• No results found

Air resistance coefficients for estimation of exhaust emissions from road traffic : A literature survey

N/A
N/A
Protected

Academic year: 2021

Share "Air resistance coefficients for estimation of exhaust emissions from road traffic : A literature survey"

Copied!
44
0
0

Loading.... (view fulltext now)

Full text

(1)

er er o h <C co te Q @ < == A3. CB < "as &

=-Air resistance coefficients

for estimation of exhaust

emissions from road traffic

A literature survey UIf Hammarstrom 1' BC #) #49 tagten: E"? £9 etal ase) AQ yous.

Swedish National Road and Transport Research Institute

(2)

VTI meddelande 868A - 1999

Air resistance coefficients for estimation of exhaust emissions

from road traffic, a literature survey

UIfHammarstrb'm

Swedish NationalRoad and

(3)
(4)

Publisher Publication

VTI meddelande 868A

Published Project code

1999 80060

Swedish NationalRoad and

Project

'Transport Research Institute

cosr 319

Author Sponsor

UlfHammarstrOm Swedish Transport and Communications

Research Board (KFB) Title

Air resistance coef cients for estimation ofexhaust emissions from road traf c, a literature survey

I Abstract (background, aims, methods, result)

In order to estimate emission factors for road vehicles especially by means ofmechanistic simulation models, but even in some cases by measurements on chassis dynamometers, information about air resistance coef cients (CD) must be available.

The conclusion from this literature survey is that there are suf cient data for cars, ifmanufacturers datais

accepted as representative. For other vehicle types the available CD-data is not enough to estimate representative values of CD, and consequently representative emission factors cannot be estimated.

ISSN Language No. of pages

(5)
(6)

Foreword

This study has been included in a project with the title: COST 319 . The Swedish Transport and Communications Research Board (KFB) has nanced the project. Contact persons at KFB have been Tor Eriksson, Yngve Boye, Christine Wallgren and Claes Unge. UlfHammarstrom has been project leader at VTI.

VTI MEDDELANDE 868A

Prior to publication ofthis report, a scrutiny seminar was held with Lars Gardell, SCANTA, as reader.

Linkoping, September 1999 UlfHammarstrom

(7)
(8)

Contents

Summary ... .. 9 1 Introduction ... .. 11 2 Objective ... .. 13 3 Literature survey ... .. 14 4 Conclusions ... 2 1 5 List of references ... 23 6 List of symbols ... .. 24

Appendix 1: Drag coef cients ofpassenger cars from year model 1979 until year model 1996

Appendix 2: In uence ofthe various basic con gurations ofwind de ectors on the drag coef cient of standard truck and trailer units

Appendix 3: CD values and model speci cations for truck and trailer units

(9)
(10)

Air resistance coef cients for estimation of exhaust emissions from road traf c, a literature survey by Ulf Hammarstrom

Swedish National Road and Transport Research Institute (VTI) SE-58195 LINKOPING Sweden

Summary

There is a lack ofrepresentative data on air resistance coef cients. This probably implies a lack of represen-tative emission factors especially for commercial vehicles. These conclusions are based on a literature survey.

In order to estimate emission factors by means of mechanistic models or by use ofchassis dynamometers, different driving forces have to be estimated. One ofthese forces is air resistance. Air resistance is estimated by means of a function including the air resistance coefficient (CD). The air resistance function also includes cross sectional area, air density and resulting wind speed.

When describing the trend of exhaust emissions from road traffic, it may be necessary to start as far back as model 1960, ifthe base year is 1980, and continue model by model, year by year, at least up to the models oftoday. Are there enough CD values available for representative simulations of air resistance? An answer to this question is given based on a literature survey. The present situation could be described as being acceptable for cars, if manufacturers' data is accepted as representative, but probably not for other types of vehicles. However this situation is contrary to what is needed since there are normally measured emission factors available for cars to a much higher extent than for other vehicles.

VTI MEDDELANDE 868A

Of course there are CD values available for heavy vehicles but probably not for so many body shapes that representative emission factors can be estimated.

There are more CD values available for trucks than for buses. However the need of CD values for trucks is higher since the number ofalternative body shapes is much higher for trucks than buses.

To estimate representative CD values and air resistance it is also necessary to describe the effects of meteoro-logical wind. This effect depends on vehicle speed, wind speed etc. This means there are not only different CD values for different vehicle bodies, also the same vehicle body will have different CD values for different types of road corresponding to different average speeds. There is such a large effect due to meteorological wind that this effect has to be described.

This situation, with alack ofCD values, may correspond to a present situation without representative emission factors for heavy vehicles. There are probably no representative emission factor values available that include the effect of metereological wind. Of course estimated emission factors might by coincidence be representative.

(11)
(12)

1 Introduction

When using mechanistic models for describing fuel consumption, exhaust emissions etc. for road traf c different types of driving resistance have to be described. This need to describe driving resistance also exists when chassis dynamometers are used. Normally, emission factors for both light and heavy vehicles are based on chassis dynamometer measurements. If simulation of driving resistance on chassis dynamometers is based on coast down measurements on roads, measured emission factors may be representative. However this is probably not the normal situation.

Different types of resistance may be classi ed into external and internal resistance. Internal resistance is then: - bearing friction in the wheels

- the nal gearbox: mechanical losses oil friction losses - the main gearbox:

mechanical losses oil friction losses

° inertia ofengine rotating parts and other rotating parts after the engine

- engine friction - engine cooling fan ° accessories 0 wheel brakes.

External driving resistance then includes: 0 rolling resistance:

tyre on a smooth xed dry surface

extra resistance for other surface conditions extra resistance for side forces

- mass forces ° air resistance.

In order to simulate representative emission factors all these resistances have to be described with acceptable accuracy.

This paper is about air resistance. Air resistance may be expressed by:

FD: p/2xAxCD(B)xVI:

FD: air resistance (N)

p: air density (kg/m3)

A' cross sectional area (m2)

VR: resulting wind speed (m/s)

B: angle between the longitudinal axis of the

vehicle and resulting wind speed direction (°)

CD (B): air resistance coef cient as a function of (B).

VTI MEDDELANDE 868A

Air density may be expressed by:

p = 348.7 x TRL/(273.2 + TEMPL)

TRL: air pressure (bar)

TEMPL: air temperature (°C).

In the literature the air resistance coef cient is presented in three ways:

0 for B = 0, CD

° as a complete function of B, CD (B)

0 for an average of CD values representing all meteorological wind directions and vehicle speed levels, average (CD).

The in uence of B in CD (B) is demonstrated in Figure 2. This paper deals mainly with CD but average (CD) is also included owing to lack of data in general. The best alternative would be if CD (B) were available. This type of information is not commonly available. What is most important when compiling CD values is to give full information on what alternative the presented values represent. Is it all right to use average (CD) to estimate exhaust emissions? If engine speci c emissions (g/kWh) were independent of engine speed and torque the answer would be yes. However this is not the case i.e. in principle the correct way of simulating would be to repeat simulations for different wind speeds and directions. General comments about CD:

0 different year models have different CD and this normally decreases year by year

° CD for a certain year model could change over time by the addition of wind de ectors etc.

0 CD for one vehicle can change day by day due to: use oftrailer

load

meteorological wind speed and direction. Since the air resistance function also includes cross sectional area of the vehicle this type of data is as important as CD. Driving statistics on vehicle speed, (V), are ofcourse most important but will not be discussed in this paper.

In order to describe exhaust emissions for a base year and a target year by means of mechanistic models there must be CD values available year model by year model for the vehicle eet each year.

To estimate representative CD values for different vehicle types for the total vehicle eet in a country or a region, CD values for different models must be combined with sold car statistics or information in the central vehicle register. The most correct alternative would be to develop

(13)

weight factors representing randomly selected vehicles out on the roads. This would correspond to weight factors developed om frequency in registers and annual mileage. Another alternative with reduced representativeness may be to estimate LL50 values directly from values presented in the literature.1

The objective of COST 319 is to list all data needed to estimate representative exhaust emissions. CD values must be regarded as an important part of these estimations. In order to list what is available VTI has performed a literature survey.

Available references may be classi ed into: ° measurements in wind tunnels

° coast down tests

0 estimated data based on other reports

° values calculated by means of special computer programs.

For all four types there may by a classi cation into: ° scienti c reports

0 information from manufacturers of road vehicles ° rough estimations from users ofCD data.

Ofmost interest should be CD values from measurements presented in scienti c reports. Data from wind tunnel measurements should have the highest accuracy. Accuracy may be in uenced by vehicle bodies of other scales than 1:l. Another problem may be that there is no speed difference between the vehicle body and the ground. To take these problems into consideration, correction factors are used. Do these correction factors result in represen-tative values?

Coast down tests mean that the retardation process of a vehicle with the gearbox in neutral position is recorded. The test site should be a straight horizontal section. Meteorological wind should be as close to zero as possible unless the effect of meteorological wind will be included in the estimated CD.

1 H50 : the 50-percentile for collected data. This will not normally correspond to the 50-percentile of the vehicle eet in a strict statistical

sense.

12

The retardation level in a coast down test is in uenced by: - vehicle mass

- moment of inertia of wheels ° air resistance

- rolling resistance

- mechanical losses in the transmission 0 oil friction losses in the transmission ° wheel brakes even ifnot used 0 the road surface

° the road gradient which should be zero but never will be

° meteorological wind.

When coast down tests are used, some problems arise, mainly in regard to the isolation of air resistance and CD from other resistance. A traditional way oftreating coast down tests is to regard only rolling and air resistance. Air resistance is described as a function ofthe speed squared and rolling resistance as a constant. In some cases rolling resistance may be described with a function including speed with the exponent = 1. It is argued that air resistance and rolling resistance must not include speed with the same exponent. In reality both rolling and air resistance are mctions ofspeed with many speed terms in each case. To isolate CD completely from rolling resistance with this method is probably impossible. The question then is how large the error will be? Obviously, an analysis which only includes air and rolling resistance is very simpli ed and will give a systematic overestimation since transmission losses are included in estimated parameter values. If the moment ofinertia of the wheels is not included this will contribute to underestimation ofparameter values.

If exhaust emissions are estimated on the basis of driving forces it is not necessary to separate driving resistance into different types. If resistance is based on coast down measurements the total resistance function can be used. Then exhaust emissions will represent the vehicle status during coast down i.e. the same weight, the same meteorological wind etc.

(14)

2 Objective

The objective of this study is to list available data or data sources for air resistance coefficients of road vehicles. The list should be so complete that it includes representative CD values for the following situations: 0 all road vehicle types

° all changes by year models for all vehicle types 0 all changes of extra equipment

0 all changes oftrailers - all changes ofload.

VTI MEDDELANDE 868A

Information should obviously also be available on how the effects ofmeteorological wind are to be described. Data must also have at least acceptable accuracy. The nal objective of compiling CD data is to increase the representativeness of emission factors from both simulations and chassis dynamometers.

(15)

3 Literature survey

One of the most complete works on air resistance is probably (Hucho, 1987). It covers most of the aspects in the eld. The reference includes all types ofroad vehicles. However the main focus is on cars.

Until 1977 CD could be regarded as being on a constant level. There is a decrease in CD after year model 197 7 until year model 1982, see Table 1.

Table 1 CD trendfor European cars (Hucho, 1987).

Year CD 1974 0.46 1977 0.46 1979 0.45 1981 0.43 1982 0.43

*) Not quite clear if year corresponds to year model. For one vehicle the air resistance can change substantially ifa trailer is used, see Table 2.

Table 2 Drag of car and trailer (Hucho, 1987).

Vehicle unit A2 co

m

Car without trailer 2.29 0.53

Car in front of trailer 2.29 0.30 Trailer without car 5.04 0.62

Trailer behind car 5.04 0.59

The following comments may be made concerning Table 2:

0 the individual CD values for the car and the trailer are reduced when combined

° the total air resistance for the combination is three times as high as for the car alone.

The increase in CD due to ski racks could be ofimportance. Different types ofski racks increase air resistance by 10 38%.2

The effects described could also be used to estimate the in uence of other types ofroof racks.

To decrease air resistance both A and CD can be changed. The decrease in car height h (A = h x w) from model year 1954 to 1978 is presented in Table 3.

2 The gure in (Hucho, 1987) shows ski racks without skis. It is therefore a little unclear whether the presented values represent a situation with or without skis. Presented values may at least be expected to represent a lower limit.

14

Table 3 Development of car height (mm) for

European cars (Hucho, I987).

Year Total height (mm) for kerb weight (kg)

Model 800 1 000 1 200 1 400 1954 1 520 1 540 1 560 1 580 1956 1 500 1 525 1 540 1 550 1958 1 495 1 515 1 525 1 535 1960 1 440 1 470 1 485 1 495 1962 1 430 1 455 1 475 1 500 1964 1 420 1 450 1 470 1 490 1966 1 415 1 435 1 455 1 480 1968 1 415 1 425 1 430 1 445 1970 1 410 1 425 1 435 1 445 1972 1410 1410 1420 1430 1974 1410 1410 1415 1425 1976 1 400 1 400 1 410 1 420 1978 1 400 1 400 1 405 1 415

It may be noticed that this decrease in h, at keast for kerb weights 800 and 1000 kg, seems to have stabilised at the time the decrease in CD started. Is this change in CD an expression for the dif culty in further reducing A? The difference in h between different kerb weights ofthe same year model decreases for each year model.

As might be expected there is good correlation between A and kerb weight for cars. Data in (Hucho, 1987) gives the function:3

A = 1.72 + 0.00058 x (Kw 1000)

A cross sectional area (m)

Kw: kerb weight (kg).

Of course width (w: width) is as important as h in describing air resistance. No compiled data was found for w.

There is not much data presented for commercial vehicles in (Hucho, 1987). However, CD values for four different commercial vehicle types are presented, see Table 4.

Table 4 Drag coe icients of di erent types of

commercial vehicles (Hucho, 1987).

Vehicle type CD

Small covered truck 0.40 0.58

Bus 0.50 0.80

Tractor with semitrailer 0.65 0.90 Truck with trailer 0.75 1.00

3 There is no information in the reference as to what year models the relation is valid for. It is not obvious that the relation is independent of time.

(16)

One big difference in CD for commercial vehicles is between open and covered vehicles. The shape of a covered vehicle may be smoother.

Driving in a queue reduces the value ofCD for all queue positions. The shorterthe distance between vehicles in a queue the higher the reduction in CD. Even at a distance of 50 m the reduction could be 20 3 0%. To estimate exhaust emissions for congested traf c the effect ofqueue gap has to be described in order to have representative emission factors.4

One important effect could be CD when driving in tunnels (Hucho, 1987). The drag coef cient CD of a bus driving through a tunnel is up to six times higher compared with a bus in the open .5 There are different factors in uencing the tunnel effect:

0 the length of the tunnel ° the length of the vehicle 0 the position in the tunnel

° the ratio between the cross sectional area of the vehicle and ofthe tunnel

° queuing position.

The example described is for a tunnel with one way traf c. Since tunnels have become more frequent solutions on the urban traffic situation the importance of describing the tunnel effect has increased.

The increase in CD with increasing vehicle length (a: length) is presented in (Wennerstrom, XX). CD is presented as a function of a/h (h: height) for different bodies. For each body there is a minimum CD for some combination ofa and h.

For motorcycles a CD value of 0.5 is presented. From (Knutsson, 1990) average CD values for cars have been received for di erent time periods, see Table 5.

Table 5 CD data for different time periods

(Knutsson, 1990).

Timeperiod Number Co

of cars

Max Min Average_

1955-1962 38 0.547 0.348 0.455

1968 1971 19 0.536 0.350 0.448

1972-1975 16 0.528 0.373 0.452

1978 1980 20 0.460 0.363 0.421

4 VTI has measured the queue effect by measuring fuel consumption and distance to the vehicle in front ofthe test vehicle. Distance was measured by means of laser equipment. (Hammarstrom, 1999).

5 Cross section ratio (bus/tunnel) = 0.54.

VTI MEDDELANDE 868A

Data in Table 5 can be compared to data in Table 1. There is no information that these values have been weighted with the number ofregistrations for any country. In this study two German6 studies are mentioned: 0 CD = 0.46 for 1968 1976, 91 observations ° CD = 0.43 for 1981 1982, 247 observations. Since mechanistic models have been used at VTI for many years information about CD values has been collected more or less continuously. Collected statistics for cars are presented in Appendix 1 .

In Table 6 values of050 are presented for CD, A and kerb weight, based onAppendix 1.

Table 6 Collected air resistance data (1.150)for cars

from magazines, (see Appendix I).

Year model CD A (m2) Kerb weight (kg)

1979 0.43 - -1982 0.43 - -1991 0.32 1.95 1 266 1992 0.32 1.97 1 298 1993 0.32 1.97 1 324 1994 0.32 2.04 1 422 1995 0.32 1.98 1 314 1996 0.32 2.06 1 293

It should be noted from Table 6 that the positive trend for CD values was broken in the beginning ofthe nineties with a stabilization on CD = 0.32.

To estimate representative values for the vehicle eet statistics describing registered vehicles must be used, i.e. estimated values in Table 6 cannot be regarded as representative of the vehicle eet.

In (Gilhaus et al., 1979) results of wind tunnel experiments with MAN long distance trucks (model F7) are presented, see Table 7.

6 DrW-H Hucho at VW for a period.

(17)

Table 7 Air resistance coefficients and air resistance cross sections for typical vehicle con gurations with a standard AMN cab for long distance service. (Gilhaus et al., 1979).

F° 'Z°"9 mtg

c3612, £23132, 50822-114007" $0870

Pritsche 0,785 5}.th ' ' ' ll

$533?

0592

4,89m2

..

I

_

5,159";

0,765

6,32m2

66,7

31,3

55%;:

0,621

5,75m2

_

..IA

252?:

0,792 1

7,33m2

705

2915

5%:

0,776

6,68m2

53,7

31,3

0,861

8,25m2

73,1

26,9

$17";

0,729

6,02m2

93,0

'

7,0

$72:

, 0,670

6,04m2

85,5

14,5

0,690

6,11.m2

86,5

13,5

Egg:

0,705

6,60nn2

65,7

34,3

Explanations: Fahrzeugkonfiguration = Vehicle combination; Aufbauart = Type of body; Aufbauhohe = Height of body; Pritsche = Platform body; Plane = Covered with tarpaulin; Koffer = Box; CW = CD. See further explanations in the text below.

Table 7 includes information on: ° height ofthe vehicle

° CD for a tractor (CW1) or a tractor with trailer (CWI + + CW2)

° the product of cross sectional area and CD (AX x CW) ° proportion of total air resistance due to the tractor

(Cwuz) / CW(1+2))

° proportion of total air resistance due to the trailer

(CW1) / c

W(1+2))'

It may be noted in Table 7 that the contribution of the semitrailer to the total air resistance coef cient is much smaller than that ofa truck with trailer.

The total length, Table 7, of the trailer combination is 18 m and of the semitrailer combination 15 m.

16

In Table 7 the cross sectional area is not presented directly. Instead the area is included in a product with CD. How sensitive is the total external resistance to different CD values?An example is presented for a truck with trailer, percentage of air resistance as a inction of CD, speed and load7: ° CD = 0.4: 60 km/h: 20% for 100% load 35% for 0% load 80 km/h: 28% for 100% load 48% for 0% load 7 Gross vehicle weight = 38 000 kg

Kerb weight = 14 700 kg

CR = 0.0075 (rolling resistance coef cient).

(18)

° CD = 0.7: 60 km/h: 27% for 100% load 50% for 0% load 80 km/h: 40% for 100% load 64% for 0% load 0 CD = 1.0: 60 km/h: 35% for 100% load 57% for 0% load 80 km/h: 50% for 100% load 70% for 0% load.

The example probably represents constant speed on a horizontal road section.

In (Gilhaus et al., 1980) improvements in CD due to wind de ectors etc. have been studied. In Appendix 2, effects of wind de ectors are presented for a truck with trailer and a truck with semitrailer. Effects of cross wind are presented. There could be a big difference in this effect between different types of de ectors.

The article also includes typical CD values of today (1980) and for the future, see Table 8.

Table 8 CD values for 1980 and for the future

(Gilhaus et al., 1980). Vehicle type CD 1980 Future 0.5-0.8 0.35 0.6 0.8 0.4 0.65 0.9 0.45 0.75 1.0 0.5 Coach Truck

Truck with semitrailer Truck with trailer

There is a big variation in CD between different body types and different load shapes. In (Naysmith, 1982) most ofthe existing combinations ofvehicle body and load have been studied. The study was performed in a wind tunnel with vehicle models to 1/6 or 1/8 scale. Measurements were made with yaw angles ([3) between 00 200. In the report both drag (CD), see Appendix 3, and wind averaged drag average (CD) are presented. In theAppendix vehicle model speci cations are also presented. As may perhaps be expected the reduction in drag is the greater, the more enclosed and smooth the vehicle body is. It is stated that CD values from wind tunnels should be increased by between 13 and 20 per cent to approximate to full scale. Average (CD) values for three road tankers have been measured by means of coast down tests, (Evans et al., 1984). The vehicles were driven loaded and unloaded as well as with different tyres, see Table 9.

Table 9 Estimated average (CD) values for road

tankers from coast down tests. (Evans et al., 1984).

Tractor Average (CD)

manufacturer

ERF 0.975 (0.941 1.109)

Volvo 1 .061

Leyland 1 .074

In this case, the wind speed was measured during tests. The maximum wind speed was 7.2 m/s. There has been no attempt to estimate transmission losses i.e. they could be included in CD.

Koskinen (1986) has estimated average (CD) and rolling resistance by means of coast down tests for a timber truck with trailer.

The test vehicle was a Mercedes-Benz 2636 6 x 4 with a 3-axle trailer. There is no information about wind speed during tests. The assumption is that wind speed ¢ 0. The results of the coast down test are set out in Table 10.

Table 10 Estimated average (CD) values from coast down tests (Koskinen, 1986).

Case Explanation Average A2

(co) m

1 Unloaded, no bunks, no cab protection frame 1.294 6.298

2 Unloaded, square corner bunks, conventional cab protection frame 2.355 6.298

3 Unloaded, aerodynamic bunks, aerodynamic cab protection frame 1.514 6.298

4 Loaded, aerodynamic bunks, aerodynamic cab protection frame 1.300 9.208

(19)

The values ofaverage (CD) in Table 10 may be a little high. There has been no attempt to estimate transmission losses i.e. transmission losses could be included in average (CD). In this study the moment of inertia of wheels and transmission has not been included. This insuf cient description will contribute to an underestimation of average (CD). The explanation for the big difference between cases 1 and 2 is that bunks represent a major contribution to the effective cross sectional area even if not in a traditional way describing air resistance. Since approximately 50% of all driving with timber trucks is with

Some Cd figures:

no load, the results of case 3 are most important. Results from coast down tests have been checked by fuel consumption measurements. Fuel consumption has also been simulated. At 80 km/h aerodynamic bunks will reduce fuel consumption by 22% on a level road.

Scania presents average values of (CD) in information brochures, see Figure 1. The presentation includes: 0 different vehicle bodies

0 with or without trailer

0 with or without wind de ector.

Figure 1

0.85 0.90

..

0-63 0.70 0.95

0.50 0.66 0.83

0.57 0.54030

0.75 0.87

0'65 0.76

0'59 0-55 0.8

0

CD values as a function of resulting wind angle for different year models (Gardell, 1991). The CD-functions represent year models: 1980 (LBIII); 1988 (R113) and 1991 (R113 streamline).

(20)

Since wind de ectors have a big effect and they can be attached after the truck has left the manufacturer there is' need for special inventories ofde ector frequency. VTI observed the frequency ofde ectors for trucks driving on motorways in Sweden, see Table 11.

Table II Observedfrequencies ofwind de ector use

on Swedish motorways in 1993.

Vehicle type Use of wind

deflector (%1 Truck with trailer/semitrailer, enclosed 41 Truck with trailer/semitrailer, other 5

Distribution 25

The present situation in Sweden is that almost all trucks with trailers and enclosed cargo space have wind de ectors.

In Figure 2 the effect of the wind attack angle ([3) is illustrated. The change in CD between different year models is also presented. There is a reduction of25 % from 1980 (LB111) to 1991 (R113 Streamline). How typical is this change for other manufacturers and other vehicle bodies?

Scania - Development of cab drag

Q ,,.

$4 Cd=0.85

15° 10° 5°

R113 Streamline

it ll

10° 15°

Resultant air attack angle

Figure 2

One important part ofthe change in air resistance over time is the in uence ofyaw angle. As demonstrated in Figure 2 the relative in uence has been reduced as well as CD.

In (Gardell, 1991) the development of CD for trucks with semitrailers (box) is presented. From 1970 to 1995 CD is reduced by approximately 50%.

There is cooperation between Germany, Switzerland and Austria with the objective to develop an emission data

VTI MEDDELANDE 868A

CD values for different vehicle bodies (Saab-Scania, 1987).

bank. This bank also includes CD values (Holtei, XX), at least for heavy vehicles. Heavy vehicles, see Table 12 and

13 , have been grouped by:

0 truck, truck with semitrailer and bus 0 vehicle weight

- engine.

(21)

Table 12 Average (CD) values for trucks (Holtei, 1986.)

Manufacturer Gross vehicle Box high Box deep Platform Platform Box Unspeci ed

weight (kg) with cover

Daimler-Benz 3 490 9 200 0.45 0.55 0.76 - - -11 800 16 000 0.80 0.60 0.70 -16 000 24 000 0.65 0.60 15 700 24 000 0.65 0.52/60 QE E VW 7 490_ _ _ _ _ 0.59 MAN 16 000 - - 1.00

*) Values are used as if they were average (CD).

Table 13 Average (CD) values for buses (Holtei, cover is lower thanjust for platforms, which is expected.

1986). 9 For a box we have a range of0.52 O.70.

For unspeci ed vehicle bodies there is a range of0.59 Manufacturer Gross vehicle weight CD LOO.

_ (kg) The CD range for buses is 0.45 0.80. The end limits

Da'mler'Benz 5 600 9 200 045 076 are expressions for differences between coaches and city

15 700 1 7 600

0.52

buses_

MAN 15 880-17 600 0.80 For CD values presented in (Holtei, 1986) there is no

information about data sources. The factors are used without side wind corrections i.e. they are used as if they

Gross vehicle weight in the tables is not expected to have were average CD. Presented values should be representative

any direct effect on CD. for heavy duty vehicles in Germany ofthe year 1986*.

For trucks CD is in the range 0.45 1.00. There are two CD levels for trucks with platform. CD for platforms with

*) Values are used as if they were average (CD).

8 Comments from DI J. Tieber. Institute for Internal Combustion Engines and Thermodynamics. Technical University Graz.

(22)

4 Conclusions

There is a big variation in CD values between different reports for similar vehicle bodies. Since the air drag resistance is an important part of the total resistance this may be one cause of important systematic deviations between estimated and true emission factors. Simulations of emissions are in many cases the only way ofestimating emission factors for heavy vehicles. There are for example no chassis dynamometers available to simulate a vehicle combination weight of60 tonnes, anyway not for dv/dt ¢ 0. If in most cases simulation is the only way to estimate emission factors there is a need for CD values with a high degree of representativeness.

To estimate representative CD values for all types of vehicles, information is required about:

0 CD values for different body types 0 CD values for different year models

° CD with and without trailer including distance to the trailer

0 CD for different vehicle load shapes

° vehicle km for the above situations or at least number ofvehicles.

This requirement is of course especially valid for trucks. In Section 3, there is data available from different references representing different measurement methods etc. Some synthesis ofall data per vehicle type is required. When such a synthesis is performed, different measurement methods should perhaps not be mixed since systematic differences could be expected. Of course CD and average (CD) should also not be mixed.

In order to estimate regional or national CD values, the equency of all the variables mentioned above must be known. The average CD value for a vehicle type will then probably be different for different regions or countries. This would imply that there is a needto keep a presentation of CD values on a detailed level ifpossible.

For cars values ofCD are available for a great number of vehicle models, see Appendix 1. It is probable that the original source is not scienti c reports but information from manufacturers. How representative are these values for cars driving on roads? Is it to be expected that there are any systematic deviations from true CD values? The available CD values for cars should be enough to estimate representative CD values for different year models if data from manufacturers is accepted. What should not be forgotten are the effects of devices on the car roof or of trailers. In Section 3, information is presented describing these effects.

If data inAppendix l are representative ofB = 0 there must be additional information in order to estimate average (CD). Since there could be more than marginal differences in average speed between different countries average (CD) should be estimated on a national level or for different types of roads with different average speeds.

In Table 14, values ofCD and average (CD) for trucks, measured in wind tunnels, are compiled from data presented in Section 3. Data should represent year models around 1980 and without wind de ectors.

Table 14 Typical CD values measured in wind tunnels for di erent vehicle bodies

for trucks ofyear models around 1980without a streamlined cabin or wind de ector

Type of truck CD average (C0) )

n m n max L n m'n max MEL

Single, flat 2 0.74 0.77 0.76 1 0.98 0.98 0.98

Single, sided 2 0.78 0.78 0.78 1 0.65 0.65 0.65

Single, box 3 0.59 0.79 0.62 4 0.76 1.28 0.97

Single, flat, loaded 2 0.83 1.12 0.98 2 1.16 1.47 1.32

Single, tipper 2 0.92 0.96 0.94 2 1.15 1.27 1.21

Single, tanker 1 0.51 0.51 0.51 1 0.68 0.68 0.68

Truck with trailer, sided - - - 1 0.79 0.79 0.79

Tmck with trailer, box 5 0.73 0.86 0.78 2 0.87 1.08 0.98 Truck with semitrailer, flat 1 0.98 0.98 0.98 1 1.19 1.19 1.19

TnJck with semitrailer, sided -

-Tmck with semitrailer, flat, loaded 2 0.81 1.04 0.92 2 1.14 1.34 1.24 Truck with semitrailer, box 6 0.62 0.89 0.70 4 0.80 1.12 0.96 Truck with semitrailer, tanker 1 0.77 0.77 0.77 2 0.80 1.02 0.91

de< with trailer, timer, unloaded -

-Truck with trailer timber, loaded - 1 0.90 0.90 0.90 l n: number of values.

) In (Naysmith, 1982) average (09) is presented for different vehicle speeds. For trucks with gro: vehicle weight <16 ton the vehicle speed 14 m/s has been selected and for 216 ton 20 m/s. Avera (CD) values are available for vehicle speeds (m/s): 10; 12; 14; 16; 18; 20; 22; 24; 26; 28 and 30.

(23)

In Table 14 values from three references are mainly used: ° (Gilhaus et al., 1979)

0 (Naysmith, 1982) ° (Saab-Scania, 1987).

It cannot be concluded that there are enough CD or average (CD) values for any type oftruck. The only case where the situation is not too bad is for trucks with trailer or semitrailer (box).

Values from Saab-Scania seem to be lower than in the other two references. One explanation for this could be that values from Saab-Scarria represent newer year models than the other two references. The rst two references represent scienti c reports, which could make a difference.

There seem to be big differences between CD and average (CD). In all cases, except for one, average (CD) is essentially higher than CD. One conclusion must be that average (CD) should be used to estimate air resistance.

Of course the best alternative would be to use CD ([3). The values in Table 14 canbe compared with average (CD) values for truck with semitrailer, tanker in Table 9. The r150 value in Table 9 is 16% higher than in Table 14. The effect ofwind de ectors could be expected to depend on the vehicle body. In this case, some kind of conclusion for wind de ectors is limited to covered vehicle bodies (box) for the case when the driving cabin is lower than the box. There are mainly two references in this study describing wind de ectors. Average reductions are based on (Gilhaus et al., 1980) and (Saab-Scania, 1988): ° truck single, 13.2% and 13.0%

° truck with trailer, 13.6% and 14.0% ° truck with semitrailer, 8.8 and 20%.

The results are similar with one exception i.e. semitrailers. One explanation, from Scania, could be the shape ofthe drivers cabin in combination with the height of the vehicle load body. A cabin with more distinct comers could have a high CD but act as a wind de ector. In this case a wind de ector could have less effect than with a smooth shaped drivers cabin.

22

Another explanation could be that the gaps between cabin and semitrailer are different in the two references above. One hypothesis could be that the side wind effect, which is included in SCANIA values but not in Gilhaus, increases when the gap increases.

The reductions from (Gilhaus et a1., 1980) are representative of B in the interval 0° to 5°, which is said to be typical. For (Saab-Scania, 1988) B should be representative of all traf c and wind situations.

Driver cabins of special design could give approximately 30% reductions in CD for covered vehicle bodies compared with the basic situation. This type of cabin is probably fairly frequent for year models after 1990.

The change of CD with time could be expressedby the

frequency ofwind de ectors and streamlined vehicle

cabins.

In order to estimate representative CD values for trucks a classi cation is required which expresses more than marginal differences. One proposal could be:

0 with or without a trailer ° closed or open vehicle body 0 for open vehicle body:

max load higher or lower than the driver s cabin with or without load.

There does not seem to be any point in a breakdown into semitrailer and other trailers based on available data.

For buses there is an almost complete lack ofdata and especially ifthere is a more specialised demand for type ofbus. Only estimated intervals for CD are available. For buses there could be a classi cation into: 0 city bus or coach

0 with or without a linked vehicle body which should correspond to vehicle length.

If this literature survey is representative of what is available, the conclusion must be that there is a great need for an extensive research programme for CD values, especially for heavy vehicles.

(24)

5 List of references

Evans, E, M and Zemroch, P, J: Measurement of the aerodynamic and rolling resistances of road tanker vehicles from coast down tests. Proc Instn Mech Engrs Vol 198D N011. 1984.

Gardell, L: Environmental transport ef ciency. Truck development as regards air and rolling resistance and load capacity. Scania environmental conference October 23-24 at the Hotel Skogshojd in Sodenalje. Sodertalje. 1991.

Gilhaus, A, Hau, E, Ki'mstner, R und Potthoif, J: Uber den Luftwiderstand von Fernlastziigen, Ergebnisse aus

Modellmessungen im Windkanal Teil I.

Automobil Industrie 3/79.

Gilhaus, A, Hau, E, K nstner, R und Pottho , J: Uber den Luftwiderstand von Fernlastziigen, Ergebnisse aus

Modellmessungen im Windkanal Teil II.

Automobil Industrie 3/80.

Hammarstrom, U. Br nsleforbrukning och luftmot-stand vid kokiiming. VTI meddelande 871. Statens Vag- och transportforskningsinstitut. Linképing. 1999. Holtei, H: Abgas Emissionsverhalten von Nutzfahr-zengen mit Dieselmotor iiber 3.5 t zul. Gesamtmasse in der Bundesrepublik Deutschland im Bezugsjahr 1986, Phase I Rheinisch

VTI MEDDELANDE 868A

Westfalischer Technischer Uberwachungs Verein e.V. Pr fstelle fur die Abgase von Kraftfahrzengen, Essen. XX

Hucho, W H: Aerodynamics of Road Vehicles. From Fluid Mechanics to Vehicle Engineering. 1987. Knutsson, K: CX-véirdets forandring under 60 80-talet.

PM 1990-02-08. Saab-Scania.

Koskinen, O H: Analysis of air resistance of different timber bunk types and their effect on fuel consumption and power requirement. Ministry of Communication, Helsinki. 1986.

Naysmith, A: Aerodynamic drag of commercial vehicles. TRRL Supplementary Report 732. TRRL. Crowthome. 1982.

Nylin, I: Lastbilens tekniska utveckling och betydelse i samhéillets transporter. Saab-Scania. Sodertalje. 1 991

Saab-Scania: Low Drag Truck Cabs. Scania Division. Sédertalje (>>) 1987.

Saab-Scania. Unpublished data. Scaniadivisionen. Sodertalje, (>>) 1988.

Wennerstrom, E: Fordonsteknik. Kungliga Tekniska Hogskolan. Stockholm. XX

(25)

6 List of symbols

A Cross sectional area (m2) VK Resulting wind speed (m/s)

CD: Air resistance coef cient [3: Angle between the longitudinal axis of the

Average (CD): Average CD for meteorological wind speed vehicle and resulting wind speed direction (0)

and wind direction TRL: Air pressure (bar)

a: Vehicle length (m) TEMPL: Air temperature (°C)

h: Vehicle height (m) FD: Air resistance (N)

w. Vehicle width Kw: Kerb weight

p: Air density (kg/m3) CR: Rolling resistance coefficient.

V: Vehicle speed

(26)

VH MEDDELANDE 868A M o d e l CD C r o s s se ct io n ar ea Ke rb we ig ht M a x we ig ht Ye ar m o de l Re fe re nc e m 2 k9 kg Fo rd Fi es ta 0. 43 19 79

Vi

Bi

la

ga

re

V W po lo 0. 45 1979 Vi Bi la ga re Re na ul t 5

0.

44

19 79 Vi Bi la ga re Fo rd Es co rt 0. 45 19 79

Vi

Bi

la

ga

re

Op el Ka de tt 0. 49 19 79

Vi

Bii

agg

are

V W sk al ba gg en 0. 49 19 79 Vi Bi laga re Ka de tt Ci ty 0. 52 19 79 Vi Bi laga re M a zd a 32 3 0. 52 19 79 Vi Bi la ga re Al fa sun d ti 0. 41 19 79 Vi Bi la gare Rena ul t 14 0. 42 1979 Vi Bi la ga re V W Go lf LS 0. 42 19 79 Vi Bi laga re Al fa sun d

0.

44

19 79 Vi Bi la gare Ch rys le r Si mc a Ho ri zo n 0. 41 1979

Vi

Bi

la

ga

re

Fi at Ri tm o 0. 44 19 79 Vi Bila ga re Dats un 12 0y Co up e 0. 48 19 79 Vi Bi la ga re Ci tr oe n G S 0. 38 19 79 Vi Bi la gr e V W Pa ss at SN ar ia nt S 0. 41 19 79 ViBi la ga re Aud i 80 0. 40 19 79 Vi Bi la ga re Re na ul t 18 0. 43 19 79 Vi Bi laga re Peug eo t 30 5 0. 44 1979 Vi Bi la ga re Op el As co na 0.46 1979 Vi Bi la ga re Ch rys te r Si mc a13 07 /1 50 8 0. 45 19 79 Vi Bila ga re Fo rd T a un us 0. 46 19 79 Vi Bi la ga re Ci tr oe n C X 0. 39 19 79 Vi Bi la gare Al fa R o m e o Gi ul ie tt a 0. 43 1979 Vi Bi la ga re Aud i 10 0Ava nt 0. 41 19 79 Vi Bi la ga re Aud i 10 0 SE 0. 42 19 79

Vi

Bi

la

ga

re

B M W 32 0 0. 45 19 79 Vi Bi laga re Op el Co mm od or e 0. 43 19 79 Vi Bi la ga re B M W 520 0. 43 19 79 Vi Bi la ga re Op el Re ko rd

0.

44

19 79 Vi Bi laga re Re na ul t 20 /3 0 0. 43 19 79 Vi Bila ga re Vo lvo 24 4 C L 0. 43 19 79

Vi

Bi

la

ga

re

Me rc edes 23 0 0. 45

1979

Vi

Bi

ia

ia

re

until year model 1996

Drag coefficients of passenger cars from year model 1979

Appendix 1 Page 1 (11)

(27)

VH MEDDELANDE 868A M o d e l C D C r o s sse ct io n ar ea Ke rb we ig ht M a x we ig ht Yea r m o d e l R e f e r e n c e m 2

k9

k9 Fo rd Gran ad a 0. 45 1979 Vi Bi la ga re ua rXJ -S 0. 40 19 79 Vi Bi la ga re Me rc ed es 45 0 S L C 5.0 0. 41 19 79 ViBi la ga re Op el Se na to r 3. 0 0. 42 19 79 ViBg ar e Po rs ch e 9 2 8 0. 44 19 79 Vi Bi la ga re Me rc ed es 28 0/ 35 0/ 45 0 S E 0. 41 19 79 Vi Bi la gare Me rced es 28 0 T E 0. 43 19 79 Vi Bila ga re B M W 72 8/73 0 0. 45 19 79 Vi Bi la ga re Pors ch e 92 4 Tur bo 0. 35 19 79 Vi Bi laga re Po rsch e 92 4 0. 37 19 79 Vi Bila ga re Fe rr ar i Di no 308 G T 4 0. 40 19 79 Vi Bi la ga re V W Sc ir oc co G L 0. 41 19 79 Vi Bi la ga re Po rsch e 91 1 S (7 6) 0. 40 19 79 Vi Bi laga re Sc ir oc co GTI 0. 43 1979 Vi Bi la ga re Op el Ma nt a C C 0. 43 19 79 Vi Bi la ga re Me rc edes C 11 1-3 0. 20 19 79 Vi Bila gg e Al fa R o me o Al fa sud 0. 44 19 82 Aut oc ar M a y 19 82 Al fa R om e o Al fa sud Ti 0. 39 19 82 Aut ocar M a y 19 82 Al fa R o m e o Gi ul ie tta 0. 43 19 82 Aut oc ar M a y 1982 Al fa R o m e oAl fe tt a 0. 44 1982 Aut oc ar M ay 19 82 Aud i 80 0. 40 19 82 Aut oc ar May 19 82 Aud i 10 0 SE 0. 42 19 82 Aut oc ar Ma y 19 82 Aud i 10 0Ava nt 0. 41 19 82 Aut ocar M a y 19 82 Aud i 20 0 0. 42 19 82 Aut oc ar M a y 19 82 Aud iCo up e 0. 40 19 82 Aut oc ar Ma y 19 82 Qua tt ro 0. 43 19 82 Aut oc ar M a y 1982 Aus ti n Mi ni Me tr o 0. 39 19 82 Aut oc ar M a y 19 82 B M W 3. se ri es 0. 47 19 82 Aut oc ar M a y 19 82 B M W 5.se ri es 0. 40 19 82 Aut oc ar M a y 19 82 B M W 7. se ri es 0. 45 19 82 Aut oc ar M a y 1982 Ci tr oe n Z C V6 0. 52 1982 Aut oc ar M a y19 82 Ci tr oe n Visa II Sup er E 0. 40 19 82 Aut oc ar M a y 19 82 Ci tr oe n G S Asp ec ia l Cl ub 0. 34

1982 Aut oc ar May 19 82 Appendix 1 Page 2 (11)

(28)

VH MEDDELANDE 868A Mo de l C D C r o s s se ct io n ar ea Ke rb we ig ht M ax we ig ht Ye ar m o de l R e f e r e n c e m2 kg kg Ci tr oe n Cx2 00 0 0.39 19 82 Aut oc ar M a y 19 82 Ci tr oen Cx Sa fa ri 0. 41 1982 Aut oc ar M a y19 82 Co lt La ns er 0. 50 19 82 Aut ocar Ma y 19 82 Co lt SL gL na 0. 46 19 82 Aut ocar M a y 19 82 Co lt Ga la nt 0. 44 19 82 Aut oc ar M a y 19 82 Da ts un Ch er ry 0. 47 19 82 Aut oc ar Ma y 19 82 Da ts un Bl uebi rd Sa lo on 0. 46 19 82 Aut oc ar Ma y 19 82 Fe rrar i 30 8 GT Bi 0. 40 19 82 Aut oc ar May 19 82 Fi at 12 6 0. 47 19 82 Aut oc ar Ma y 19 82 Fi at 12 7 0. 45 1982 Aut oc ar May 19 82 Fi at 12 7 sp or t 0. 45 19 82 Aut oc ar M a y 19 82 Fi at Pa nda 0. 41 1982 Aut oc ar M ay 19 82 Fi at St ra da 0. 44 19 82 Aut ocar Ma y 19 82 Fi at Mi ra fior i 0. 47 1982 Aut oc ar May 19 82 Fi at Ar ge nt a 0. 46 19 82 Aut oc ar M a y 19 82 Fi at X1 /9 15 00 0. 44 19 82 Aut oc ar Ma y 19 82 Re li nt Ki tt en 0. 51 1982 Aut oc ar M ay 19 82 Re na ul t 4 0. 47 19 82 Aut oc ar M a y 1982 Re na ul t 5TL 0. 42 19 82 Aut oc ar May 19 82 Re na ul t 5 Tur bo 0. 46 19 82 Aut oc ar M a y 19 82 Re na ul t 14 0. 42 1982 Aut oc ar May 19 82 Re na ul t 9 0. 41 19 82 Aut oc ar M a y 1982 Re na ul t 18 0. 40 19 82 Aut oc ar M a y19 82 Re na ul t Fue go 0. 37 19 82 Aut oc ar M a y 19 82 Re na ul t 20 /30 0. 44 19 82 Aut oc ar May 19 82 Ro ve r 26 00 8 (1 98 2) 0. 39 19 82 Aut oc ar Ma y 19 82 Sa ab 99 0. 47 1982 Aut oc ar M ay 19 82 Ta lb ot pi ne 0. 41 19 82 Aut oc ar M ay 19 82 Ta lb ot Mur en a 0. 36 19 82 Aut oc ar M a y 19 82 To yo ta 0. 46 1982 Aut oc ar May 19 82 To yo ta Caro ll a Li ft ba ck 0. 46 1982 Aut oc ar M ay 19 82 To yo ta Te rc el 0. 47 19 82 Aut oc ar M a y 1982 To yo taTe rc el Li ft ba ck 0. 54 19 82 Aut oc ar M a y 19 82 To yo ta Cres si da 0. 45

1982 Aut oc ar M a y19 82 Page 3 (11)Appendix 1

(29)

VH MEDDELANDE 868A Mo de l C D C r o s s sect io n ar ea Ke rb we ig ht M a x we ig ht Y e a r m o de l R e f e r e n c e m 2

k9

k9

To yo ta Crown 0. 47 19 82 Aut oc ar M a y 19 82 Vo lk wa ge n Beet le 0.48 19 82 Aut oc ar M a y 19 82 Vo lkwa ge n Po lo 0. 38 19 82 Aut oc ar M a y 19 82 Vo lk wage n Po lo Fo rm el E 0. 37 19 82 Aut oc ar Ma y 19 82 Vo lk wa ge n Po lo Clas si c 0.40 19 82 Aut oc ar Ma y 19 82 Vo lkwa ge n Po lo Cl as si c Fo rm el E 0. 39 19 82 Aut oc ar M a y 19 82 Vo lk wa ge n Go lf 0. 42 1982 Aut oc ar M a y19 82 Vo lk wa gen Go lf Fo rm el E 0. 38 19 82 Aut oc ar Ma y 19 82 Vo lk wa ge n Go lf GT i 0. 40 1982 Aut oc ar M a y 19 82 Vo lk wa gg t Je tt a 0. 43 19 82 Aut oc ar M a y19 82 Vo lk wa ge n Je tt aFo rm el E 0. 41 19 82 Aut oc ar Ma y 19 82 Vo lk wa ge n Sc ro cco 0. 38 19 82 Aut oc ar M ay 19 82 Vo lk wa ge nPa ss at 0. 38 19 82 Aut ocar M a y 19 82 Vo lk wa ge n Pa ss at Fo rm el E 0. 36 19 82 Aut oc ar M a y 19 82 Vo lk wa ge n Sa nt ana 0. 39 1982 Aut oc ar M a y 19 82 Vo lkwa ge n Sa nt an a Fo rm el E 0. 38 19 82 Aut oc ar M a y 19 82 Vo lvo 24 48 24 6 G L T 0. 46 1982 Aut oc ar M a y 19 82 Fo rd Fi es ta 0. 43 19 82 Aut oc ar Ma y 19 82 Fo rd Es co rt 0. 41 19 82 Aut ocar Ma y 19 82 Fo rd Co rt in a 0. 45 19 82 Aut oc ar M a y19 82 Fo rd Gran ad a 0. 45 19 82 Aut oc ar M a y 19 82 Ho nd a Ci vi c 3. do or 0. 46 19 82 Aut oc ar M a y 19 82 Ho nd a Qui nt et 0. 54 19 82 Aut oc ar M a y19 82 Ho nda pr el ud e 0. 48 19 82 Aut oc ar M a y 19 82 Ho nd a Ac co rd ha tc hb ac k 0. 48 19 82 Aut oc ar M ay 19 82 g ua r XJ 6 12 Se r. |l | 0. 41 19 82 Aut oc ar M a y 19 82 ua r XJ S 0. 40 19 82 Aut oc ar M a y 1982 L a d a 12 00 0. 48 19 82 Aut oc ar Ma y 19 82 La nc ia De lt a 0. 48 19 82 Aut oc ar M a y 19 82 La nc ia Sa lo on 0. 45 19 82 Aut oc ar M a y 19 82 La nc ia G a mm a 0. 39 19 82 Aut oc ar M a y 19 82 Lo tus Ec la t 0. 34 19 82 Aut oc ar May 19 82 Ma zd a 32 3 385 dr 0. 43 19 82 Aut oc ar M a y 19 82 Ma zd a Rx7 0. 39

1982 Aut ocar M a y 19 82 Appendix 1 Page 4 (11)

(30)

VH MEDDELANDE 868A Mo de l C D C r o s s se ct io n ar ea Ke rb we ig ht M a xwe ig ht Y e a r m o d el R e f e r e n c e m 2 k9 kg Merc ed es -B en z (2 0023 0 25 0 28 0 ) 0. 43 19 82 Aut oc ar M ay 19 82 Me rced es -B en z Es ta te 0. 43 19 82 Aut oc ar M a y 1982 Me rc ed es -B en z (2 808 Se 38 0 50 0 SE ) 0. 37 19 82 Aut ocar M a y 19 82 Opel Ka de tt 0. 41 19 82 Aut oc ar Ma y 19 82 Op el as co na sa lo on 0. 40 19 82 Aut oc ar Ma y 19 82 Op el Ma nta 0. 48 19 82 Aut oc ar M a y19 82 Op el Re ko rd 0. 39 19 82 Aut ocar M a y 19 82 Op el Co mm od or e 0. 43 19 82 Aut ocar M a y 19 82 Op el Se na tor 0. 45 19 82 Aut oc ar M a y 1982 Op el Mo nzo 0. 39 19 82 Aut oc ar M a y 19 82 Pe ug eo t 104 Sa lo on 0. 43 19 82 Aut oc ar M a y 1982 Pe ug eo t 30 5 Sa loon 0. 46 19 82 Aut ocar M a y 19 82 Pe ug eo t 505 Sa lo on

0.

44

19 82 Aut oc ar M a y19 82 Po rs ch e 92 4 0. 37 19 82 Aut oc ar M a y19 82 Po rsch e 92 4 Tur bo 0. 34 1982 Aut ocar M a y 19 82 Po rs ch e 91 1S C 0. 40 19 82 Aut oc ar M a y 19 82 Po rsch e 92 8 0. 44 1982 Aut oc ar M a y 19 82 FI AT T E M PR A 2. 0i .e . SX 0. 29 2. 02 12 63 1690 Aut o mo to r spor t( 19 91 :1 ) AL FA R O M EO Z A G A T O 0. 30 1360 1430 Aut o mo to r sp ort( 19 91 z1 ) F O R D E S C ORT 1. 4i CL X 0. 33 1. 93 10 37 14 25 Aut o mo tor sp or t( 19 91 :3 ) RE NA UL T CL IO 1. 2RN 0. 33 1.86 88 7 1265 Aut o mo to r sp or t( 19 91 :4) AU DI 10 0 2. 0 0.29 2. 12 13 65 18 60 Aut o moto r sp or t( 19 91 :4 ) B M W 52 5i AU TOMA TI K 0. 31 2. 07 15 73 2005 Aut o mo to r sp or t(19 91 :4 ) B M W32 0i 0. 32 1. 94 13 16 17 50 Aut o mo to r sp or t( 1991 :5 ) M E RC E D E S 60 0 SE L 0. 31 2. 35 22 81 26 50 Aut o mo to r sp or t( 19 91 :7) LO TU S ELAN SE T U R B O 0. 34 1. 72 1080 12 70 Aut o mo to r sp ort( 19 91 z7 ) B MW 31 8i CA BR IO 0. 37 1. 86 12 69 16 20 Aut o moto r sp or t( 19 91 z7 ) F O R D OR IO N 1. 6i CLX 0. 32 1.93 10 86 14 75 Aut omo to r sp or t( 19 91 z7 ) NI SS AN S UNN Y 1. 6 SL X 0. 33 10 63 1505 Aut o mo to rsp or t( 19 91 :8 ) F O R D E S COR T CA BR IO 0. 35 1. 94 11 27 15 25 Aut o mo to r sp ort( 19 91 z8 ) M A Z D A 12 1 GL X 0. 40 1.99 855 13 00 Aut o mo to r sp or t(19 91 28 ) NI SS AN 100 NX 0. 34 10 70 1450 Aut o mo to r sp ort( 19 91 :9 ) FI AT C R O M A 2. 0i .e . S 0. 32 2. 02 13 07 17 35

Aut omo to r sp or t( 19 91:9 ) Page 5 (11)Appendix 1

(31)

VH MEDDELANDE 868A Mo de l C D C r o s s se ct io n ar ea Ke rb we ig ht M a x we ig ht Ye ar m o d e l R e f e r enc e m 2

k9

kg V W PA SS AT VR 6 0. 32 2.00 13 36 18 40 Aut o mo to r sp or t( 19 91 :1 0) F O R D SC OR PI O 24 V 0. 33 2. 03 15 18 19 25 Aut o mo to rsp or t( 19 91 :1 O) RE NA UL T ES PA CE RXE V6 0. 34 2. 59 14 70 21 40 Aut o mo to r sp or t( 19 91:1 0) F O R D E S C O R T TU RN IE RCL X 1. 8 D 0. 32 1. 94 11 35 1550 Aut o mo to r sp or t( 19 91 :1 1) LA NC IA D E D R A20 00 T U R B O 0.29 2. 04 13 56 16 80 Aut o mo to r sp or t( 1991 :1 1) AU DI CA BR IO 0. 37 1 .9 5 14 07 17 50 Aut o moto r sp or t( 19 91 :1 2) O P E L O M E G A 50 0 EV OL UT ION 0. 31 2.25 15 62 1985 Aut o mo to r sp or t( 1 99 1 :1 3) B M W 316i 0. 29 1. 94 1210 16 10 Aut o mo to r sp ort( 19 91 :1 4) V W PA SSAT CL KA T-DI ES EL 0. 31 2. 00 12 72 1765 Aut omo to r sp or t( 19 91 21 4) RE NA UL T CLIO 16 V 0. 33 1. 88 10 20 14 10 Aut o mo to r spor t( 19 91 :1 4) O P E L A S T R A G T 1. 8i 0. 32 1.95 11 18 1515 Aut o mo to r sp or t( 19 91 :1 8) CI TR OE N ZX A U R A 0. 33 1. 94 10 54 15 40 Aut omo to r sp or t( 19 91 :1 8) FI AT TI PO 2. 01 6 V 0. 31 2. 02 12 71 16 80 Aut o mo to r sp or t( 19 91:1 8) P O RSC H E 96 8 C O U P E 0. 34 1. 88 14 12 1700 Aut o mo to r sp or t( 19 91 :1 8) AU DI S4 0. 29 2. 11 17 22 21 60 Aut o mo to r sp or t( 19 91:1 8) RE NA UL T CL IO 1. 9 D RN 0. 32 1. 86 97 7 13 50 Aut o mo to r sp or t( 19 91 :18) V W G O L FG T 1. 8 0. 30 1. 99 1106 15 50 Aut o mo tor sp or t( 1 99 1 :1 9) AU DI 80 2. 8E 0. 33 1. 94 14 00 17 90 Aut o mo to r sp or t(19 91 :1 9) V O L V O 850 GL T 0. 32 2. 12 14 25 18 20 Aut omo to r sp or t( 19 91 :1 9) M A Z D A MX -3 0. 31 1. 85 11 65 15 00 Aut o mo to rsp or t( 19 91 z1 9) O P E L AST R A C A R A V A N 2. 0i CL UB 0. 33 2. 05 11 62 1590 Aut o mo to r sp or t( 19 91 :2 0) O P E L A S T R A GSI 0. 30 1. 95 12 29 15 90 Aut o moto r sp or t( 19 91 :2 1) B M W52 5i TO UR IN G 0. 35 2. 08 15 70 2125 Aut o mo to r sp or t( 19 91 22 1) AU DI A V A N T S4 0. 31 2. 14 1759 22 10 Aut o mo to rsp or t( 19 91 :2 1) HY UN DA ILA NT RA 1. 6 GL S 16 V 0. 37 11 27 16 20 Aut o mo to r sp or t( 19 91 :2 1) H O N D A CI VI C 1. 6 ES I 0. 31 10 24 15 00 Aut o mo to r sp or t(19 91 :2 2) P E U G E O T10 6 X R 0. 31 80 2 12 20 Aut o mo to r sp or t( 19 91 :2 2) AU DI 10 0 TD I 0. 29 2. 12 15 02 19 75 Aut omo to r sp or t( 19 91 :2 2) T OY O T A C A M RY V6 G X 0. 31 15 28 1930 Aut o mo to r sp or t( 19 91 :23) V W G O L FVR 6 0. 30 1. 90 12 13 1680 Aut o mo to r sp or t( 19 91:2 3) P O R S C H E C A R R E R A RS 0. 32 1. 79 12 25 14 20 Aut o mo to r sp ort( 19 91 :2 4) SE AT T O LED O 2. 0 GL X 0. 32 1. 92 11 12 14 05 Aut o mo to r spor t( 19 91 z2 4) HY UN DA IP O N Y G S 1. 51 0. 35 1. 84 98 8 14 50 Aut omo to r sp or t( 19 91 z2 4) AU DI 80 0. 33 1. 94 1287 16 50

Aut o moto r sp or t( 19 91 :2 5) Page 6 (11)Appendix 1

(32)

VH MEDDELANDE 868A Mo de l C D C r o s s se ct io n area Ke rb we ig ht M a xwe ig ht Y e a r m o de l R e f e r e n c e m 2 kg

k9

CI TR OEN X M B R E A K V6 0. 34 2. 17 15 65 21 30 Aut o mo to r spor t( 19 91 :2 6) B MW 32 5 td 0. 32 1. 94 13 79 17 95 Aut o mo to r spor t( 19 91 :2 6) HY UN DA I S O N AT A GL S 3. 0i V6 0. 34 2. 05 13 95 1760 Aut o mo to r sp or t(19 92 z1 ) AL PI NA B1 2 5. 0 C O U P E 0. 29 2.07 18 85 22 60 Aut o mo to rsp or t( 19 92 z1 ) RE NA UL T 19 TXE CA BR IO 0. 31 1. 96 11 62 1500 Aut o mo to r sp or t( 19 92 :2 ) B M W 325i C O U P E 0. 31 1.91 13 70 17 90 Aut o mo to rsp or t( 19 92 z3 ) M A Z D A 62 6 2.5i V6 0. 29 13 15 17 35 Aut o mo to r sp ort( 19 92 z4 ) MI TS UB ISHI S P A C E R U N N E R 18 00 GL XI 0. 35 2.28 12 68 17 20 Aut o mo to r sp ort( 19 92 :4 ) MI TS UB IS HI CO LT 1600 GL XI 0. 31 96 6 15 00 Aut o mo to r sp or t( 1992 :5 ) M A Z D A MX -6 2.5i 0. 30 1. 89 12 33 15 60 Aut o mo to r sp ort( 19 92 :5 ) V WG O L F GT I 0. 30 1. 99 11 57 15 65 Aut omo to r sp or t( 19 92 :5 ) CI TR OE N ZX A U R A 1. 9 D 0. 33 1. 94 10 95 15 60 Aut o mo to r sp or t( 1992 :6 ) MITS UB IS HI EC LI PS E GS i16 V 0. 29 1. 84 1295 16 35 Aut omo to r sp or t( 19 92 :6) AU DI S4 R E V O 0. 29 2. 11 17 00 21 60 Aut o mo to r sp ort( 19 92 z7 ) F O R D E S C O R T 1. 8i 16 V 0. 33 1. 93 10 90 16 00 Aut o mo to r sp or t( 19 9227 ) V W V E N TO CL 0. 30 1. 99 11 21 15 65 Aut o mo to r spor t( 19 92 :7 ) AU DI 80 1. 9 TD I 0. 33 1. 94

13

40

1730 Aut o mo to r sp ort( 19 92 :8 ) H O N D A PR ELUD E 2. 3i 4 W S 0. 32 1. 91 12 97 17 20 Aut o mo to rsp or t( 19 92 z8 ) AL FA R O M E O15 5 V6 0. 29 13 84 18 50 Aut o mo tor sp or t( 19 92 :9 ) B M WM5 0. 32 2. 07 17 11 21 50 Aut o mo to r sp or t( 19 92 :9) O P E L CALI BR A T U R B O 4X 4 0. 26 1.90 13 84 17 35 Aut o mo to rsp or t( 19 92 z9 ) B M W 318i S C O U P E 0. 31 1. 91 1282 17 00 Aut omo to r sp or t( 19 92 :1 0) RU F P O R S CHE BR 2 0. 32 1.79 13 55 18 10 Aut o moto r sp or t( 19 92 :1 0) F O R D E S C O R T X R 3i 0. 32 1. 94 1123 15 50 Aut o mo to r sp or t( 19 92:1 0) B M V ALPI NA B6 2. 8 0. 30 1. 94 1430 18 50 Aut o moto r sp or t( 19 92 :1 1) AU DI 10 0 2. 6E 0.29 2. 11 14 58 19 50 Aut o mo to r sp or t( 1992 :1 1) P O R S C H E 92 8G T 8 0. 35 2. 02 16 28 19 60 Aut o mo to r spor t( 19 92 21 1) F O R D SC ORPI O 2. 0i G L X TU RN IE R 0. 33 2. 08 13 84 19 25 Aut o mo tor sp or t( 19 92 :1 1) R O V E R 82 7 Si 0. 31 14 61 1970 Aut o mo to r spor t( 19 92 :1 1) B M W73 0i 0. 33 2. 11 1755 22 20 Aut o mo to r sp or t( 19 92 z1 2) V WPA SS AT G T VR 6 0. 34 2. 00 14 18 18 80 Aut o mo to r sp or t( 19 92 :1 2) S U B A R U SV X 0. 29 16 32 2045 Aut o mo to r sp or t(19 92 :1 2) RE NA ULT 19 RT 1. 88 0. 31 1. 96 10 84 15 30

Aut omo to r sp or t( 19 92 :1 3) Appendix 1 Page 7 (11)

(33)

VTI MEDDELANDE 868A M o d e l C D C r o s s se ct io n ar ea Ke rb we ig ht Ma xwe ig ht Ye ar m o del R e f e r e n c e m 2 kg

k9

T O Y O T A CA RI NA LI FT BA CK 1. 6 GL i 0. 30 11 83 16 00 Aut o mo to r sp or t( 19 92:1 3) FI AT C I N Q U E C E N T O 0. 33 74 7 11 50 Aut o mo tor sp or t( 19 92 z1 4) H O ND A CI VI C 1. 5 VE i 0. 31 976 14 60 Aut o mo to r sp or t( 19 92 z1 4) H O N D A C R TVT i 0. 39 1.80 11 31 14 80 Aut o mo to r spor t( 19 92 z1 5) T O Y O T AC A M R Y CO MB I V6 G X AU TO MA TI K 0. 35 2.13 15 89 21 50 Aut o mo tor sp or t( 19 92 21 6) M A Z D A X e d o s 6 0.29 1. 89 12 46 1670 Aut o mo to r sp or t(19 92 :1 6) F O R DFI ES TA XR 2i 0. 35 1. 87 96 5 13 75 Aut o mo tor sp or t( 19 92 :1 6) T O Y O T A C O R OLL A LI FT BA CK 1. 4 XL i 0. 33 10 98 15 55 Aut o mo to rsp or t( 19 92 21 8) PEU G E O T 40 5 SR I 0. 31 1. 99 11 84 16 15 Aut o mo to r sp or t( 1992 z1 9) M E R C E D E S 22 0 E 0. 30 2. 07 14 30 1940 Aut o mo to r sp or t( 1992 22 0) F O R D E S C O RT 1. 6i GH IA 0. 33 1.93 11 55 16 25 Aut o mo to rsp or t( 19 92 z2 0) M E R C E D E S 40 0E 0. 30 2. 07 17 10 21 60 Aut o mo to r sp or t(19 92 :2 1) V O L V O 85 0GL E 0. 32 2. 12 13 81 18 40 Aut o mo tor sp or t( 19 92 z2 1) MI TS UB IS HI 30 00 G T 0.33 1. 97 17 59 21 20 Aut o mo to r sp or t( 19 92 z21) LA NC IA T H E MA V6 LS 0. 32 2. 06 13 98 18 95 Aut o mo to r sp ort( 19 92 z2 1) F O R D E S C O R T RS C OS W O R T H 0. 38 13 76 1725 Aut o mo to r sp or t( 19 92:2 2) V W G O L F VR 6 AUTO MA TI K 0. 33 2.00 12 92 16 80 Aut o mo to r spor t( 19 92 :2 2) B M W32 0i C O U P E 0. 31 1. 91 13 67 17 75 Aut o mo to r sp or t( 19 92 z22) B M W 54 0i 0. 33 2. 07 17 21 21 60 Aut o mo to r spor t( 19 92 :2 3) CI TR OEN ZX A U R A 1. 9 TU RB OD IESE L 0. 33 1. 94 11 48 1590 Aut o mo to r sp or t( 1992 :2 3) P E U G E O T 10 6 XRD 0. 32 84 2 12 80 Aut o mo tor sp or t( 19 92 z2 4) O P E L V E C T R A GT 16 V 0. 29 1. 98 12 45 17 10 Aut o mo to r spor t( 19 92 :2 4) RE NA ULT T W I N G O 0. 35 1. 95 818 11 75 Aut o moto r sp or t( 19 92 226) AU DI A V A N T S4 4. 2 0. 29 2. 11 17 53 22 80 Aut o mo to r spor t( 19 92 22 6) HY UNDA I S-CO UP E 1. 5 LS 0. 34 1. 81 1037

14

40

Aut omo to r sp or t( 19 92 :2 6) F O R D P R O B EGT 0. 30 12 98 16 46 Aut o mo to r spor t( 19 92 22 6) B M W 850 CS i 0. 31 2.06 19 75 23 00 Aut o moto r sp or t( 19 93 z1) F ORD FI ES TA S 0. 35 1. 85 94 7 13 50 Aut o mo to r sp or t( 19 93 z2 ) M B W M3 0. 32 1. 88 14 88 19 30 Aut o moto r sp or t( 19 93 z3 ) RE NA UL T S AFR A N E RT V6 i 0. 30 2. 18 16 04 19 90 Aut o mo to rsp or t( 19 93 :) F O R D M O ND E O 1. 81 GL X 0. 32 2.00 13 03 17 50 Aut o mo to r spor t( 19 93 :5 ) P O R S C HE 91 1 T U R B O 3. 6 0. 35 1.89 14 60 18 10 Aut o mo to r sp or t( 19 93 :5 ) NI SS AN SER E N A 2. 0 S G X 0. 35

1613 20 75

Aut omo to r sp or t( 19 93 :5) Page 8 (11)Appendix 1

(34)

VH MEDDELANDE 868A Mo de l C D C r o s s se ct io n area Ke rb we ig ht M a x weig ht Ye ar m o de l R e f e r e n c e m 2 k9 k9 O P E L COR S A JO Y 1. 4i 0. 35 1. 88 94 9 13 35 Aut o mo tor sp or t( 19 93 :6 ) P E U G E O T30 6 X R 1. 6 0. 33 1. 91 10 78 15 20 Aut o moto r sp or t( 19 93 :7 ) O P E L V E C T R A V6 0. 29 1.98 13 21 17 85 Aut o mo to r sp ort( 19 93 :8 ) V O L V O 85 0 GL T KO MB I 0. 32 2. 12 15 05 19 40 Aut o mo to r sp or t( 19 93 :8 ) O P E L C O R S A E C O 1. 2i 0. 35 1. 88 88 5 13 20 Aut o mo to r spor t( 19 93 z9 ) T O Y O T A CA RINA 2. 0 GL I KO MB I 0. 35 1. 95 12 79 17 50 Aut o mo to r sp or t( 19 93 :9 ) FOR D M O N D E O 2. 0i GL X 0. 32 2.00 13 49 1775 Aut o mo to r sp or t( 19 93 :1 0) M E R C E D E S C220 E L E G A N C E 0. 30 2. 05 13 85 18 90 Aut o mo tor sp or t( 19 93 :1 1) LA NCIA Y1 0 A V E N U E SE LE CT RO NI C 0. 31 83 1 1215 Aut omo to r sp or t( 19 93 :1 1) MI TS UB IS HI GA LANT 25 00 V6 -2 4V 0. 29 1541 19 85 Aut o mo to rsp or t( 19 93 :1 1) FI ATTI PO 1. 8i .e .G T 0. 31 11 98 16 50 Aut o mo to r sp or t( 19 93 z1 2) F O R D M O N DE O 1. 8i GL X TU RN IE R 0. 34 2. 00 13 67 19 50 Aut o mo to r sp or t( 19 93 z1 2) B M W 32 5i CA BR IO 0. 34 1. 91 15 00 18 50 Aut o mo to r sp or t( 1993 21 2) O P E L A S T R A CA BR IO 0. 33 1. 94 11 92 15 80 Aut o mo to rsp or t( 19 93 z1 3) P E U G E OT 30 6 XT dt 0. 34 11 70 1830 Aut o mo to r sp or t( 19 93 21) B M W AL PI M B3 3. 0SW IT CH -T RO NI C 0. 31 1450 18 50 Aut o moto r sp or t( 19 93 21 ) M E RC E D E S C2 80 ES PR IT 0. 31 2. 06

14

64

1970 Aut o mo to r sp or t( 19 93 215) CI TR OE N XA NT IA 2. 0iVS X 0. 30 2. 05

13

44

18 00 Aut o mo to r spor t( 19 93 21 6) SE AT IB IZ A2. 0 GT I 0. 32 10 39 15 05 Aut o mo to r sp or t( 19 93 21 8) M E R C E D E S E 30 0 DIES EL 0. 30 1538 20 30 Aut o mo tor sp or t( 19 93 21 8) T O Y O T A S U PRA 0. 33 1. 93 16 40 19 60 Aut o mo to r sp or t( 19 93 z1 9) SA AB 90 0 S 2. 0 0. 30 13 24 18 75 Aut o mo to rsp or t( 19 93 :1 9) V W PA SS AT CL 2.0 0. 30 2. 03 12 69 17 70 Aut o mo to r sp or t( 19 93 :2 1) V W G O L F CA BR IO LE T 2.0 0. 37 12 16 16 20 Aut o mo to r spor t( 19 93 :2 1) FI AT P U N T O 75 EL X 0. 30 97 3 1370 Aut o mo to r sp or t( 19 93 :2 1) KI A SE PHIA G T X 0. 32 10 81 14 47 Aut o mo to r sp or t( 19 93 :2 2) P O R S C H E 91 1 C A R R E R A 0. 33 1.84 13 63 17 10 Aut o mo to r sp ort( 19 93 :2 3) V W G O L F 1.9 TD GL VA RI AN T 0. 34 1. 97 12 55 16 70 Aut o mo to r sp or t( 19 93 :2 ) R O V E R 62 0 Si 0. 31 1. 97 13 19 1820 Aut o mo to r sp or t( 1993 :2 ) LE XU S G S30 0 0. 31 2. 08 17 19 21 20 Aut o mo to r sp or t( 19 93 :2 ) C H R Y S L E R VI SI ON 3. 5 0. 33 16 40 2100 Aut o mo to r sp or t( 19 93 :25) B M W 31 6i C OU P E 0. 29 1. 94 12 48 16 50 Aut o mo to r sp or t( 19 93 :2 6) M A Z D A X E DOS 9 0.28 2. 18 1495 19 40

Aut o moto r sp or t( 19 94 z3 ) Appendix 1 Page9(11)

(35)

VH MEDDELANDE 868A M o d e l C D C r o s s sect io n ar ea Ke rb we ig ht M a x we ig ht Yea r m o de I R e f e r enc e m 2

k9

kg F O R D FI ES TA 1. 4i FU N 0. 35 1. 84 96 3 14 00 Aut o mo to r sp or t( 19 94:4 ) CADI LL AC E L D O R A DO TC 0. 33 17 40 22 46 Aut o mo to r sp or t( 19 94 :4) B M W 31 6i C O M P A C T 0. 33 1. 96 11 40 16 00 Aut o mo tor sp or t( 19 94 :5 ) AU DI A V A N T RS2 0. 35 1. 94 16 50 21 00 Aut o mo to rsp or t( 19 94 :5 ) T O Y OT A CE LI CA G T 0. 32 1. 85 1280 16 10 Aut o mo to r sp or t(19 94 :5 ) O P E L O M E G A2. 0 16 V 0. 29 2. 15 14 93 19 55 Aut o mo tor sp or t( 19 94 26 ) M E R C EDE S C2 00 0. 32 2. 05 1383 18 45 Aut o mo to r sp or t( 19 94z6 ) P E U G E O T 30 6CA BR IO LE T 2. 0 0. 35 1. 94 12 59 16 10 Aut o moto r sp or t( 19 94 :8 ) AUDI A8 2. 8 0. 28 2. 25 15 65 20 60 Aut o mo to r sp or t( 1994 :9 ) O P E L O ME G A 2. 0 16 V 0. 31 2. 23 15 57 20 85 Aut o mo to r sp or t( 19 94:9 ) RE NAUL T L A G U N A 2. 0 RT 0. 30 2. 07 12 95 17 75 Aut o mo to r sp or t(19 94 :9 ) SA AB 90 0 SE T U RB O C O U P E 0. 30 13 78 18 70 Aut o mo tor sp or t( 19 94 :1 O) B M W 74 0i 0. 30 2. 21 18 79 23 25 Aut o mo tor sp or t( 19 94 :1 1) P EUG E O T 80 6 2. 0 T U R B O 0. 34 16 72 2340 Aut o mo to r sp or t( 1994 :1 3) FI AT P U N T O CA BR IO EL X 0. 30 11 14 14 30 Aut o mo to rsp or t( 19 94 z1 3) AU DI A6 1. 9 TD I 0. 32 2. 12 14 35 19 50 Aut o mo to rsp or t( 19 94 :1 4) CI TR OE N XM 2. 5 TU RB OD .E XC LU SIVE 0. 29 16 32 20 80 Aut o mo to r sp or t( 1994 :1 5) SA AB 90 0 SE T UR B O CA BR IO 0. 36 14 15 18 70 Aut omo to r sp or t( 19 94 z1 6) RENA UL T L A G U N A V6 3.0 0.30 14 62 1935 Aut o mo to r spor t( 19 94 z1 6) CI TROE N ZX 1. 8i A U R A B R E A K 0. 34 1. 97 1178 16 10 Aut o mo to r sp or t( 19 94 217) J A G U A R XJ 22 0 0. 36 15 55 16 49 Aut o mo to rsp or t( 19 94 z1 9) ALFA R O M E O 14 5 1. 6 0. 32 12 17 16 70 Aut o mo to r spor t( 19 94 :1 9) P O R S C H E 91 1 CAR R E R A 4 0. 33 1. 84 14 22 17 60 Aut o moto r sp or t( 19 94 z2 0) F O RD M O N D E O V6 24 V 0. 31 1416 1875 Aut o mo to r sp or t(19 94 :2 1) AU DI A4 1. 8 0. 29 2. 03 12 84 17 75 Aut o mo tor sp or t( 19 94 22 2) R A N G E R OV E R 4. 6 HS E 0. 38 21 72 27 80 Aut o mo to r sp or t( 1994 22 3) B M W 750i 0. 32 2. 21 20 45 2495 Aut o mo to r sp ort( 19 94 :2 4) J A G UAR SO VE RE IG N 4. 0 0. 37 2. 09 17 80 2220 Aut o mo to r spor t( 19 94 22 5) HY UNDA I A C C E N T 1. 3i GLS 0. 31 1. 91 99 4

14

40

Aut o mo to rsp or t( 19 94 :2 5) B M W 31 8t iC O M P A C T 0. 34 1. 96 1218 16 40 Aut o mo to r sp ort( 19 94 :2 6) V W P O L O75 S E R V O 0. 32 1. 93 99 0 14 00 19 95 Aut o mo to r sp or t( 1995 :1 ) NI SSAN 20 0 SX 0. 32 13 14 1780 1995 Aut o mo to rsp or t( 19 95 :1 ) A ST O N MA RT IN DB 7 0. 31

1752 20 00 19 95 Aut o mo to rsp or t( 19 95 :2 ) Page 10 (11)Appendix 1

(36)

VTI MEDDELANDE 868A Mo de l C D C r o s s se ct io n area Ke rb we ig ht M a xwe ig ht Ye ar m o d e l R e f e r e n c e m 2 k9

k9

KI A SP O R T A G E 0. 39 12 60 19 28 1995 Aut o mo to r sp ort( 19 95 :2 ) F O RD SC OR PI O 2. 0i 16 V 0. 32 1995 Aut o mo to r spor t( 19 95 z3 ) B M W 328i 0. 30 1. 96

14

04

1780 19 95 Aut o mo to r sp or t(19 95 24 ) B M W 32 0i TO URIN G 0. 32 1. 96 13 98 18 30 19 95 Aut o mo to r sp or t( 1995 25 ) AU DI A4 A V A N T 1. 9TD I 0. 31 2. 04 1371 18 35 19 95 Aut o moto r sp or t( 19 95 ;2 4) HY UN DA I LA NT RA GLS 1. 6i 0.33 2. 01 1200 16 85 19 95 Aut o mo tor sp or t( 19 95 ;2 4) RE NA UL T M E G A N E RT 1. 6 0. 32 1. 99 10 91 16 25 1995 Aut o moto r sp or t( 19 95 ;2 6) MA SERA TI Q U A T T R O P O R TE 2. 8 0. 31 16 62 20 70 1996 Aut o mo to rsp or t( 19 96 ;1 ) C H RYS L E R V O Y A G E R 2. 4 SE 0. 35 1786 24 35 19 96 Aut o mo to rsp or t( 19 96 ;1 ) B M W 52 3i 0. 28 2. 12 14 93 19 55 19 96 Aut o mo to r sp ort( 19 96 ;1 ) M G F 0. 36 11 31 13 20 19 96 Aut o mo to rsp or t( 19 96 ;2 ) LA NC IA Y 1. 4 LX 0. 32 10 18 1380 19 96 Aut o mo to r sp or t(19 96 ;4 ) B M W Z3 1. 8 0. 40 1. 77 11 88 1400 19 96 Aut o mo to r spor t( 19 96 ;5 ) B M W 52 0i 0. 27 2. 12 1496 19 45 19 96 Aut omo to r sp or t( 19 96 ;5 ) MI TS UB IS HI C O L T 13 00 GLX 0. 30 1. 92 1010

14

45

19 96 Aut omo to r sp or t( 19 96 ;6 ) V W P O L O 64 DIES EL 0. 32 1. 93 97 1 1435 19 96 Aut o mo to r sp ort( 19 96 ;7 ) CI TR OEN S A X O 1. 1 SX 0. 33 1. 82 87 5 1310 1996 Aut o mo to r spor t( 19 96 ;8 ) Pe ug eo t 40 6 2, 0 16 V 0. 32 2. 07 10 25 1915 19 96 Aut o mo to r sp or t(19 96 ;4 ) V O L V O S 4 0 1.8 1 6 V 0. 31 12 86 17 20 19 96 Aut o mo to r spor t( 19 96 ;1 0) AU DI A3 1. 8 AM BIEN TE 0. 31 2. 06 12 04 1650 19 96 Aut o mo to r sp or t( 19 96 ;14) T O Y O T A ST AR LE T 0. 34 90 6 13 45 19 96 Aut o mo to r sp or t( 19 96;1 6) B M W 53 5i 0. 30 2. 17 16 65 21 05 19 96 Aut o mo to r sp ort( 19 96 ;1 6) T O Y O T A LA ND CR UI SER 3. 0 TD Sp ec ia l 0. 42 20 04 25 10 19 96 Aut omo to r sp or t( 19 96 ;1 8) M E R C E D E S SL K 230 Ko mp re ss or 0. 35 1. 86 13 13 1585 19 96 Aut o mo to r sp or t( 1996 ;1 9) ALPI NA B3 3. 2 0. 31 1460 18 50 19 96 Aut omo to r sp or t( 19 96 ;2 0) M E R C E D E S V 23 0 T D 0. 34 2043 26 30 19 96 Aut o mo to r sp or t( 19 96 ;20) NI SS AN PR IM ERA 2. 0 SE 0. 30 12 93 1740 19 96 Aut o mo to r sp or t( 1996 ;2 1) O P E L V E C TRA C A R A V A N C D EX KL US IV 2. 5 V6 0. 32 2. 06 14 48 19 90 19 96 Aut o mo to r sp or t(19 96 ;2 1) Appendix 1 Page 11 (11)

(37)
(38)

Appendix 2 Page 1 (4)

Influence of the various basic configurations of wind

deflectors on the drag coefficient of standard truck and

trailer units

Explanations: Appendix 2, Page 3 (4)

Fahrzeugkonfiguration Vehicle configuration

SerienméBiger Lastzug

Standard model truck with trailer Lastzug mit Windleitblech

Typ a) Truck with trailer and wind deflector (type a))

SerienmaBiger Lkw-Motorwagen solo

Single standard model truck Lkw - MotonNagen solo

mit Windleitblech Typ a)

Single truck with wind deflector (type a)) SerienméBiger

Lastzug

Standard model truck with trailer Lastzug mit Windleitblech

Typ a) und Mittelsteg bis Truck with trailer and wind deflector. (type a))Vertical wall below the deflector ending at the

Aufbauvcrderwand front wall of the cargo space

SerienméBiger = Standard model truck with trailer

Lastzug

Lastzug mit Windleitblech = Truck with trailer and wind deflector (type b))

Typ b)

SerienmaBiger = Standard model truck with trailer

Lastzug

Lastzug mit Windleitblech = Truck with trailer and wind deflector (type c))

Typ C)

SerienmaBiger = Standard model truck with trailer

Lastzug

Lastzug mit Windleitblech = Truck with trailer and wind deflector (type b))

Typ b)

Lastzug mit

Dachvorder-kantenrundung R=250mm. Truck with trailer and rounded front edgeR=250 mm

Lastzug mit Dachvorder-kantenrundung R=250mm u.Windleithech Typ b)

Truck with trailer and rounded front edge R=250 mm and wind deflector (type b)) SerienméBiger

Lastzug Standard model truck with trailer

Lastzug mit Windleitblech

Typ a) Truck with trailer and wind deflector (type a))

SerienméBiger Lkw -Motorwagen solo

Single standard model truck Lkw - Moton/vagen solo

mit Windleitblech Typ a) Single truck with wind deflector (type a))

SerienmaBiger Standard model truck with trailer

Lastzug

Lastzug mit Windleitblech = Truck with trailer and wind deflector (type c))

Typ c)

Aufbauart = Bodywork

Aufbauhéhe = Height of bodywork

Koffer = Box

Plane = Covered with tarpaulin

MAN-Fernlastziige mit und ohne Windleitblech auf Fahrerhausdach;

Vergleich der Luftwiderstandsbeiwerte und Luftwiderstandsfléchen.

MAN-long distance truck and trailer

combinations with and without wind deflector on the roof of the drivers cabin. Comparison of CD values and cross wind areas.

(39)

Explanations: Appendix 2, page 4 (4)

Appendix 2 Page 2 (4)

Fahrzeugkonfiguration = Vehicle configuration

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech Standard model truck with semitrailer and

Typ a) wind deflector (type a))

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech Typ a) und Mittenleitblech auf Aufiiegervoderwand

Truck with semitrailer and wind deflector (type a)). Vertical wall below the deflector ending at the front wall of the cargo space

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech = Standard model truck with semitrailer and

Typ b). wind deflector (type b))

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech = Standard model truck with semitrailer and

Typ 0) wind deflector (type c))

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech Typ c) und Mittenleitblech auf Aufiiegervorderwand

Truck with semitrailer and wind deflector (type 0)). Vertical wall below the deflector ending at the front wall of the cargo space

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech = Standard model truck with semitrailer and

Typ a) wind deflector (type a))

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech Typ a) und Mittenleitblech auf Aufiiegervorderwand

Truck with semitrailer and wind deflector (type a)). Vertical wall below the deflector ending at the front wall of the cargo space

SerienmaBiger = Standard model truck with semitrailer

Sattelzug

Sattelzug mit Windleitblech = Standard model truck with semitrailer and

Typ c) wind deflector (type c))

Aufbauart = Bodywork

Aufbauhbhe = Height of bodywork

Koffer = Box

MAN-Sa elz ge mit und ohne Windleitblech auf Fahrerhausdach,

Vergleich der Luftwiderstandsbeiwerte und Luftwiderstandsflachen.

MAN-truck with semitrailer.With and without wind deflector on the roof of the drivers cabin. Comparison of CD values and cross wind areas.

References

Related documents

(Observera att flertalet ekipage provets vid högre tryck i Danmark, och att de Lätta i Finland ej provets vid så högt tryck som i Sverige.). VTI Notat TF 60-07..

Syftet med detta examensarbete är att studera hur livsmedelsföretagare som inte har svenska som modersmål upplevde att kommunikationen fungerade vid den senaste

Figure 5.15: One-class SVM model with 24-hour rolling mean applied to the good turbine 1 data7. Figure 5.16: One-class SVM model with 24-hour rolling mean applied to the good turbine

A driving simulator experiment was carried out in order to investigate the effects on fatigued drivers of rumble strips on narrow roads (≤ 9 meters) on both shoulder and centre

RUNT omkring denna sinnrika inskrift som pryder en stor skola i Sachsen i tyska demokratiska republiken, det vill säga dagens östtyskland, ler Sovjetunionens och

&#34;präglat av laganda, personlig frihet och personligt ansvar.&#34; Jarl Hjalmarson me- nade att demokratin borde utvecklas även vid sidan om den politiska sfären

Möjligen kan man undra om inte också denna kvinna och hennes entusias- tiska systrar och bröder kommer att känna sig obehagliga till mods efter en. tids

Inte minst Viktig roll skulle Svensk Tidskrift därmed ha Men v1 behöver även många andra stora möjligheter att fungera som forum for tankemöda och