• No results found

New results on the numerical stability of the stochastic fluid flow model analysis

N/A
N/A
Protected

Academic year: 2022

Share "New results on the numerical stability of the stochastic fluid flow model analysis"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

Stochastic Fluid Flow Model Analysis

Markus Fiedler 1

andHolgerVoos 2

1

UniversityofKarlskrona/Ronneby

Dep.ofTelecommunicationsandSignalProcessing (ITS)

S-37179Karlskrona,Sweden

phone:+46-708-537339, fax:+46-455-385667 markus.fiedler@its.hk-r.se

2

UniversityofKaiserslautern,InstituteofProcessAutomation

PO-Box3049,D-67653 Kaiserslautern,Germany

phone:+49-631-2054457,fax:+49-631-2054462,voos@eit.uni-kl.de

Abstract. Thestochastic uid owmodel(SFF)isoneoftheleading

modelsinperformanceevaluationfortele-anddatacommunicationsys-

tems,especially infastpacket-switching networksand ATM.However,

thenumerical analysisof the SFFis widelyconsideredto be unstable.

Inthis paper,someinvestigationsandresults arepresented concerning

thenumerical stability of the SFFanalysis also forlarge systemswith

nitebu er.Weidentifythemainsourceofthenumericalproblemsand

give hintshowtocircumventthem.Theusefulnessof di erent solution

methodsare comparedand the mostrobust methodsfor systemswith

largenumbersofsourcesandlargebu ersizesareidenti ed.

1 Introduction

Onepossiblemodelforperformanceevaluationincommunicationssystemsisthe

socalledstochastic uid owmodel(SFF). Itiswidelyused whendealingwith

fastpacket-switchedandATMnetworksbutalsoallowsperformanceanalysisin

anykindoftele-anddatacommunicationssystemincludingmobilecommunica-

tions.Firstpioneering work consideringtheSFFcan befoundin [8].In[1],an

eleganttreatmentofa nite numberofhomogeneouson-o uidsourceswhose

streamswereconcentratedbyamultiplexerwithin nitebu erispresented.In

1984,Kostenpresentedanexpansionofthat modeltoheterogeneoustraÆc[9],

andin1988,Tuckerpublished theformalwayofhowtotreat nitemultiplexer

bu ers [17].The main advantage of the SFF is the computational complexity

whichisindependentofthebu ersize[12].

However, the analysis of the SFF is widely considered to be numerically

unstable. Indeed, the solutioncontainscomponents that are exponentiallyin-

creasingwiththebu ercontentinthecaseoflimitedbu ersize[8],[1],[17].For

that reason andthe fact that no closed-formsolutionsexist,most work in the

1990'sdealswithbu ersofin nitesizeorapproximationsofthesolutionbased

upon that assumption. In 1991, Nagarajan et al [13] reported results for 130

(2)

unable to obtain resultsfor large-sizeproblems due to numericalinstability of

theirsolutionmethod.InspiteofthesediÆculties,veryfewmaterialexist that

discussesthesenumericalproblemsindetail.

Therefore,thispaperclosesthatgapbetweentheoryandnumericalpractice

fortheclassicalspectralmethodthatisbasedoncomputinganeigensystem(spec-

traldecomposition andondeterminingthecoeÆcientsassociatedtothespectral

components.Wearegoingtodemonstratehowstablethespectralmethodactu-

allymightperformevenforlargesystemswith nitebu ersifsomequitesimple

rules are taken care of. In section 2, we describe the model and the notation

that is used throughoutthis paper.Section 3dealswith themain stepsof the

stochastic uid ow analysis. Section 4 introduces the numerical methods to

solve the system of linear equations, which is necessaryto adapt the solution

ofthesystemofdi erentialequationstotheboundaryconditions.Furthermore,

somespecialimplementation issuesare proposed.Section 5presentsnumerical

resultsand discusses thefeasibility of di erentnumerical methods forsystems

with homogeneousand heterogeneous sources. Section 6summarizes themain

resultsandgivesanoutlookonfuturework.

2 The stochastic uid ow model

TheSFFunderinvestigationistheclassicalmodelwhichcanbefoundinmany

publications.WeassumeN on-o uidsourcesthatalternaterandomlybetween

an on state with peak cell rate h and an o state, both of exponentiallydis-

tributed duration. Thus, a discrete-valued rate process S is formed with n

S

statess

i

and ow intensities R 2fr

i

g;i 2f0;:::;n

S

1g. Inaddition, we as-

sume a uid bu er of nite size K and an outlet (= server) with capacity C.

ThedynamicoftherateprocessSisdescribedbyanirreducibleMarkovchain,

representedbythein nitesimalgeneratormatrixM,whichalsodeterminesthe

state probabilities 

i

. Each statehas a drift valued

i

= r

i

C, depending on

whichthestatesareclassi edin

{ over-loadstatesS o

=fi

d

i

>0g;

{ equilibriumstatesS e

=fi

d

i

=0g;

{ under-loadstatesS u

=fi

d

i

<0g:

ThesevaluesarecollectedinthesocalleddriftmatrixD=diag [d

i

].Thematrix

R = diag [r

i

] is called rate matrix. We denote the aggregatestate space with

S =S o

[S e

[S u

.Thenon-o sourcesmightbehomogeneous,i.e.allhavethe

sameparameters,orheterogeneous.Inthelattercase,weformn

G

groups,each

containinghomogeneoussources.

3 The uid ow analysis

Thefollowingrepresentsasummary ofthe uid owanalysiswhichdealswith

the mostessentialpoints in the numerical context. Further information might

(3)

stationarydistributionfunctionF(x)withelementsF

i

(x)=PrfXx^state=

igisgovernedbythesystemof di erentialequations

D d

dx

F(x)=MF(x): (1)

From(1), aneigenvalue-eigenvectorproblem

z

q D'

q

=M'

q

(2)

with q 2 f0;:::;n

S

1g is obtained. Theeigenvalues z

q

and eigenvectors'

q

appearinthesocalled spectralcomponentsinthesolutionof(1),

F(x)= X

q2S a

q (K)'

q exp(z

q

x): (3)

Forhomogeneouson-o sources,eigenvaluesandeigenvectorsaregiveninclosed

form [1]. We normalizethe eigenvectorsin awaythat the sumof all elements

equalsone.If thesourcesare heterogeneous,theset ofeigenvaluesfz

q

ghas to

bedetermined numericallyfrom theinverseeigenvalueproblem

q (z

q )'

q

=



R 1

z

q M



'

q

with

q (z

q )=

n

G

X

j=1

(j)

q (z

q

)=C: (4)

Forgroupsofon-o sources,thefunctions (j)

q (z

q

)arealsogivenin closedform

anddependonthenumberofsourcesthatareoninstateqandbelongtogroupj.

Once z

q

isdetermined,the correspondingeigenvectorisacompositionof parts

that are determined for homogeneous groups. This composition is done using

Kroneckeralgebra.Moredetails mightbefoundin[15],[10].

The coeÆcients a

q

(K) in (3) are necessary to adjust the solution to the

boundaryconditions,whichdepend onthebu ersizeK:

F

i

(K)=

i

; i2S u

; F

i

(0)=0; i2S o

: (5)

Insertion of (5) into (3) leads to a system of linear equations that has to be

solvedinorder toobtainthecoeÆcients:

X

q2S u

[S o

a

q (K)'

qi exp(z

q K)=

i

; i2S u

X

q2S u

[S o

a

q (K)'

qi

=0; i2S o

(6)

Originally,casesd

i

=0hadtobeexcludedbychoosinganappropriatevalue

ofC[1].However,weareabletodealwiththoseequilibriumstatesinthesame

(4)

spondingcoeÆcientalsoescapesinthelimitwhilethecorrespondingeigenvector

approachesaunityvectorin q-direction:

lim

d

q

!0 a

q

(K)=0; lim

d

q

!0 '

q

=e

q

(7)

This means that in the limitd

q

! 0,there is no couplingbetween equation q

andtheotherequations. Thus, wearefreetoignorestateswithvanishingdrift

duringthesolutionprocedure.

3.1 Finitebu er case

The mostly ill-conditioned system of linear equations (6) of size (dimS u

+

dimS o

)  n

S

has to be solved numerically. Di erent methods to do this will

bepresented andevaluated in sections4and 5.Assoonasthe coeÆcientsare

determined,theprobabilitythat thebu eris fullinstateiisfoundtobe

u

i

(K)=

i lim

b!K F

i (b)=

i X

q2S a

q (K)'

q exp(z

q

K); (8)

see[17].Withthis, thelossprobabilitycanbeexpressedas

P

L (K)=

P

i2S o

u

i (K)d

i

E[R ]

: (9)

3.2 Bu er-less uid ow model

Thesocalled bu er-less uid owmodel isobtainedbypassingthebu er size

to the limit K ! 0. This case may be assumed if the bu er is much smaller

thanthemeanburstlengthandthus(almost)loosesitsin uenceonburstlevel.

Inthis case,the uid owanalysis describedbeforedoesn'tneedto becarried

out anymore which allows the computation of systems with very large state

spaces. Losshappens assoon aspositivedriftoccurs, so that theprobabilities

u

i

inthelossprobabilityformula(9)canbereplacedbythecorrespondingstate

probabilities

i :

P

L (0)=

P

i2S o



i d

i

E[R ]

: (10)

4 Numerical methods

In thissection we present aselectionof methods that havebeenused to solve

the system of linear equations (6) which is mostly ill-conditioned, not sparse,

not symmetrical and not positive de nite. In addition, the systems are large

(dependingonthesizeofthestatespaceS)andassociatedwithnumericalinput

errorsthat stemfromthenumericaldeterminationoftheeigensystem.Ouraim

is to checkhowthefollowingmethods work in spite ofthese diÆculties. Since

theclassi cationofthemethods isnotuniqueintheliterature,werefertothe

(5)

With direct methods, we describe \numerical methods that computesolutions

of mathematical problems in a xed number of operations" [16]. We focus on

methods that transform asystem of linearequations Ax = binto asystem

A 0

x=b 0

during aso-calledreductionphase. Herein,A 0

representsanupper

triangularmatrix.Then, thecomponentsof thesolutionvectorxarefoundby

backsubstitution.See[5],[16],[4]fordetailsonthefollowingmethods:

1. Gaussian elimination.The reductionis achieved by aspecial succession of

divisionsandsubtractionsofrows.Assume thatin stepithe rsti 1rows

havealreadybeentreated.Theelementsofrowiareobtainedby

a (i)

k l

=a (i 1)

k l a

(i 1)

k i

a (i 1)

ii a

(i 1)

il

k>i;l=1:::n: (11)

Theelementsa (i 1)

ii

arecalledpivots.

2. Gaussianelimination withpartialpivoting. Fromanumericalpointofview,

theelementsonthediagonalmightnotrepresentoptimal pivots.It canbe

shown that theabsolute valueof thepivot should be as large aspossible.

Hence,if apivot withlarger absolute value canbeobtained from another

rowin thesamecolumn,thenthecorrespondingrowsareinterchanged.

3. Gaussianeliminationwithfullpivoting.Here,anoptimalpivotissearchedin

rowsandcolumns.However,interchangingofcolumnsleadstointerchanged

elementsinthesolutionvector(asystemA 0

x 0

=b 0

appears), whichhave

tobere-changedafter backsubstitution.

4. Givens rotations. Thereductionis performed bymultiplying thesystemof

equationswithelementaryrotationmatrices,herebycancellingouttheele-

mentsinthelowertriangularpart.In[16],thismethodcanbefoundamong

projection methods.

5. Householdertransformation.Thismethodalsousestransformationmatrices

forthereductionphase.Fordetails,see[11].

Themethods3to5arestablewithregardtothealgorithmerror.

4.2 Iteration methods

Iteration methods try to approximate the solution by carrying out iterations,

consistingofacoupleofoperations,aslongastheapproximationx



hasnotyet

convergedtoadesiredextent.Startingfromx

(0)

=0,theresultofaniteration

servesasbasisfor thenextiteration, i.e. x

(i+1)

=f(x

(i)

).Toget apositive

de nite matrix instead of A that guarantees convergence [5], we rst apply

a so called Gaussian transformation by multiplying our system of equations

with the transposed matrix A T

from the left side, i.e. we treat the system

A T

Ax=A T

b.Seeagain[5],[16],[4]fordetailsonthefollowingmethods,

whichweuseinamoredirectway,aswe xthe(maximal)numberofiterations

(6)

x

(k +1)

i

=x

(k )

i +

"

a

ii

 0

@

b

i i 1

X

j=1 a

ij x

(k +1)

j

n

X

j=i a

ij x

(k )

j 1

A

(12)

with"=1.

2. Incomplete relaxation. The speed of the convergence of the Gauss-Seidel

method, which tries to minimize (= relax) the defect vector b Ax



completely, mightbeimprovedbyover-relaxationwith ">1.However,the

relaxation factor " has to be chosen carefully; it depends heavily on the

systemofequationsunderstudy.

3. Jacobi rotation. This method uses the same kind of rotation matrices as

Givens rotationsto \improve" thematrix A T

A by makingit diagonally

dominant.Thegradeofthisdominanceisspeci edbytherotationlimitand

therotationstopsassoonasthedesiredgradeisreached.Inthiswork,the

algorithm stops in any caseafter 1000iterations. Finally, adirect method

deliversthesolution.

All thesemethodsaresensitivetoroundingerrors.

4.3 Implementationissues

A proper numerical evaluation of the eigensystem has to be ensured in order

to keep the input error for the solution of the system of linear equations (6)

as small aspossible.Therefore, the eigenvaluesshould be obtained with great

precisionwhichisnoproblemforon-o sources,evenifanumericalsearchbased

on(4) wasperformed.Butalso theeigenvectors'

q

should bedetermined with

care even if the orders of magnitude of certain elements are extremely small.

Section5.3demonstrateswhathappensiftheprecisionoftheeigenvectorcalcu-

lationdrops.Notethatduetolim

di!0 z

i

=1,stateswithsmalldriftsmight

causenumericalunder-/over owin (3).But(7) showsthat thecontribution of

such components becomes arbitrarily small. Hence,they can be extracted be-

foresolvingthesystemoflinearequations(6). As oating-pointvariables with

doubleprecisionrange from about10 323

to about10 308

, wedeleted such

equations whose presence would probably leadto over owin column q due to

exp(z

q

K)>10 300

ortozerosduetoexp(z

q

K)<10 300

.Afterthisreduction,a

numberofn 0

S

equationsisleft.

As public and commercial tools for numerical mathematics mostly do not

allow theuser to look inside their implementation, wewroteowncodefor the

solution methods in C++ with great care to avoid bad numerical surprises.

Toavoidexcessivememoryconsumptionand executingtimes(c.f. section5.3),

oating-point variables with double precision (8 Bytes) were used instead of

(7)

Inthissection, wepresentthequalityofnumericalresultsforlossprobabilities

inquitelargesystemswithhomogeneousandheterogeneoussources,whichhave

beenobtainedoncomputersofthetypesSunSparcStation10and20(architec-

turesun4m).Resultsthatwereobviouslywrong,e.g.negativevalues,havebeen

markedwith\|".

Inrelationtothemeanburstsizesoftheon-o sourcesunderconsideration,

bu ersizesareclassi edasfollows:

1. XS:Verysmall bu erthat hasnoin uence onburstlevel.

2. S:Smallbu erof 0.1timestheminimalmeanburstsize.

3. M:Medium-sizedbu eroftheminimalmeanburstsize.

4. L:Largebu erof10timestheminimalmeanburstsize.

5. XL:Verylargebu erof100timestheminimalmeanburstsize.

Incase1,numericalresultsmightbecomparedwithverystableresultsprovided

bythebu er-less uid owmodel.Therefore,resultsdeliveredbythe uid ow

analysisareregardedtobegoodenoughifthecorrespondingrelativeerrordoes

not surpass0.1 %.However, in the cases2 to 5, uid ow simulations had to

beused inorderto obtainreferencevalues.Here,theerrortolerance wasset to

the95% con denceinterval,whosesizewasmostlylessthan4%of thecorre-

spondingaveragevalue.Amethodforsolvingthesystemoflinearequations(6)

isconsideredasapplicableforoneofthefollowingsystemsifthecorresponding

errortoleranceiskept.

5.1 Homogeneous system

The homogeneous system under study consists of N 2 f50;100;:::;600g quite

bursty on-o sources with amean-to-peak bit rate ratioof 0.1. These sources

are muchmore bursty and thus morecritical than thevoicemodelin [7]. The

capacityofthemultiplexerwaschoseninawaythattheloadequals0.8;thesize

ofthestatespaceisn

S

=N+1.

XS bu er:Table1comparesresultsobtainedbyusingonedirectandtwoiter-

ativemethodswithreferenceresultsobtainedfromthebu er-lessanalysis.The

Table1.Lossprobabilitiesobtainedwithsomesolutionmethods,givenhomogeneous

sourcesandaverysmallbu er.

N Fullpivot. Gauss-Seidel Incompl.relax.(factor)Jacobi/Bu er-less

100 3:738910 2

3:623510 2

3:695510 2

(1.9) 3:738910 2

200 1:376810 2

1:353210 2

1:371110 2

(1.9) 1:376810 2

300 6:687210 3

6:606910 3

6:687510 3

(1.9) 6:687210 3

400 3:485210 3

3:459010 3

3:485110 3

(1.4) 3:485210 3

500 1:987510 3

1:979910 3

1:989410 3

(1.2) 1:987510 3

600 | 1:147510 3

1:147510 3

(1.0) 1:148010 3

(8)

Householder method already fails if the number of sources exceeds 300. The

Gauss-Seidel method produces better results the more the size of the system

increases.Theincompleterelaxationmethodleadsto furtherimprovement,but

only ifthe relaxationfactor hasbeenoptimized before. As there are reference

valuesavailable,wechosethebestresultforeachN basedonrelaxationfactors

2f1:0;1:1;:::;1:9g.TheJacobimethod witharotationlimitof0.9reproduced

the reference values exactly for any number of sources, no matter which di-

rectmethod is usedat itsend. For anumberof600sources,onlytheiteration

methodsarestillapplicable.Table2summarizesthecasesinwhichthedi erent

methodsproducedresultswithinthede nederrortoleranceof0.1%;thesecases

aremarkedby\?".

Table 2.Usefulness of the solutionmethods given homogeneoussources and avery

smallbu er.

Gausswithoutpivoting ? ? ? ? ? ? ? ? ?

Gausswithpartialpivoting ? ? ? ? ? ? ? ? ? ? ?

Gausswithfull pivoting ? ? ? ? ? ? ? ? ? ? ?

Givensrotations ? ? ? ? ? ? ? ? ? ? ?

Householder ? ? ? ? ? ?

Gauss-Seidel ?

Incompleterelaxation ? ? ? ? ? ? ?

Jacobirotation ? ? ? ? ? ? ? ? ? ? ? ?

Numberofsources 100 200 300 400 500 600

M bu er: Table3showssomeresultsobtainedwithdirectmethods andcom-

pares them withsimulationresults. For 550sources, the Gaussian elimination

Table 3.Lossprobabilitiesobtainedwithsomesolutionmethodsgivenhomogeneous

sourcesandamedium-sizedbu er.

N Gauss Fullpivot. Givensrot. Simulation

300 3:554310 3

3:554410 3

3:554410 3

(3:57010:1202)10 3

350 2:504510 3

2:504410 3

2:504410 3

(2:49810:0864)10 3

400 1:799210 3

1:798010 3

1:798010 3

(1:78190:0553)10 3

450 1:313010 3

1:313310 3

1:313410 3

(1:30340:0550)10 3

500 9:683810 4

9:702610 4

9:730210 4

(9:71760:3259)10 4

550 7:616410 4

7:242810 4

7:223010 4

(7:06910:2103)10 4

600 | | 5:456010

4

(5:27170:2138)10 4

withoutpivoting deviatesobviously,while Givensrotationsistheonlymethod

that manages 600 sources with acceptable precision. As in the previous case,

theHouseholdermethodisnotabletotreatmorethan300sources.Amongthe

iterativemethods, most of the Gauss-Seidelresults(not shown) lie within the

corresponding con dence interval. Due to the lack of reference values, i.e. the

possibility to optimizetherelaxationfactor,the incompleterelaxationmethod

(9)

are summarized in Table4, where \?" stands for aresult that lies within the

correspondingcon denceinterval.

Table4.Usefulnessofthesolutionmethodsgivenhomogeneoussourcesandamedium-

sizedbu er.

Gausswithoutpivoting ? ? ? ? ? ? ? ? ? ?

Gausswithpartialpivoting ? ? ? ? ? ? ? ? ? ? ?

Gausswithfull pivoting ? ? ? ? ? ? ? ? ? ? ?

Givensrotations ? ? ? ? ? ? ? ? ? ? ? ?

Householder ? ? ? ? ? ?

Gauss-Seidel ? ? ? ? ? ? ? ?

Jacobirotation ? ? ? ? ? ? ? ?

Numberofsources 100 200 300 400 500 600

L bu er: ForL bu er, thebehaviorof the direct methods is quite similar to

thatintheMbu ercase.Wecon neourselvestothesummarythatispresented

inTable5.TheGauss-SeidelmethodshowslargerdeviationsasintheMbu er

Table 5. Usefulness ofthesolutionmethodsgivenhomogeneous sourcesand alarge

bu er.

Gausswithoutpivoting ? ? ? ? ? ? ? ? ?

Gausswithpartialpivoting ? ? ? ? ? ? ? ? ?

Gausswithfull pivoting ? ? ? ? ? ? ? ? ? ? ?

Givensrotations ? ? ? ? ? ? ? ? ? ? ? ?

Householder ? ? ? ? ? ?

Gauss-Seidel ?

Jacobirotation

Numberofsources 100 200 300 400 500 600

case;merelytheresultfor 300sourceslieswithin thecorrespondingcon dence

interval,while themethodfailsfor morethan350sources.TheJacobirotation

wasnotabletoproduceanymeaningfulresult.ForLbu er,thedirectmethods

seemtobemuchbetterapplicablethantheconsiderediterationmethods.

5.2 Heterogeneoussystem

Here,weassumetwogroupsof30on-o sources,each withthe samemean bit

rateanddi erentparametersasfollows:

1. Mean-to-peak bit rate ratio of 0.5 (less bursty), ratio of bu er and mean

burstsizeK =hb

1

2f0;1;10;100g;

2. Mean-to-peakbit rate ratioof 0.1 (morebursty), ratioof bu erand mean

burstsizeK =hb

2

2f0;1;10;100g.

For XS bu er, each direct method is able to compute the corresponding

(10)

lessmodel. ThisbehaviormightbeinterpretedasasignalfortheGauss-Seidel

method's sensitivitytoinputerrors.

Table 7 shows results for the Gaussian methods for di erent bu er sizes.

The result for XLbu er is too small to be compared with simulation results.

A comparison with the upper bound for the loss probability that is based on

thedominanteigenvalue[6],[2]excludestheresultsobtainedwiththeGaussian

methodwithoutandwithpartialpivoting;thesameisvalidforGivensrotations

resultsthat arenotshownexplicitly. As thisupper bound isknownto overes-

timate thereal resultby severalorders of magnitude,the resultobtainedwith

the Gaussian method with full pivoting seemsreasonable. This method seems

tobebestamongthedirectmethodswhendealingwithsmallprobabilities.On

theotherhand,HouseholderandGauss-Seidelfail incasesoflargebu ersizes.

Table8showsasummary.

5.3 The role ofthe eigenvectors

In this section, we show to which extent the accuracy of the eigenvectorsdi-

rectlyin uencesthenumericalstabilityof thesolutionmethods.Here,onlythe

homogeneous systems need to be investigated (in the heterogeneous case, the

eigenvectorsareobtainedasacomposition ofparts thataredeterminedforho-

mogeneousgroups).Sinceinthis homogeneouscaseclosedformuladescriptions

of the eigenvaluesexist, theycan be computed with great precision. However,

duringthecalculationoftheeigenvectors,hugedi erencesintheordersofmagni-

tudeoccur:thereareproductsthatcontaintermscausingnumericalover owas

wellasnumericalunder owwhiletheresultingproductwouldlieinthetractable

rangeconcerningtheorderofmagnitude.Inoursystem,theuseof oating-point

numberswithdoubleprecision(8Bytes)within thatcriticalproductrestricted

thenumberofsourcesto100.

A rst improvementwas reached by a separate treatment of base and ex-

ponentofeigenvectorelementsintwo oating-pointnumberswithdoublepre-

cision, i.e. a kindof logarithmiccalculation within the critical product. Using

this trick, thenumberof sourcescould beraisedto 250.Theprice tobe paid:

Onaverage,thecalculationoftheeigenvectorstookmorethan10timesaslong.

However,theresultsforupto600sourcesthatwerereportedintheprevioussec-

tion havebeen obtainedusing long double oating-point numbers (16Byte).

Compared to the useof the standarddoubledata type,the speed went down

Table6.LossprobabilitiesobtainedwiththeGauss-Seidelmethodforheterogeneous

sourceswithdi erentmeanburstsizesandverysmallbu er.

hb

1 hb

2

Gauss-Seidel Reference

10 10 2:428810 3

2:437610 3

10100 2:426010 3

2:437610 3

100 10 2:448910 3

2:437610 3

3 3

(11)

neoussourcesandMtoXLbu ers.

K

hb

1 K

hb

2

Nopivoting Partialpivot. Fullpivot. Sim./Approx.

1 1 4:264810 4

4:264810 4

4:264810 4

(4:21320:1059)10 4

10 10 1:141510 7

1:141510 7

1:141510 7

(1:12400:0819)10 7

100100 1:077810 18

7:500610 19

1:512010 37

Approx.:1:299210 33

Table 8. Usefulnessofthesolutionmethodsfor di erent bu ersizesgivenheteroge-

neoussources.

Gausswithoutpivoting ? ? ?

Gausswithpartialpivoting ? ? ?

Gausswithfullpivoting ? ? ? ?

Givensrotations ? ? ?

Householder ? ?

Gauss-Seidel ? ?

Bu ersize: XS M L XL

byafactorofmorethan100.Ingeneral,thee ectofinputerrorsonnumerical

stabilityseemto growasthebu erbecomeslarger.Due to(3), thisisnotsur-

prising:Theeigenvectorsaremultipliedbyexponentialfunctionscontainingthe

bu ersize.Especiallyiterationmethodsseemto su erfromthisproblem; even

the powerful Jacobirotation method fails. The Gaussian elimination with full

pivoting seemstobethebest possiblemethodto getalongwiththisproblem.

6 Conclusions

Inthispaper,wepresentedsomerecipesonhowtostabilizethestochastic uid

owanalysis numericallyif nite bu ers and theclassicalspectralmethod are

used. The most essential step is to determine the eigensystem as precisely as

possible.Thisshouldbedonetokeeptheinputerrorforthenextsteplow,which

isthesolutionofasystemoflinearequationsinordertoadaptthesolutionofthe

systemofdi erentialequationstotheboundaryconditions.Beforesolvingthat

system,thoseequationsthatbelongtostateswithverysmalldriftvaluesshould

beextracted.Thesestateshavenosigni cantin uenceonthesolutionbut may

cause numerical under- or over ow. To solve the system of linear equations,

the solution method has to be chosen very carefully. Considering the list of

possiblesolutionmethodsthatweretestedinthiswork,theuseoftheGaussian

algorithmwithcompletepivotingledtothebestresults,followedbytheGivens

rotationsmethod.Althoughthesummarytablespresentedinsection5arevalid

only for the corresponding parameter settings, they re ect the experience we

also made with other systems. Altogether, the proposed measures lead to a

numericalperformanceof thestochastic uid owmodelanalysis thatis much

betterthanitsreputation.Futureworkonmumericalproblemsinthe uid ow

modelcontextshouldalsoconsiderthematrix-analyticsolutionbyRamaswami

(12)

[1] D. Anick, D. Mitra and M. M. Sondhi. Stochastic theory of a data-

handlingsystemwithmultiplesources.The BellSystem TechnicalJournal,

61(8):1871{1894(1982).

[2] A.I.ElwalidandD.Mitra.E ectivebandwitdhofgeneralMarkoviantraÆc

sourcesandadmissioncontrolofhighspeednetworks.IEEE/ACMTransac-

tionsonNetworking,1(3):329{343(1993).

[3] A.I. Elwalid and D. Mitra. Statistical multiplexing with loss priorities in

rate-basedcongestioncontrolofhigh-speednetworks.IEEETransactionson

Communications,42(12):2989{3002(1994).

[4] Encyclopaediaofmathematics.Kluwer,1995,ISBN1-55608-010-7.

[5] D.K.FaddeevandV.N.Faddeeva.Computationalmethodsoflinearalgebra.

Freeman,1963.

[6] R.Guerin,H.AhmadiandM.Naghshineh.Equivalentcapacityanditsap-

plicationtobandwidthallocationinhigh-speednetworks.IEEEJournalon

SelectedAreasinCommunications,9(7):968{981 (1991).

[7] H. He es and D.M. Lucantoni. A Markov modulated characterization of

packetized voiceand datatraÆc and related statistical multiplexerperfor-

mance. IEEE Journal on Selected Areas in Communications, 4(6):856{867

(1986).

[8] L.Kosten.Stochastictheoryofamulti{entrybu er.DelftProgress Report,

SeriesF,1:10{18(1974).

[9] L.Kosten.Stochastictheoryofdatahandlingsystemswithgroupsofmultiple

sources. Proc. of IFIP WG 7.3 { TC 6 International Symposium on the

Performance of Computer Communication Systems, Zurich,1984, pp 321{

331.

[10] K.P. Kontovasilis and N.M. Mitrou. Bursty traÆc modelling and eÆcient

analysisalgorithmsvia uid- owmodelsfor ATMIBCN.AnnalsofOpera-

tionsResearch,49:279{323 (1994).

[11] P. Lancasterand M. Tismentzky.The Theory of Matrices, Second edition

withApplications.New York:AcademicPress, 1985.

[12] D.Mitra.Stochastictheoryofa uid owmodelofproducersandconsumers

coupledbyabu er.AdvancesinAppliedProbability,20:646{676 (1988).

[13] R.Nagarajan, J.F.Kurose andD. Towsley.Approximationstechniquesfor

computing packet loss in nite-bu ered voice multiplexers. IEEE JSAC,

9(3):368{377(1991).

[14] V. Ramaswami. Matrix analytic methods for stochastic uid ows. Proc.

ITC-16,Edinburgh,1999,pp1019{1030.

[15] T. Stern and A. Elwalid. Analysis of separable markov-modulated rate

models for information-handling systems.Advances in Applied Probability,

23:105{139(1991).

[16] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains.

PrincetonUniversityPress, 1994,ISBN0-691-03699-3.

[17] R.Tucker.Accuratemethodforanalysisofapacket-speechmultiplexerwith

limiteddelay.IEEETransactionsonCommunications,36(4):479{483(1988).

[18] T. Yang and D.H.K. Tsang. A novel approach to estimating the cell loss

probabilityinanATMmultiplexerloadedwithhomogeneouson-o sources.

IEEETransactionsonCommunications,43(1):117{126(1995).

References

Related documents

The temperature curve at the production point showed as similar behaviour to that of the base case scenario but with a delayed and lower peak of temperature, again as one might

This thesis aims to interpret the chromosphere using simulations, with a focus on the resonance lines Ca II H&amp;K, using 3D non-LTE radiative transfer and solving the problem

Using the same Survey of Income and Program Participation (SIPP) as Venti and Wise but for the year 1990, Mayer and Simons showed that more than six million elderly

Till skillnad från i Storbritannien där man främst haft ett designperspektiv på städers grönområ- den och förordar användandet av exotiska färg- glada örter (till exempel

The final section highlights five major conclusions with regard to the application of biodiversity in an urban context: (1) that all cities studied have adopted overall

In Paper II the genotoxicity of furan was assessed using two different micronucleus assays: the in vivo assay in mice also used in Paper I, and the in vitro

Figure 5.2.2: The left capture shows predicted values versus actual values in the Random Forest Balanced Model. The right capture shows predicted values versus actual values in

We discussed main steps in uid ow analysis of a trac concentrator as well as related numerical issues and presented results for waiting time quantiles and loss probabilities.