he  felt  that  because  of  his   role  between  the  two  he  was  working  harder  than  he  could  maintain  for  a  long   time,  and  he  would  prefer  to  exist  mostly  within  the  academic  environment  and   limit  his  commercial  interests  in  the  technology  (Participant  2,  Professor,  2012).    

 

With  a  much  broader  approach,  one  researcher  explained  how  he  saw  the   growth  of  both  the  industrial  and  the  academic  activities,  expanding  the  project   not  only  across  organisational  boundaries  but  also  across  countries.  The  central   placement  of  the  utility  in  the  illustration  (fig.  7)  perhaps  reflects  the  recent   contact  with  a  utility  company  presently  involved  in  the  project  (Participant  3,   Post-­‐doctoral  researcher,  2012),  who  themselves  envision  an  academic  research   centre  being  created  outside  of  Sweden  as  part  of  their  own  strategy.    

   

Discussion    

In  this  case  it  appears  that  knowledge  is  present  in  a  number  of  forms,  and  is   transferred,  disseminated,  translated  and  packaged  into  the  appropriate  form.  

The  case  suggests  two  clear  distinctions  the  academic  researchers  make  between   the  types  of  knowledge  they  encounter  and  use.  The  first  is  engineering  and   technical  in  nature,  and  the  primary  example  is  the  knowledge  of  the  research   leader  as  he  leaves  industry.  With  an  idea  based  on  his  career  knowledge,  the   research  leader  is  aware  that  ABB  are  not  interested  in  pursuing  the  technology   and  that  he  lacks  certain  technical  knowledge,  particularly  with  regard  to  

mathematical  modelling.  Selecting  an  actor,  Uppsala  University,  for  his  research   centre  was  a  decision  based  on  the  need  for  the  project  to  have  these  

competencies.    

 

The  second  type  of  knowledge  apparent  in  this  case  is  that  of  commercial  or   market  knowledge.  By  maintaining  close  linkages  between  the  university  and  the   spin-­‐off  company,  the  academic  researchers  are  not  only  conducting  research   but  performing  activities  through  which  they  develop  commercial  awareness.  

They  are  simultaneously  learning  by  doing  in  both  the  technical  and  the   commercial  fields.  With  a  research  leader  who  transferred  from  industry  to   academia  it  can  hardly  be  a  surprise  that  his  students  have  the  opportunity  to   develop  in  both  areas  through  their  work.  As  a  boundary  object  then  knowledge   is  adapted,  sometimes  unsuccessfully,  to  the  social  world  to  which  it  is  

(12)

translated.  It  also  acts  as  a  negotiation  chip  in  the  relationship,  with  different   types  of  knowledge  being  exchanged  for  the  desired  knowledge.    

 

The  goal  of  the  project  has  from  the  beginning  been  to  create  a  viable  energy   converter  for  the  power  market,  and  as  such  Oceanic  Institute  was  set  up  to   establish  an  industrial  connection.  Individuals  from  ABB  followed  the  research   leader  into  the  project,  some  directly  into  the  university  and  others,  such  as   those  with  strong  marketing  skills  and  experience,  settled  into  Oceanic  Institute.  

Beyond  this  initial  planning  the  entire  structure  of  the  project  and  activities  was   not  shared  with  the  academic  researchers,  other  than  to  say  that  there  would  be   a  joint  project  resulting  in  the  deployment  of  wave  energy  converters.    

 

Initial  designs  of  the  WEC  and  associated  systems  were  based  on  the   technological  knowledge  of  the  research  leader,  demonstrating  knowledge   translation  directly  into  the  artefact.  From  here  research  efforts  were  focused  on   known  weaknesses,  suggesting  a  strategic  decision  making  process.  The  project   followed  what  is  now  a  typical  ocean  energy  technology  development  path;  

through  laboratory  simulations,  scale  tests  in  a  wave  tank  and  full-­‐size  

prototypes  in  the  sea.  From  a  research  perspective  this  is  clearly  an  appropriate   method  of  development,  at  least  in  terms  of  what  can  be  funded:  laboratory   simulations  are  far  cheaper  than  full-­‐scale  sea  deployments  for  example.  

 

From  an  organisational  structure  view  there  are  some  curious  points  to  consider.  

Although  from  a  typically  hierarchical  industrial  company,  the  research  leader   chose  instead  to  create  a  flat  organisation  with  a  single  strong  head,  a  structure   later  referred  to  by  one  of  his  PhD  students  as  a  little  like  coming  together   around  the  fabled  round  table.  Aside  from  her  assertion  that  the  buoy  was  the   round  table  in  this  scenario,  the  analogy  is  surprisingly  reflective  of  the  problems   reported  with  such  an  arrangement.  Researchers  report  a  lack  of  communication   when  they  are  not  drawn  together  around  a  decision  to  be  made  and  as  a  result   work  and  previously  erroneous  research  ideas  have  often  been  repeated,   wasting  resources.    

 

So  to  return  to  the  question  of  how  knowledge  translation  for  technology   commercialization  processes  could  be  understood  in  terms  of  the  organization   properties  of  so  called  boundary  objects  and  standardized  packages.  Looking  at   the  wave  project  there  are  three  distinct  classifications  to  be  made:  the  

knowledge,  the  artefacts,  and  the  ideal.      

   

Knowledge    

One  of  the  researchers  described  how  she  moved  between  sub-­‐groups  in  the   university,  asking  questions  to  gain  the  information  she  needed  for  her  own   research.  Taking  small  parts  of  knowledge  here  and  there,  she  gathered   incomplete  and  simplified  data,  just  enough  to  continue  her  own  work.  

Knowledge  could  then  be  said  to  be  partially  transferred  or  disseminated   throughout  the  researchers,  but  never  fully  so.  This  partial  knowledge  transfer   also  occurred  between  the  university  and  Oceanic  Institute,  with  Oceanic  

(13)

Institute  taking  neatly  packaged  research  results  and  applying  it  to  their  own   technology  development,  partly  due  to  a  limitation  in  technical  competency;  

Oceanic  Institute  just  did  not  have  the  same  depth  of  knowledge  as  the  academic   researchers,  being  composed  of  Masters  students  and  individuals  with  industry   experience  in  marketing.  This  would  not  be  such  a  problem  if  Oceanic  Institute   had  the  necessary  competencies  to  understand  the  knowledge  in  full,  but  due  to   having  limited  information  it  was  difficult  for  Oceanic  Institute  to  independently   develop  the  technology  for  the  market,  and  lately  limited  packages  (not  to  be   confused  with  standardized  packages)  of  knowledge  have  resulted  in  mistakes   being  made  by  Oceanic  Institute.  To  solve  this  problem  an  individual  was  placed   to  bridge  the  two  organisations  and  enable  transfer  and  translation  of  

knowledge.  This  individual  could  be  anybody  with  the  required  technical   knowledge  and  seniority,  and  varies  depending  on  the  issues  to  be  addressed.    

 

This  packaging  of  knowledge  raises  some  questions.  Firstly,  if  knowledge  is   produced  by  one  organisation  and  summarised  into  a  form  ready  for  industrial   application,  but  missing  the  detailed  scientific  understanding,  could  it  be  called  a   boundary  object?  Once  in  the  boundary-­‐crossing  form  the  knowledge  is  no   longer  used  by  the  academic  researchers  and  in  fact  requires  extra  knowledge  to   be  added  should  problems  arise.    

   

Artefact    

In  the  beginning  of  the  project,  researchers  imagined  the  wave  energy  

converters  as  an  artefact,  but  were  not  entirely  sure  how  they  could  traverse  the   industry-­‐academia  border  and  in  what  form  they  might  do  this.    The  artefacts  are   often  moved  between  Uppsala  University  and  Oceanic  Institute.  One  researcher   talked  of  an  example  where  damaged  buoys  belonging  to  Uppsala  University   were  repaired  at  facilities  owned  by  Oceanic  Institute  by  industry  workers.  As   boundary  objects  they  functioned  as  bargaining  power,  as  sometimes  money  is   exchanged  for  repair  services  and  sometimes  it  is  not.  In  another  example,  five   wave  energy  converters  were  produced  according  to  Uppsala  University  designs   by  Oceanic  Institute,  and  were  funded  by  an  outside  partner.  They  crossed  from   industry  to  academia  and  were  translated  from  industrial  products  to  research   tools,  related  to  entirely  differently  by  the  researchers  and  the  industrial   workers.    

    Idea    

The  final  part,  the  idea,  is  the  most  abstract  that  could  be  viewed  as  a  boundary   object.  It  is  not  a  physical  object,  nor  academic  knowledge.  Instead,  it  is  the   imagined  future  of  the  project  and  thus  perhaps  the  most  susceptible  to  the  risks   of  being  a  boundary  object:  to  be  changed  and  made  untenable  to  another  social   world.    Figure  6  is  perhaps  the  clearest  illustration  of  the  idea  in  boundary  object   and  standardized  package  form.  Making  the  assumption  that  utility  companies   only  require  the  understanding  to  use  the  technology  and  the  foreign  

universities  intend  to  build  on  the  knowledge,  it  could  be  said  that  the  idea  is  a  

(14)

boundary  object  when  considering  the  relationship  between  the  universities  and   the  utility  companies,  and  a  standardized  package  when  looking  at  the  

relationship  between  the  universities,  where  actors  are  from  different  

backgrounds  but  intend  to  work  across  organisational  boundaries  to  develop  the   technology.  Then  there  is  the  somewhat  more  political  perspective  where,  for   example,  it  might  be  seen  that  the  idea  of  the  wave  energy  converter  and  its   benefits  acts  as  a  boundary  object  between  geographic  regions,  used  in   negotiations  and  discussions  surrounding  for  example  climate  policy.    

   

Conclusion    

Here  we  could  find  evidence  of  knowledge  translation  from  industry  to  an  idea,   to  Uppsala  University  in  the  mind  of  the  research  leader  before  being  

disseminated  for  further  knowledge  creation  by  academics  and  a  spin-­‐off   company.  Finally,  knowledge  continues  to  transfer  between  the  university  and   Oceanic  Institute  in  both  directions  and  in  a  variety  of  forms,  either  through   learning  by  doing  or  through  packages  of  information  supported  by  a  technical   expert.  

 

Based  on  the  definitions  of  boundary  objects  and  standardized  packages  it  would   appear  that  this  case  not  only  demonstrates  their  existence,  but  also  to  some   extent  describes  their  intentional  creation.  In  the  “past”  drawings  there  are  signs   of  boundary  objects  being  planned,  with  many  questions  and  uncertainties   surrounding  their  nature  and  boundaries  across  which  they  should  span.  The   foundation  of  knowledge  as  the  boundary  object  is  created  within  the  academic   research  group,  with  researchers  specialising  in  their  own  knowledge  areas.  As   part  of  the  research  process  there  is  an  element  of  collaboration  between   research  specialities  and  knowledge  is  shared  between  them.  The  knowledge   shared  through  is  in  a  condensed  form,  as  the  depth  of  knowledge  required  by   the  knowledge-­‐acquiring  researcher  to  perform  their  research  is  far  less  than   that  of  the  original  knowledge  creator.  The  same  mechanism  takes  place   subsequently  across  the  industry-­‐academia  border,  as  engineers  at  Oceanic   Institute  do  not  require  the  same  depth  of  knowledge  as  the  knowledge  creators   at  Uppsala  University  to  build  the  technology  to  perform  within  the  same  

environment.  When  Oceanic  Institute  is  required  to  alter  the  technology,  either   for  a  change  in  operating  environment  or  in  attempts  to  create  a  cheaper   alternative,  they  do  not  have  the  requisite  depth  of  knowledge  to  make  such   adjustments.    

 

This  leads  on  to  the  individual  spanning  the  industry-­‐academia  border  to  try  the   problems  resulting  from  this  knowledge  deficit.  Then  the  question  presents   itself:  can  a  person  be  a  boundary  object  or  standardized  package?  Certainly  they   might  meet  some  of  the  criteria  mentioned  earlier,  but  without  further  study  it   would  be  speculative  guesswork  to  try  to  say.    

 To  return  to  the  issue  of  boundary  object  and  standardized  packages,  the  case   not  only  presents  an  argument  for  the  creation  of  both,  but  potentially  for  the   intentional  creation  of  both  for  specific  boundaries;  industry-­‐academia,  

(15)

academic-­‐academic,  research  group-­‐  finance  sources,  national,  etc.  This  potential   design  of  a  boundary  object  or  standardized  package  therefore  implies  another   type  of  work,  an  editing  of  the  complete  set  of  knowledge,  artefacts  and  ideas  to   suit  the  individual  relationship.  This  could  be  an  interesting  line  of  enquiry  to   follow  with  organisational  relationship  research,  for  example  the  combination  of   boundary  objects  and  standardized  packages  with  Industrial  Marketing  and   Purchasing  network  theory  could  offer  some  useful  insights  into  both.  It  could  be   interesting  to  look  at  how  boundary  objects  and  standardized  packages  are   treated  when  multiple  relationships  are  to  be  considered,  such  as  between  ABB,   Uppsala  University,  a  major  utility  company  and  a  foreign  university,  who  are  all   working  with  the  same  set  of  boundary  objects  and  standardized  packages.    

 

To  answer  this  question  it  could  be  useful  to  continue  asking  key  actors  to  try  to   describe  their  understanding  of  the  knowledge  utilised  within  the  relationships,   exploring  the  area  in  both  a  verbal  and  visual  manner.  To  support  research  into   this  area  it  could  also  be  valuable  to  try  to  assess  how  the  different  actors  

represent  the  knowledge  in  their  dealings  with  each  other  through  media  such  as   funding  applications  and  press  releases,  and  so  build  up  a  picture  of  the  

boundary  objects  and  standardized  packages  from  a  multitude  of  viewpoints.    

 

Overall,  it  seems  that  exploring  the  initial  research  question  through  visual   means  was  a  valuable  experience.  Participants  commented  that  they  were   thinking  of  their  work  in  a  different  way,  and  reported  being  interested  in  any   results  arising  from  their  drawings.  There  were  also  limitations  with  this   approach,  part  of  which  resulted  from  asking  the  researchers  to  illustrate  their   past  understanding  of  the  project.  Several  seemed  to  find  this  difficult  to  do,   explaining  that  they  had  since  come  to  know  the  project  was  different  to  their   initial  perceptions  and  that  they  were  not  sure  they  were  providing  an  accurate   interpretation  of  their  own  past  viewpoints.  In  addition  they  found  it  difficult  to   illustrate  what  they  meant  literally,  and  so  relied  on  metaphors  (such  as  the   image  of  the  buoy  as  the  round  table)  and  verbal  cues,  so  from  a  purely  visual   research  methods  approach  this  study  was  not  successful.  In  conjunction  with   verbal  data  though  the  interviews  and  drawings  provided  a  depth  of  information   not  previously  conveyed  during  verbal  interviews  and  meetings.    

 

 

     

(16)

 

References    

Akrich,  M.,  Callon,  M.  &  Latour,  B.,  (2002).  The  key  to  success  in  innovation  part  I:  

the  art  of  interessement.  International  Journal  of  Innovation  Management  Vol.  6,   No.  2  (June  2002)  pp.  187–206  

 Bourque,  L.  (1971).  Language,  Society  and  Subjective  Experience,  Sociometry,  Vol.  

34,  No.  1  (Mar.,  1971),  pp.  1-­‐21.    

 

Bucher,  R.  (1961).  Professions  in  process:  American  Journal  of  Sociology,  Vol.  66,   No.  4,  pp.  325-­‐334.    

 

European  Commission,  2012,  EU  Support  for  Ocean  Energy,  (Online)  Available  at:  

http://ec.europa.eu/research/energy/eu/research/ocean/support/index_en.ht m,  Accessed  [Accessed  July  6th  2012].  

 

European  Commission,  2012,  Ocean  Energy,  (Online)  Available  at:  

http://ec.europa.eu/research/energy/eu/research/ocean/index_en.htm   Accessed  [Accessed  July  6th  2012].  

 

Fujimura,  J.  (1992)  Crafting  science:  Standardized  packages,  boundary  objects,   and  "translation."  In  Science  As  Culture  And  Practice,  edited  by  Andrew  Pickering,   168-­‐211.  Chicago:  University  of  Chicago  Press.  

 

Glaser,  B.  G.,  &  Strauss,  A.  L.  (1964).  Awareness  Contexts  and  Social  Interaction.  

American  Sociological  Review,  29(5),  669–679.  

 

Guston,  D.  (2001).  From  Boundary  Objects  to  Boundary  Organizations,  Science,   Technology,  &  Human  Values,  Vol.  26,  No.  4,  pp.  399-­‐408.    

 

Harper,  D.  (1988).  Visual  sociology:  Expanding  sociological  vision.  The  American   Sociologist,  19(1),  54–70.    

 

Henderson,  K.  (1991).  Flexible  Sketches  and  Inflexible  Data  Bases:  Visual   Communication,  Conscription  Devices,  and  Boundary  Objects  in  Design   Engineering.  Science,  Technology,  &  Human  Values,  16(4),  448–473.    

 

Hockey,  J.,  Collinson,  J.  A.,  (2006).  Seeing  the  way:  visual  sociology  and  the   distance  runner's  perspective,  Visual  Studies  -­‐  Volume  21,  Issue  1  

 

Latour,  B.,  (1987)  Science  In  Action:  How  To  Follow  Scientists  And  Engineers   Through  Society,  Cambridge,  MA,  Harvard  University  Press  

 

MacDougall,  D.  (1997).  The  visual  in  anthropology.  In:  Banks,  M.,  1997,   Rethinking  visual  anthropology,  London,  pp.276-­‐295  

 

Margolis,  E.  (1998),  Picturing  labor:  A  visual  ethnography  of  the  coal  mine  labor   process  1  -­‐  Visual  Sociology  -­‐  Volume  13,  Issue  2.    

(17)

 

Pink,  S.  (2008).  Mobilising  Visual  Ethnography:  Making  Routes,  Making  Place  and   Making  Images.  Forum  Qualitative  Sozialforschung  /  Forum:  Qualitative  Social   Research,  9(3).  

 

Ruby,  J.  (2005)  The  last  20  years  of  visual  anthropology  –  a  critical  review,  Visual   Studies,  Volume  20,  Issue  2  

 

Star,  S.  L.,  &  Griesemer,  J.  R.  (1989).  Institutional  ecology,translations“  and  

boundary  objects:  Amateurs  and  professionals  in  Berkeley”s  Museum  of  Vertebrate   Zoology,  1907-­‐39.  Social  Studies  of  Science,  19(3),  387–420.  

 

Urciuoli,  B.  (1995).  Language  and  Borders.  Annual  Review  of  Anthropology,  24,   525–546.  

   

Interviews    

Castellucci,  V.,  2012,  Interviewed  by  Nina  Fowler,  video,  Uppsala,  29th  May  2012    

Leijon,  M.,  2012,  Interviewed  by  Nina  Fowler,  video,  Uppsala,  31st  May  2012    

Rahm,  M.,  2012,  Interviewed  by  Nina  Fowler,  video,  Uppsala,  20th  June  2012    

Sjökvist,  L.,  2012,  Interviewed  by  Nina  Fowler,  video,  Uppsala,  28st  May  2012    

References

Related documents

If the share of social television viewing is considered for multi-person households at the peak of Prime Time 21:00 the average share is in 2008 of 66 percent of the total

Purpose: The purpose of this study is to investigate the usefulness of accounting information presented in financial reports, as a part of banks’ information need in the

Following excessive rigging of the December 1964 elections in the Western Region, communities organised violent resistance to the theft of their mandate following

(2013) found that fear and pressure often make employees avoid taking action or trying something new if the consequences could be severe. The study also revealed that fear can

By applying the qualitative strategy with a focus on four case companies (three are from Sweden, one is from China), we conduct a cross case analysis and the

Om datorsystemet skulle drivas i detta läge urladdas batterierna i onödan För att förhindra detta används en kontrollmodul som bestämmer när UPS- modulen skall vara aktiv eller

In general, Internet celebrity relies on social media platforms in order to gain fame and notoriety through the online community, and the active participants of these virtual

Compared with the neighbouring more dense populations peak density platelets again demonstrated less platelet bound fibrinogen in conjunction with lower intracellular CD40L