• No results found

Synthetic Biology in cyanobacteria

N/A
N/A
Protected

Academic year: 2022

Share "Synthetic Biology in cyanobacteria"

Copied!
41
0
0

Loading.... (view fulltext now)

Full text

(1)

Synthetic Biology in cyanobacteria

Expression of [FeFe] hydrogenases, their maturation systems and construction of broad-host-range

vectors

Ingólfur Bragi Gunnarsson

Degree project inapplied biotechnology, Master ofScience (2years), 2011 Examensarbete itillämpad bioteknik 30 hp tillmasterexamen, 2011

Biology Education Centre and Department ofPhotochemistry and Molecular Science, Uppsala

(2)

  Index    

1  Introduction   1  

1.1  Energy  and  environment   1  

1.2  Current  hydrogen  production  processes   2  

1.3  Cyanobacteria   2  

1.4  Hydrogenases   3  

1.4.1  Cyanobacterial  [NiFe]  hydrogenases   4  

1.4.2  Chlamydomonas  reinhardtii  [FeFe]  hydrogenases   4  

1.5  Synthetic  biology   5  

1.5.1  Standardized  biological  parts  -­‐  BioBricks   7  

1.6  Synthetic  biology  in  cyanobacteria   9  

1.7  Project  aims  and  goals   10  

2  Results   11  

2.1  Gas  chromatography  measurements   11  

2.2  Test  hydrogen  electrode  measurements   12  

2.3  Growth  characterization  and  hydrogen  evolution  measurement  

             in  hydrogen  electrode   13  

2.4  Protein  extraction,  separation  and  Western  Blotting   14   2.5  Discovering  damage  to  broad-­‐host-­‐range  vector  pPMQAC1   15   2.6  Construction  of  new  broad-­‐host-­‐range  vectors   16  

3  Discussion   20  

3.1  [FeFe]  hydrogenase  expression  in  E.  coli  and  characterization                  of  consequent  hydrogen  production.   20   3.2  Conformation  of    [FeFe]  hydrogenase  expression  in  E.  coli   20   3.3  Construction  of  broad-­‐host-­‐range  vectors   21  

(3)

 4  Materials  and  methods   23  

4.1  Bacterial  strains,  plasmids  and  primers   23  

4.2  Growth  media   24  

4.3  Plasmid  purification  and  cloning   25  

4.4  Hydrogen  measurements   26  

4.4.1  Hydrogen  electrode  setup   26  

4.4.2  Gas  chromatography  measurements   27  

4.4.3  Test  hydrogen  electrode  measurements   28  

4.4.4  Growth  characterization  and  hydrogen  evolution  measurement                        using  hydrogen  electrode   28  

4.5  SDS-­‐PAGE   29  

4.6  Western  blotting   30  

4.7  Protein  staining   30  

4.8  Polymerase  chain  reactions  (PCR)   31  

4.9  Construction  of  new  broad-­‐host-­‐range  vectors   32  

5  Acknowlegements   34  

References   35  

 

(4)

Summary

Mankind's  consumption  of  fossil  fuels  is  so  excessive  that  we  will  most  likely  run   out  of  fossil  fuels  this  century.  The  depletion  of  fossil  fuels  is  already  causing   serious  con<licts  and  effecting  the  worlds  economy.  Global  warming  is  already   causing  Earth’s  climate  to  change  fast,  but  the  consumption  of  fossil  fuels  still   increases.  It  is  of  great  importance  that  fossil  fuels  are  replaced  by  renewable   energy  sources  so  more  damage  to  Earth’s  biosphere  can  be  prevented.  

There  is  though  one  source  of  energy  that  dwarfs  all  other  energy  sources  on   Earth,  the  sun.  Nature  has  for  a  long  time  been  able  to  convert  sunlight  into   energy  very  elegantly  via  photosynthesis.  Mankind  has  not  yet  been  able  to   capture  the  suns  energy  in  an  economical  and  ef<icient  way.  Synthetic  biology   de<initely  has  the  future  potential  of  developing  photobiological  systems  able  to   produce  renewable  energy  sources  from  sunlight.  Photosynthetic  

microorganisms  e.g.  cyanobacteria  are  able  to  harness  sunlight  and  produce   hydrogen  in  small  amounts.  

This  project  was  mainly  focused  on  two  things.  First,  to  characterize  the  

hydrogen  production  of  already  available  [FeFe  ]hydrogenase  constructs  (hydA2   and  hydA2+fd)  and  their  maturation  systems  in  E.  coli  using  gas  chromatography   and  a  Clark  type  electrode.  Second,  I  was  also  involved  in  the  construction  of     broad-­‐host-­‐range  vectors  that  are  able  to  replicate  in  cyanobacterial  strains  for   the  purpose  of  expressing  productive  [FeFe]  hydrogenases  and  their  maturation   systems  in  cyanobacteria  for  increased  hydrogen  production.

(5)

1 Introduction

1.1 Energy and environment

Earth’s   fossil   fuel   resources   will   run   out   in   the   not   so   distant   future,   and   the   release  of  green  house  gases  from  burning  fossil  fuel  are  causing  global  warming,   which  in  turn  is   causing   climates   changes   [1,   2].   The  use  of   renewable   energy   sources   needs   to   increase   drastically   and   new   ways   in   producing   renewable   energy  need  to   be  realized  as  soon  as   possible.   Some  renewable  energy  sources   in  use  today  are  e.g.  wind-­‐,  solar-­‐,  geothermal-­‐,  hydropower  and  biofuels  such  as   bioethanol,   biodiesel,   biohydrogen.   It’s  important  to   continue   ongoing  research   in  all  <ields  of  renewable  energy  because  there  is  still  no  single  renewable  energy   source   that   can   totally   replace   fossil   fuels,   at   least   not   when   using   current   technologies  [3].  Out  of  all  energy  sources  being  explored,  one  will  eventually  be   able  to  replace  fossil  fuels  inde<initely,  this  energy  source  is  the  sun.  The  sunlight   that  hits  Earth’s  surface   contains   about  103   times  more  energy   than  mankind's   energy   consumption  [4].   Current   technologies  are  however  not  able   to   capture   this   energy   and  transfer  it   into   a  renewable  energy   carriers   such  as   electricity,   hydrogen   or   ethanol   in   an   economical   and  ef<icient   way   [5,   6].   Nature,   on   the   other   hand   is   able   to   do   this   in   a   very   elegant   way   via   photosynthesis.   Plants,   algae   and   some   bacterial   species   use   photosynthesis   to   convert   sunlight   into   energy  [7].

In  the  search  for  a  way  to   capture  sunlight  and  convert  it  into  an  energy  carrier   that  can  be  commercially  used,   many  possibilities  are  being  explored.   Hydrogen   production   using   biological   systems   such   as   cyanobacteria   are   an   interesting   alternative,   since   they   are   able   to   naturally   produce   molecular   hydrogen   (in   small   amounts)  from   only   water   and  sunlight  via  photosynthesis  [8].  Molecular   hydrogen  contains   the  highest   amount  of  energy  per   weight   unit  of  all  gaseous   fuels   and   since   it’s   a   carbon   free   compound,   no   carbon   is   emitted   from   its   combustion.   In   fact,   the   combustion   of   hydrogen   has   only   one   combustion   product,  water  [9].  

Because   of   these   positive   attributes   many   believe   that   hydrogen   will   become   Earth’s  primary  energy  carrier  in  the  future,  but  how  that  becomes  reality  is  still   unknown   [5].   If   biological   systems   like   cyanobacteria   are   to   be   used   for   large  

(6)

scale   hydrogen   production   in   the   future,   genetic   engineering   is   needed   to   increase  the  production  [10].

1.2 Current hydrogen production processes

Today  as  much  as  96%  of  all  hydrogen  being  produced  in  the  world  is  produced   directly  from  fossil  fuels.  About  4%  is  produced  by  electrolysis,  where  electricity   generated  in  most  cases  from  fossil  fuels  is  used  [10].  Steam  methane  reforming   (SMR)  is  the   most  abundant  method,   as  well   as   the  cheapest   way   of  producing   hydrogen.   The   biggest   drawback   of   using   SMR   is   that   the   process   emits   large   amounts   of   CO2  [11].   Other   widely   used  methods   for   hydrogen  production   are   e.g.   coal   gasi<ication,   biomass   pyrolysis/gasi<ication,   electrolysis,   photocatalytic   water  splitting  and  biological  [12].

By   using   biological   systems,   hydrogen   can   be   produced   in   a   renewable   and   carbon   neutral   way.   Biological   hydrogen   can   be   produced   via   photosynthesis,   fermentation  and  microbial   electrolysis   cells   [13].   This  project   was   focused  on   hydrogen  production  using  biological  processes  connected  to  photosynthesis.

1.3 Cyanobacteria

Cyanobacteria   are   photosynthetic   organisms   that   were   Earth’s   <irst   primary   producers,   and   as   such   they   play   an   important   role   in   Earth’s   carbon   and   nitrogen  cycles,  since  many  of  them  can  <ix  nitrogen  from  the  atmosphere[14].

The  mechanism  of  oxygenic  photosynthesis  is  found  in  the  thylakoid  membrane.  

It  absorbs   light   with  antenna  complexes  and  Photosystem   II  uses   the  energy  in   the   photons   to   split   water   into   molecular   oxygen,   protons   and   electrons.   The   electrons   are  transferred  through  the   electron   transport   chain   (plastoquinone,   b6f  cytochrome  and  plastocyanin)  to  Photosystem  I  that  catalyzes  the  membrane   charge   separation.   This   process   is   driving   the   reduction   of   NADP+  to   NADPH   (through  ferrodoxin-­‐NADP+  reductase)  as  well   as  providing  the  proton  gradient   necessary  for  producing  ATP  [15,  16].

The   ability   to   split   water   and   harvest   it’s   electrons   via   photosynthesis   is   a   biochemical  capacity   that   can   be  traced  back   at  least  2320-­‐2450  million  years,   when  molecular   oxygen   was   <irst   found  in   the  atmosphere.   Some   even   believe  

(7)

ago  (Ma)  [17,  18].  These  ancient  photosynthetic  organisms  were  predecessors  to   currently  existing  cyanobacteria  [19].   When  oxygen  became  abundant  in  Earth’s   atmosphere  a  new  chapter  in  life  on  Earth  began,  aerobic  organisms  evolved  and   cellular  respiration  became  possible  [19].  

Taxonomic  classi<ication  based  on  morphology  and  development  usually  divides   cyanobacteria   into   <ive   principal   groups:   Chroococcales,   Pleurocapsales,   Oscillatoriales,   Nostocales   and   Stigonematales.   These   groups   are   then   divided     into   numerous   sub-­‐groups   [8].   Cyanobacteria   are   found   in   a   wide   variety   of   habitats   e.g.   aquatic   and   terrestrial   environments   as   well   as   under   extreme   conditions   in   hot   springs,   deserts,   hydersaline  alkaline   lakes  and  polar  regions   [20].   Apart   from   the   fact   that   cyanobacteria   can   grow   in  harsh  environments,   they   also   have   some   other   attributes   that   can   be   bene<icial   for   bioindustrial   processes   such   as   simple   nutrition   requirements,   rapid   genetics   and   naturally   produce  molecular  hydrogen  [10].

1.4 Hydrogenases

Hydrogenases   are   metalloenzymes   that   catalyze   the   reversible   oxidation   of   molecular  hydrogen  from  protons  and  electrons  according  to  this  reaction:  

H2⇔2H++2e.   Hydrogenases   are   found   in   many   different   microorganisms   and   are   important   for   their   energy   metabolism   [21].   There   are   three   classes   of   hydrogenases,   [NiFe]   hydrogenase,   [FeFe]   hydrogenase   and   [Fe]   hydrogenase.  

These  classes  indicate  what  type  of  active  site  the  enzyme  has.  Three  types  of   Fe-­‐S   clusters   are  found   in  proximity   to   the  active   site,   [2Fe–2S],   [3Fe–4S],   and   [4Fe–4S].  The  Fe-­‐S  clusters  supply  electrons  to  the  active  site  from  the  enzymes   redox  partners  (NAD,  cytochrome,  coenzyme  F420  and  ferrodoxin).  In  the  case  of   uptake  hydrogenase   the  Fe-­‐S  clusters   guide  the  electrons   away   from   the  active   site  [22].

The  enzymes  however  vary  between  species  e.g.  [NiFe]  hydrogenases  are  found   across  a  variety  of  organisms  including  cyanobacteria,  while  [FeFe]hydrogenases   are  mostly  found  in  green  algae  and  some  anaerobic  prokaryotes  [23].

(8)

1.4.1 Cyanobacterial [NiFe] hydrogenases

In   the   hydrogen   metabolism   of   nitrogen-­‐<ixing   cyanobacteria,   there   are   three   enzymes  that  are  of  high  importance:  1.   Nitrogenase,  which  produces  hydrogen   as   a   byproduct  while   <ixing   nitrogen  (will   not   be  discussed   further).   2.   Uptake   hydrogenase   (encoded   by   hupSL),   recycles   hydrogen   that   is   produced   by   the   nitrogenase.  3.  Bidirectional  hydrogenase  (encoded  by  hoxEFUYH),  produces  and   consumes  hydrogen  [8].  Non-­‐nitrogen  <ixing  cyanobacteria,  such  as  Synechocystis   PCC  6803  only  possess  the  bidirectional  hydrogenase  [24].  

In   cyanobacteria   all   of   these   enzymes   have   [NiFe]   reaction   centers   and   are   sensitive   to   the   presence   of   oxygen,   which   will   render   them   inactive   under   aerobic  conditions.  The  inactivation  of  these  enzymes  by  oxygen  can  however  be   reversed  by   introducing   anaerobic   conditions   [25].   The   oxygen   sensitivity,   and   the  fact   that  the  overall   productivity  of  the  hydrogen  metabolism   is  low   means   that   wildtype   cyanobacterial   strains   are   not   feasible   for   commercial   hydrogen   production  [26].  

If   one   would   want   to   use   cyanobacteria   for   industrial   hydrogen   production,   genetic  modi<ications  need  to  be  done  on  the  hydrogen  metabolism  in  some  way   e.g.   by  introducing  more  productive  [FeFe]  hydrogenases  from   green  algae  into   cyanobacteria   [27].   The   cyanobacterial   strain   Synechocystis   PCC   6803   is   potentially  suitable  for  the  heterologous  expression  of  [FeFe]  hydrogenases  due   to  its  unicellular  appearance,  natural  transformability  and  relatively  fast  growth   [8].  Here  is  where  the  application  of  synthetic  biology  becomes  useful.

1.4.2 Chlamydomonas reinhardtii [FeFe] hydrogenases

C.   reinhardtii   is   a   soil-­‐dwelling   unicellular   photosynthetic   green   algae   that   possesses   many   different   fermentation   pathways  [28].   Its   metabolic   <lexibility   can  be  used  to  produce  useful  metabolites  such  as  hydrogen,  ethanol  and  organic   acids.   C.   reinhardtii   possesses   very   productive   [FeFe]   hydrogenases   that   could   potentially  be  used  for  large  scale  hydrogen  production,  whether  using  

C.  reinhardtii  or  some  other  host  e.g.  cyanobacteria.

[FeFe]   hydrogenases   are   more   productive   than   [NiFe]   hydrogenases   when   it   comes   to   hydrogen  production.   This   makes   them   more  desirable  for  hydrogen  

(9)

is   called  the  H   cluster.   The   H   cluster  has   a  complex  structure  that   consists   of  a   FeFe  subcluster  coordinated  by  carbon  monoxide  (CO)  and  cyanide  (CN)  ligands   as  well   as   a   dithiol  bridge.   The  active   site  is  linked  to   the  [4Fe-­‐4S]   cluster  by   a   cysteine  residue  [30].

[FeFe]   hydrogenases   are  very  sensitive  to   the   presence  of  oxygen  and  very  easily  irreversibly   inactivated  [31].  Oxygen  is   believed  to   bind  to   the   active   site   of   the   [FeFe]   hydrogenases,   more   speci<ically  at  a  free  coordination  site  of   the   Fe   atom   distal   to   the   [4Fe-­‐4S]   cluster   (marked   as   Fe2   in   <igure   1)[32].   In   C.  

reinhardtii   there   are   two   genes,   hydA1   and   hydA2   that   encode   for   [FeFe]  

hydrogenases,  HydA1  and  HydA2.  The  transcription  of  these  genes  is  induced  at   anaerobic  conditions.  Due  to  the  complexity  of  the  enzyme’s  active  site  H-­‐cluster,   additional   maturation   enzymes   (HydEF   and   HydG)   are   needed   for   its   biosynthesis   and   assembly   [33].   These   maturation   enzymes   are   encoded   by   hydEF   and  hydG  genes   and  when  transcribed  the  gene  products  are  involved  in   numerous   reactions,   such   as   the   coupling   of   radical   S-­‐adenosyl-­‐L-­‐methionine   (SAM)   chemistry,   nucleotide   binding,   ligand   synthesis,   H-­‐cluster   assembly   as   well   as  cluster  insertion  [34].   The   <inal   product  is   an  active   and  mature  [FeFe]  

hydrogenase.   However   the   details   of  how   the   [FeFe]   hydrogenase   maturation   process   works   are   currently   unknown   [30].   It   is   of   great   importance   to   understand  the   synthesis   of   the   H-­‐cluster   since   it   could  contribute   signi<icant   information   which   can   help   with   improving   genetic   engineering   of   microorganisms   used  for   hydrogen  production   as   well   as   with  the  creation  of   hydrogen  producing  biomimetic  catalysts  [34].  

1.5  Synthetic  biology

With   the   rapidly   growing   knowledge   of   biological   systems   and   the   enormous   advancements  made  in  different  <ields  useful  for  engineering  biological  systems,   a   new   multidisciplinary   <ield   within   biology   has   emerged,   synthetic   biology.  

Synthetic  biology  is   a  <ield  that  ties  together  biological  science  and  engineering.  

Different  research  areas   within  biology   come  together   in  synthetic   biology:   e.g.  

Figure  1  -­‐  Chemical  structure  of  the   [FeFe]-­‐hydrogenase  H-­‐cluster[31].

(10)

protein   engineering,   systems   biology,   computational   biology,   metabolic   engineering   and   bioinformatics.   Using   the   knowledge   from   all   these   different  

<ields,  scientists  are  now  able  to  design,  synthesize  and  combine  genetic  material   to   in<luence   and   manipulate   the   cellular   metabolism   of   unicellular   and   even   multicellular  organisms  [35].    

The   tools   and   technologies   that   enable   synthetic   biology   to   prevail   are   standardized  cloning,  DNA  synthesis  and  work  that  is  being  done  on  minimizing   genomes  [36].

Traditional   cloning  is  an  important  tool   when  conducting  synthetic  biology,  but   because   people   use   different   techniques,   materials   and   standards   to   conduct   their   cloning   it   is   often  laborious   and   inef<icient   [37].   By   using   a  standardized   form   of   cloning   e.g.   the   “BioBrick   assembly   standard”,   where   standardized   cloning  vectors  (BioBrick   vectors)  and  standardized  genetic  elements   (BioBrick   standard   biological   parts,   BioBricks)  are  employed,   the  cloning  process   can  be   automated  and  both  functionally  and  time  optimized  [37].

DNA   synthesis   and  genome  minimization  both  got   world   wide   publicity   at   the   same   time   in  May   2010  when   J.   Craig   Venter   and  his   colleagues  at   the  J.   Craig   Venter   Institute   published   an   article   in   Science   [38]   about   the   creation   of   a   synthetic   organism.   Big   media   discussion   about   synthetic   life   and   the   ethical   issues   related  to   this   topic  followed.  In  the   article  Venter   et   al.   announced  that   they  were   successful  in  designing,   synthesizing  and  assembling  a  1.08  mega-­‐bp   Mycoplasma  mycoides  genome  and  creating  M.  mycoides  cells  containing  only  the   synthetic  chromosome  [38].  This  is  the  <irst  step  in  creating  organisms  that  can   be  truly  optimized  to  produce  valuable  compounds  e.g.  bioethanol,  biohydrogen   or   pharmaceuticals.   Scientists   will   be  able   to   maximize  the  yield  of  their   target   products   by   creating   the   ideal   synthetic   organism   for   the   production   of   that   speci<ic   product   [39].   The   synthetic   genome   is   kept   at   minimum   size   and   includes   only   genes   that   are   essential   for   the   growth  of   the   microorganism  as   well  as  genes  that  are  necessary  for  producing  the  target  product.  In  this  way  the   production  of  unwanted  metabolites  and  bi-­‐products  can  be  minimized,  which  in   turn  will  allow  increased  production  of  the  target  product  [37].  

(11)

1.5.1 Standardized biological parts - BioBricks

By  adopting  inventions  and  taking  note  of  developments  taking  place  in  different  

<ields  of  engineering,  the  process  of  engineering  biology  is  constantly  being  made   easier.   As   the   goal   of   synthetic   biology   is   to   design   and   build   new   biological   systems  by  assembling  biological  parts  (or  biological  building  blocks),  challenges   like  the  characterization  and  standardization  of  the  design  and  assembly  of  these   biological  parts  need  to  be  overcome  to  make  the  process  more  ef<icient  [40].  

Biological   parts   and   standard   biological   parts   can   be   de<ined   in   the   following   way:  “We  deJine  a  biological  part  to  be  a  natural  nucleic  acid

sequence   that   encodes   a   deJinable   biological   function,   and   a   standard   biological   part  to   be   a   biological   part   that   has   been   reJined   in   order   to   conform   to   one   or   more  deJined  technical  standards”  [41].

In   2003,   the   original   BioBrick   assembly   standard   was   proposed   by   Thomas   F.  

Knight  Jr.  in  a  technical   report  that   he  wrote  at  MIT.   In  this  technical  report  he   introduces   a   sequence   standard   that   requires   each   BioBrick   component   to   consist   of   a   double   stranded   DNA   vector.   The   vector   bears   four   standardized   restriction  sites.   Two  sites,  EcoRI  (E)  and  XbaI  (X)  are  positioned  upstream  and   the   other   two   restriction   sites,   SpeI   (S)   and   PstI   (P)   are   positioned   at   the   downstream   end   of  the   vector.     No   other   copies   of   these   restriction   sites   are   allowed  to   exist  on  the  vector.   A   so  called  pre<ix  region  is   between  the  E   and  X   restriction  sites   and  a  suf<ix  region  is   between  the  S  and  P  restriction  sites.   In-­‐

between  the  restriction  site  pairs  is  the  “insert”  region  [42].    

Enzymatic   digestion  with  X  and  S  results  in   compatible   sticky   ends,   so   that  they  can  be   ligated  together,  the   same  thing  applies  for   the  ligation  of  the  same  type  of  sticky  ends   e.g.   E  and  E  sticky  ends.   As  shown  in  <igure   2,   BioBricks   can   be   excised   from   one   BioBrick  vector  and  integrated  into  another   BioBrick  vector  via  ligation.  

A   BioBrick   part  (blue)  is   removed   from   its   vector  by  cutting  with  E  and  S.  In  a  separate  

reaction   a   gap   is   induced   in   the   vector   Figure  2-­‐BioBrick  standard  assembly  example

(12)

containing   the  green  BioBrick   part,   by   cutting  with  E  and  X.   The   blue  BioBrick   part   and   the   cut   vector   containing   the   green   part   are   then   puri<ied   via   gel   electrophoresis.  The  two  parts  are  then  mixed  together  so  that  compatible  sticky   (E-­‐E  and  S-­‐X)  ends  can  come  together.  When  this  is  done  the  parts  can  be  ligated   together  to  form  one  vector  containing  a  blue-­‐green  part.  The  restriction  sites  (S-­‐

X)  between  two  parts  form  a  so  called  “scar”  sequence  that  is  not  recognized  by   any   of   the   four   restriction   enzymes,   which   facilitates   further   assembly   of   BioBrick  parts.  The  resulting  vector  is  then  transformed  into  E.  coli  cells,  which   are  then  grown  to  produce  the  desired  amount  of  the  BioBrick  vector  [43].  After   the  initial  proposition  of  the  assembly  standard  it  has  been  modi<ied  numerous   times  to  adapt  it  to  new  techniques.  

The  Registry  of  Biological  Parts  was  founded  in  the  same  year  as  Tomas  F.  Knight   Jr.  proposed  the  BioBrick  assembly  standard.  The  Registry  is  a  growing  collection   of   standardized   biological   parts   that   can   be   used   by   scientists   to   design   and   assemble  biological  circuits.  The  standard  facilitates  the  exchange  and  assembly   of   biological   parts.   The   smallest   unit   of   engineering   is   the   part,   which   is   represented  by  a  DNA  sequence  that  encodes  for  different  functions.

These  parts   include   several   thousands  of  genetic   elements  such  as:   promoters,   repressors,   activators,   terminators  and  ribosome  binding  sites   (RBS).   Parts   can   then  be  assembled  into   a  “device”  that  performs  a  certain  task   or  function  with   certain  input  and  output  [44].  

The  BioBricks   Foundation  is  a  non-­‐pro<it  organization  that  works  on  improving   and   de<ining   the   standards   of   the   BioBrick   assembly   standard   and   the   standardized   biological   parts.   The   foundation   strives   to   help   and   support   synthetic  biologists  by  providing  them  with  practical  and  theoretical  knowledge   through  organizing  workshops  [45].  

OpenWetWare   is   another   example   of   an   effort   to   help   synthetic   biologists   in   conducting   their   research   by   sharing   information,   know-­‐how   and   wisdom   to   scientists   to   make  their  work   easier.   At  their  website  (www.openwetware.org)   one  can  e.g.   view,   download  and  upload  protocols   for  all   kinds   of  methods  and   experiments   used   in   synthetic   biology,   as   well   as   see   the   composition   of   numerous  materials  used.

(13)

1.6 Synthetic biology in cyanobacteria

Cyanobacteria   have   become   target   organisms   for   some   scientists   due   to   their   photosynthetic   abilities.   To   be  able   to   apply  synthetic  biology  in  cyanobacteria,   the   molecular   tools   to   do   so   need   to   be   developed.   It   is   necessary   because   molecular   tools   such   as   vectors   that   were   developed   for   E.   coli   will   often   not   work   properly   in   cyanobacteria.   This   is   the   reason   why   scientists   at   the   Department   of   Photochemistry   and   Molecular   Science   at   Uppsala   University   constructed  a  BioBrick  compatible  broad-­‐host-­‐range  shuttle  vector  optimized  for   replication  in  cyanobacteria  [46].

T h e   b r o a d -­‐ h o s t -­‐ r a n g e   v e c t o r   constructed   is   called   pPMQAK1.   The   vector   contains   a   RSF1010   replicon   t h a t   e n a b l e s   r e p l i c a t i o n   i n   cyanobacteria,  two  antibiotic  cassettes   (A=Ampicillin  and  K=Kanamycin)  and   a   BioBrick   interface   with   the   four   standard   BioBrick   restriction   sites   (EcoRI,   XbaI,   SpeI   and   PstI).   A   BioBrick,   BBa_P1010   was   inserted   into   the   BioBrick   insertion  site   using   the   BioBrick   assembly   standard   [46].  

BBa_P1010   is   the   BioBrick   name   for  

the  ccdB  cell  death  gene,  which  codes  for  the  CcdB  protein  that  kills  most  E.   coli   strains,   some  strains  are  however  resistant.  By  having  BBa_P1010  on  the  vector   the  process  of  inserting  other  BioBricks  into  the  vector  is  made  easier.  The  ccdB   gene   is  used   for   positive  selection  of  successful  ligations  into   the  BioBrick   site,   since  all  cells  carrying  plasmids  containing  BBa_P1010  will  die.  [43].  

The   RSF1010   replicon   is   from   the   broad-­‐host-­‐range   plasmid  RSF1010.   It   is   of   IncQ  group  and   has  been   shown  to   replicate   in  a  wide  range   of  gram-­‐negative   bacteria  as  well  as  some  gram-­‐positive  bacteria  [47].  

Former  master  students  Thiyagarajan  Gnanasekaran  and  Sean  M.  Gibbons  at  the   Department  of  Photochemistry   and  Molecular  Science,   Uppsala  University   built   genetic  constructs  e.g.  hydA1  and  hydA2   under  PTrc1O  synthetic  promoter  as  well  

Figure  3-­‐Construction  of  pPMQAK1-­‐BBa_P1010  [46]

(14)

as  maturation  system  construct  under  PTrc2O  synthetic  promoter.  They  also  made   pPMQAC1,   a   modi<ied   version   of   pPMQAK1,   containing   a   chloramphenicol   cassette   instead   of   a   kanamycin   cassette.   The   hydrogenase   constructs   were   inserted  into  pPMQAK1  and  the  maturation  system  construct  into  pPMQAC1  for   expression  in  cyanobacteria.

1.7 Project aims and goals

Originally   the   main   project   goal   was   to   <ind   out   why   expression   of   already   available   [FeFe]   hydrogenase   and   maturation   system   constructs   in   the   cyanobacterial   strain   Synechocystis   PCC   6803   did   not   result   in   hydrogen   evolution.  After  that,   the   aim   was   to   adjust   growth  conditions  for  Synechocystis   PCC  6803  in  order  to  optimize  the  hydrogen  production.  

The  above   strategy  was   however  abandoned  when  discovering   that  one  of  two   shuttle  vectors    (pPMQAC1)  was  not  functioning  properly.

A   new   strategy,   involving   the  creation  of  new   and   optimized   broad-­‐host-­‐range   shuttle   vectors   was   formed.   The   goal   of   the   new   strategy   was   to   combine   the   RSF1010  replicon  with  different  antibiotic  cassettes  and  ligate  it  into  a  new  and   optimized  BioBrick  base  vector  obtained  from  The  Registry  of  Biological  Parts.  If   this  goal  was  to  be  achieved  the  aim  was  to  use  the  new  broad-­‐host-­‐range  shuttle   vectors  to  express  [FeFe]  hydrogenases  and  maturation  systems  in  Synechocystis   PCC  6803.  

(15)

2 Results

2.1 Gas chromatography measurements

Hydrogen   measurements   were   tested   using   already   available   [FeFe]  

hydrogenase  and  maturation  system  constructs.  Hydrogen  evolution  from  E.  coli   BL-­‐21   (DE3)   wildtype,   E.   coli   BL-­‐21   (DE3)  cells   carrying   hydA2-­‐pPMQAK1  and   MatCr-­‐pSB1AC3  as  well  as  E.  coli  BL-­‐21  (DE3)  cells  carrying  hydA2+fd-­‐pPMQAK1   and  MatCr-­‐pSB1AC3  was  measured  using  gas  chromatography.

No   hydrogen  evolution  was   detected  from  the   wildtype  strain.   However  E.   coli   BL-­‐21   (DE3)   cells   carrying   hydrogenase   and   maturation   system   constructs   produced   hydrogen.   Cells   carrying   the   hydA2   construct   and  maturation  system   produced   8.2   μmoles⋅OD-­‐1   (sample   1)   and   15.7   μmoles⋅OD-­‐1   (sample   2),   an   average  of   11.96   μmoles⋅OD-­‐1   hydrogen   was   produced   from   cells   carrying   the   hydA2   construct   and   maturation   system.   Cells   carrying   the   hydA2+fd   construct   and   maturation   system   produced   15.2   μmoles⋅OD-­‐1   (sample   1)   and   14.8   μmoles⋅OD-­‐1   (sample   2),   which   is   an   average   hydrogen   production   15   μmoles⋅OD-­‐1.  

!"#$%&'('

!"#$%&'('

!"#$%&')'

!"#$%&')'

*' )' +' ,' -' (*' ()' (+' (,' (-'

./%0'12$&' 3204)5$67849('

7"1:;5$!<(4:=' 3204)>?05$67849(' 7"1:;5$!<(4:='

!"#$%&'()*#+,-./0###

1'2*34563*#

Figure  4-­‐Column  chart  showing  the  rate  of  hydrogen  evolution   (μmoles  OD-­‐1)  when  expressing  HydA2  and  HydA2+fd  with   pPMQAK1  and  correct  maturation  system  with  pSB1AC3  in  E.  coli   BL21  (DE3)cells.

(16)

2.2 Test hydrogen electrode measurements

Directly   after   measuring   the   hydrogen  in   the   gas   phase   of   the   above   cultures   containing   hydA2   or   hydA2+fd   constructs   on   the   pPMQAK1   plasmid   and   maturation  system  construct  on  pSB1AC3  with  the  GC,  the  hydrogen  production   was  measured  using  a  hydrogen  electrode.

100  μL  of  culture  was   added  to   900  μL  of  LB  medium  in  the  electrode  chamber.  

The  medium  contained  20  mM  glucose,  1  mM  IPTG,  50  μg/ml  kanamycin  and  50   μg/ml  chloramphenicol.  

The   hydrogen   production   of  each   culture   was   measured   for   8   minutes   in   the   hydrogen  electrode.  

The  above  <igures  show   the  recorded  output  from   the  hydrogen  electrode.   The   hydrogen   production   rate   was   calculated   from   the   slopes   (colored   red)   of   increasing   hydrogen   concentration.   Other   artifacts   in   the   <igures,   such   as   decreasing  hydrogen  concentration,  sharp  peaks  of  signal  and  large  deviations  in   signal  are  to  be  disregarded  since  they  are  the  result  of  calibration,  removal  and   addition  of  sample  or  signal  noise.  

Figure  5a  shows  that  E.  coli   BL-­‐21  (DE3)  carrying  hydA2-­‐pPMQAK1  and  MatCr-­‐

pSB1AC3  produced  2.95  H2[nmoles]⋅min-­‐1  (sample  1)  and  7.13  H2[nmoles]⋅min  -­‐1   (sample  2),  an  average  of  5.04  H2[nmoles]⋅min  -­‐1.

Figure  5a-­‐Hydrogen  production  rate  of  E.  coli   BL-­‐21  (DE3)  cells  carrying  hydA2-­‐pPMQAK1   and  MatCr-­‐pSB1AC3.  

Figure  5b-­‐Hydrogen  production  rate  of  E.  coli   BL-­‐21  (DE3)  cells  carrying  hydA2+fd-­‐pPMQAK1   and  MatCr-­‐pSB1AC3.

(17)

Figure   5b   shows   that   E.   coli   BL-­‐21   (DE3)   carrying   hydA2+fd-­‐pPMQAK1   and   MatCr-­‐pSB1AC3   produced   6.72   H2[nmoles]⋅min   -­‐1   (sample   1)   and   4.13   H2

[nmoles]⋅min  -­‐1  (sample  2),  an  average  of  5.43  H2[nmoles]⋅min  -­‐1.

2.3 Growth characterization and hydrogen evolution measurement using hydrogen electrode

This  experiment  was  designed  to  provide  more  information  about  the  hydrogen   production  as  well  as  how  the  environmental  conditions  change  during  growth.

The  pH  in  the  medium  was  measured  at  the  beginning  and  end  of  inoculation.  OD   and  glucose  concentration  was  measured  every  30  minutes.  All  this  information   was   combined   with   the   recorded   output   from   the   hydrogen   electrode   and   illustrated  in  <igure  6.

The  above  <igure  (<igure  6)  shows  how  the  hydrogen  concentration  in  the   medium  starts  to  increase  after  about  45  minutes.  Hydrogen  is  then  steadily   produced  and  the  hydrogen  concentration  increases  as  the  culture  grows,  this   phase  is  clearly  seen  in  the  <igure  as  almost  a  linear  slope,  where  2.21  H2

[μmoles]⋅OD  -­‐1  ⋅min  -­‐1  is  produced.  There  is  a  steady  increase  in  hydrogen  

Figure  6-­‐The  <igure  shows  how  hydrogen  is  produced  during  cell  growth,  as  well  as   showing  how  glucose  is  consumed.

(18)

concentration  for  about  100  minutes,  until  the  increase  in  concentration  slows   down  very  quickly,  <lattens  out  and  then  decreases.

The  concentration  of  glucose  decrease  steadily  through  the  whole  experiment,   but  at  the  end  of  the  experiment  there  are  still  about  8-­‐9  mM  glucose  left.  During   this  experiment  the  culture  grew  from  OD=0.1  to  OD≤1.3  in  270  minutes  and  in   that  time  the  pH  changed  from  6.5  to  5.25.

2.4 Protein extraction, separation and Western Blotting

For  verifying  the  presence  of  HydA2  proteins  in  E.coli  BL-­‐21  (DE3)  cells  carrying   hydA2-­‐pPMQAK1  or  hydA2+fd-­‐pPMQAK1  and  MatCr-­‐pSB1AC3  the  proteins  were   extracted  from  the  cells   .   The  extracted  proteins  were   then  separated   by   SDS-­‐

PAGE  and  then  stained  using  Coomassie  Blue  or  used  for  Western  Blotting.

The   coomassie   stained   SDS-­‐PAGE   gel   seen   above   shows   that   the   amount   of   protein  is  similar  for  all  samples  containing  the  different  constructs.  Two  strong   bands   are  observed  between  35-­‐55  kDa,   one  band  ≈50  kDa  and   the  other   ≈40   kDa.  However  in  the  E.  coli  BL-­‐21  (DE3)  wildtype  sample  small  bands  are  found   at   similar   position  in   the   gel   as   the   bands   observed   from   cells   containing   the   constructs.

Figure  7-­‐This  SDS-­‐PAGE  gel  shows  the  separation  of  proteins    from  E.  coli   BL-­‐21  (DE3)  cultures  containing  two  different  [FeFe]  hydrogenase  constructs.

(19)

The   Western   Blot   analysis   shows   a   ≈27   kDa   band   in   all   samples,   even   the   wildtype   sample   and   is   therefore   considered  to   be   a   result  of   some   unspeci<ic   binding   of  antibodies.   One  sample  containing   hydA2   and  MatCr  constructs   gave   only  very  faint  bands  at  ≈50  kDa  and  ≈40kDa,  while  all  other  three  samples  gave   strong   bands   at   ≈50   kDa   and  ≈40kDa.   Samples   containing   hydA2+fd   construct   showed   faint   bands   at   ≈60   kDa.   Expected   size   of   HydA2   is   49   kDa   and   the   expected  size  of  HydA2+fd  is  59  kDa  (49+10  kDa).  

 

2.5 Discovering damage to broad-host-range vector pPMQAC1

For   successful   expression   of   [FeFe]   hydrogenase   and   maturation   system   constructs   with   plasmids   in   cyanobacterial   strains   such   as   Synechocystis   PCC   6803  broad  host-­‐range-­‐vectors  are  needed.   [FeFe]  hydrogenase  and  maturation   system  constructs   have  to   date,   not  been  combined  on  one  single  vector  due  to   the  size  of  the   resulting   vector  (>12-­‐13  kb).   Two   broad-­‐host-­‐range  vectors   are   therefore   needed   to   express   [FeFe]   hydrogenase   and   maturation   system   constructs,  pPMQAK1  and  pPMQAC1.   However,   when  starting  to  work   with  the   pPMQAC1  vector,   an  observation  was  made  after  running  an  agarose  gel  where   the  digestion  pattern   of  pPMQAC1  carrying   MatCr  construct  was   analyzed.   The   size   of   pPMQAC1   was   a   long   way   from   being   correct.   The   expected   size   of   pPMQAC1   is   ≈7,5   kb   without   any   insert   in   the   BioBrick   site   and   with   the   maturation  system  construct  (MatCr)  in  the  BioBrick  site  (<igure  7)  the  total  size   should  be    ≈13  kb.  

Figure  8-­‐Western  Blot  analysis  of  protein  extract  from  E.  coli  BL-­‐21  (DE3)   carrying  hydA2,  hydA2+f  and  MatCr  constructs  as  well  as  wildtype.

(20)

As   shown   in  <igure   7  the   total   size   of  pPMQAC1   carrying   MatCr   when   linearized   with   EcoRI   is   only   ≈5   kb.   When   the   insert   is   cut   out   of   the   BioBrick   site   using   XbaI   and   SpeI   one   band   of  

≈3,5  kb  and  one  ≈1,75  kb  are  observed.  

All   available   physical   DNA   constructs   and   glycerol   stocks   containing   pPMQAC1   were   analyzed  in  the  same   way.   All   pPMQAC1  vectors   gave  a  similar  digestion  result  as  shown  in  <igure   7.  After  analyzing  all  sources  of  pPMQAC1  the  use   of  this  vector  was  stopped.

2.6 Construction of new broad-host-range vectors

After  making  sure  that  pPMQAC1  was  not  working  properly,  the  project  strategy   was   changed.   The   main  project   goal   now   became   to   build   new   and   improved   broad-­‐host-­‐range   vectors.   The   new   vectors   should   have   only   one   antibiotic   resistance  cassette,  kanamycin,  chloramphenicol  or  ampicillin  (instead  of  two  on   pPMQAK1   and   pPMQAC1).   The   new   vectors   should   all   contain   the   RSF1010   replicon  for  replication  in  a  wide  range  of  bacterial  hosts.  The  construction  of  the   new   vectors   was   at   <irst   done   in   BioBrick   vectors   (pSB1A3,   pSB1K3,   pSB1AC3   and  pSB1AK3),  and  later  in  a  BioBrick  base  vector  (BBa_I51020).  

The  following  broad-­‐host-­‐range  vectors  were  to  be  constructed:

F i g u r e   9 -­‐ M i d d l e :   M a t C r -­‐

pPMQAC1  linearized  with  EcoRI  to   see  total  size.  Right:  Insert   cut  out   of  pPMQAC1  using  XbaI  and  SpeI.

Table  4-­‐Broad-­‐host-­‐range  BioBrick  shuttle  vectors  to  be  constructed

Constructs Parts

pPMQA1 RSF1010  replicon,  BBa_P1002  (Ampr),  BBa_I51020 pPMQK1 RSF1010  replicon,  BBa_P1003  (Kanr),  BBa_I51020 pPMQC1 RSF1010  replicon,  BBa_P1004  (Cmr),  BBa_I51020

(21)

The   RSF1010   replicon   was   obtained   by   PCR   using   PrimeSTAR   HS   DNA   Polymerase  with  RSF1010-­‐BB-­‐f  and  RSF1010-­‐BB-­‐r  primers  containing  the  pre<ix   and   suf<ix   (BioBrick   restrictions   sites).   For   the   PCR   pPMQAK1   was   used   as   template,  since  it  contains  the  RSF1010  replicon.

Only  when  using  RSF1010-­‐BB   primers  PCR   product  of  the  right  size  of  5,3  kb  is   observed.   At   <irst,   after   amplifying   the   replicon,   PCR   reactions   were   pooled   together   and   digested   with   EcoRI   and   PstI   (allowing   ligation   into   BioBrick   vectors  later).  The  digestion  reaction  was  then  loaded  on  a  0.8%  agarose  gel  and   puri<ied  with  electrophoresis.   The  band  corresponding  to   the  RSF1010  replicon   was   cut   out   of   the   gel   and   the   DNA   puri<ied   using   a   gel   extraction   kit.   This   process  however  always  resulted  in  very  low  concentrations  of  DNA  (<6  ng/μL)   which  made   its   application   for   ligation   reactions   dif<icult.   Numerous   attempts   were   made   to   ligate   the   RSF1010   replicon   into   BioBrick   vectors   (pSB1A3,   pSB1K3,  pSB1AC3  and  pSB1AK3)  with/without  an  additional  antibiotic  cassette   ligated  to   the  RSF1010  replicon  (for  better  selection  of  positive  colonies)  but  all   trials   failed,   or   resulted   in   false   positives.   False  positives   would   after  PCR   give   bands  of  the  wrong  size  or  faint  bands,  which  when  the  restriction  pattern  was   analyzed  gave  wrong  fragment  sizes,   or  even  showed  that  restriction  sites  were   missing.

Figure   10-­‐PCR  reactions   containing  RSF1010-­‐f  and  RSF1010-­‐r  speci<ic   primers   do   not   give   any   product.   However   using   RSF1010-­‐BB-­‐f   and   RSF1010-­‐BB-­‐r  primers  give  the  right  sized  product  (5,3  kb).

(22)

After   being   unsuccessful   with   ligating   the   RSF1010   replicon   into   BioBrick   vectors  the  strategy  was  changed.  Instead  of  trying  to  ligate  the  replicon  <irst  into   pSB1_3  BioBrick  vectors,  the  RSF1010  replicon  was  to  be  ligated  straight  into  the   BioBrick  base  vector  (BBa_I51020).  

The  ampicillin  cassette  already   present  on  the   base  vector   sits   in   between  two   NheI  restriction  sites  and  can  therefore  be  replaced.  The  ampicillin  was  replaced   with   a   chloramphenicol   cassette.   This   step   was   necessary,   as   the   RSF1010   replicon   PCR   products   (containing   pPMQAK1   as   template)   had   to   be   used   directly  (after  restriction  with  appropriate  enzymes)  for  ligation  reactions  due  to   low  recovery  of  RSF1010  replicon  DNA  after  gel  puri<ication.  

When  the  RSF1010  replicon  was  ligated  into  the  BioBrick  site  of  the  base  vector   it   replaced  the  high  copy   number   replicon  and  ccdb  “death  gene”  (BBa_P1010)   originally   sitting  together   in  the  BioBrick   site  of  the   base  vector   for   facilitating   selection  of  positive  clones.  

Figure  11-­‐Examples  of  false  positives  digested  with  EcoRI  and  PstI.  

Left:   One   thick   band   (8,5   kb)   means   one   restriction   site   is   missing.  

Middle:   Shows   the   pSB1A3   backbone   (2,2   kb)   and   chloramphenicol   cassette   (769   bp),   RSF1010   not   present.   Right:   Shows   the   pSB1AC3   backbone  (3  kb)  and  kanamycin  cassette  (967  bp),  RSF1010  not  present.

(23)

This   strategy   however   also   only   resulted   in   false   positives,   where   colony   PCR   showed  that  the  insert  present  in  the  BioBrick  site  of  the  base  vector  was  not  the   size   of   the   RSF1010   replicon   (Figure   10).   Restriction   analysis   also   showed   incorrect  fragment  size  (Figure  11).

Figure  13-­‐Restriction  (cut  with  EcoRI  and  PstI) analysis  of  plasmids  from  false  positives.  Restriction   pattern  was  the  same  for  all  plasmids,  ≈3  kb  and   850bp  bands.

  Figure  12-­‐Colony  PCR  results.  All  

observed  bands  are  ≈1,3kb  but  expected   size  was  ≈5,3  kb.

(24)

3 Discussion

3.1 [FeFe] hydrogenase expression in E.  coli and characterization of consequent hydrogen production.

Genetic  constructs  containing  [FeFe]  hydrogenases,  hydA2  and  hydA2+fd  (linked   with  ferrodoxin)  and  their  maturation  system  from  C.  reinhardtii  were  expressed   in   E.   coli   BL-­‐21   (DE3).   The   broad-­‐host-­‐range   vector   pPMQAK1   was   used   to   express   hydrogenase   constructs   while   pSB1AC3   was   used   to   express   the   maturation  system.

Hydrogen  measurements   were   done  using  gas  chromatography  and   Clark   type   hydrogen   electrode.   The   measurements   clearly   showed   that   the   [FeFe]  

hydrogenase  constructs  were  working.  No   hydrogen  production  was  measured   coming   from   E.   coli   BL-­‐21   (DE3)   wildtype,   while   cells   containing   the   hydrogenase  and  maturation  system  constructs  were  able  to  produce  hydrogen.  

There   was   a   slight   difference   in   average   hydrogen   production   between   cells   containing   hydA2   and   those   containing   hydA2+fd   constructs,   where   cells   containing   hydA2+fd   produced   more   hydrogen.   This   was   the   case   when   measured  with  GC  as  well  as  with  hydrogen  electrode.  The  difference  is  however   not   big   enough   to   draw   any   conclusions   about   the   hydA2+fd   construct   being   more  productive  when  it  comes  to  hydrogen  production.  The  fact  that  there  was   a  large  difference  in   hydrogen   production  between  the   cultures   that   contained   hydA2   constructs   suggests   that   the   cultures   did   not   grow   similarly.   The   other   cultures   containing   hydA2+fd   construct   however   produced   similar   amounts   of   hydrogen.   Higher   number   of  replicates   should   have   been   done   to   ensure   that   these  large  deviations  could  have  been  avoided.

3.2 Conformation of [FeFe] hydrogenase expression in E.  coli

When  analyzing  the  Western  Blot  results,  bands  corresponding  to   the  expected   sizes   were   observed.   From   samples   containing   hydA2   constructs   a   band   was   observed  at  ≈50  kDa  which  corresponds  well  to  the  expected  size  of  HydA2,  49   kDa.   This   band   was   however   also   observed   in   samples   containing   hydA2+fd   constructs  which  was  unexpected  since  the  expected  size  of  hydA2+fd   is  59  kDa.  

Faint  bands  corresponding  to  the  right  size  of  59  kDa  were  though  also  observed  

(25)

sizes,  the  result  is  far  from  being  optimal.  The  low  strength  of  bands  in  one  of  the   samples   containing   hydA2   construct   suggests   that   the   amount   of   [FeFe]  

hydrogenase   enzyme   is   less   than   in   the   other   samples.   The   lesser   amount   of   enzyme  would  then  explain  the  lower  production  of  hydrogen  that  was  observed   from  this  culture  when  measured  with  GC  and  hydrogen  electrode.

A  strong  signal  is  seen  at  ≈27  kDa  in  all  samples,   including  the  wildtype  sample   not   containing   any   hydrogenase   constructs.   This   strong   signal   in   wildtype   is   most  likely  due  to  unspeci<ic   binding  of  the  antibody  to  some  other  protein  that   is  found  in  the  E.  coli  BL-­‐21  (DE3)  wildtype  stain.

3.3 Construction of broad-host-range vectors

Probably  the  most  important  and  at  the  same  time  inconvenient  observation  that   was   made  during  this  project  was   <inding  out   that  one  of  the   broad-­‐host-­‐range   vectors   was   “damaged”.   This   observation   could   possibly   explain   why   the   expression   of   [FeFe]   hydrogenase   constructs   (on   pPMQAK1)   and   maturation   systems   (on   pPMQAC1)   in   cyanobacteria   e.g.   Synechocystis   PCC   6803   did   not   resulted  in  hydrogen  production.  The  “damaged”  pPMQAC1  vector  might  not  be   able   to   express   the   maturation   system   as   it   should,   and   therefore   the   [FeFe]  

hydrogenase   not   be  matured,   and  as   a   result   of  that   no   hydrogen  is   produced.  

Why   pPMQAC1   was   “damaged”   is   unknown,   it   possible   that   a   recombination   event   (due   to   homologous   promotor   sequences)   happened   somewhere   in   the   construction  process  of  the  vector,  and  as  a  result  a  part  of  the  vector  was  lost.

The   construction   of   new   broad-­‐host-­‐range   vectors   was   initiated   so   that   hydrogenase  constructs   and  maturation  systems   constructs  could  be  expressed   on   two   different   vectors.   The   goal   was   to   construct   three   broad-­‐host-­‐range   vectors   under   the   working   names:   pPMQA1,   pPMQK1   and   pPMQC1.   The   new   vectors  should  consist  of  the  RSF1010  replicon  (ampli<ied  from  pPMQAK1),   one   of   three   antibiotic   cassettes   available   (ampicillin,   kanamycin   or   chloramphenicol)  and  a  BioBrick  base  vector  (BBa_I51020).  

Since   the   RSF1010   replicon   is   quite  large   (5,3   kb)  and  has   high  GC-­‐content,   it   took  some  time  before  good  PCR  products  were  obtained.   The  RSF1010-­‐f  and  -­‐r   speci<ic  primers  designed  for  amplifying  the  RSF1010  replicon  did  not  work.  The   reason  why  the  primers  did  not  work  is  unknown,  but  it  could  be  that  the  wrong  

References

Related documents

Machine learning provides a powerful set of tools that enable engineers and scientists to use data to solve meaningful and complex problems, make predictions, and optimize

Keywords: cyanobacteria, metabolic engineering, surface display, CRISPRi, fatty alcohols, fatty acid synthesis, alkane deformylating oxygenase...

coli, Synechocystis experiment 1 investigated thiamine, theophylline and no induction on each of the riboswitch strains as well as the basic strains, giving the results in Figure

Synthetic biology, BioBrick, genetic engineering, promoters, promoter characterization, fluorescence imaging, fluorescence microscopy, Northern blotting.. Peter Lindblad

designed to express certain hydrogenases (HydA1 and HydA2; enzymes responsible for the production of molecular hydrogen) from the green alga Chlamydomonas reinhardtii, or the

Nostoc punctiforme wild type and the NHM5 mutant did not evolve hydrogen under dark/anaerobic conditions, and neither did any of the Nostoc strains with synthetic HydA1 or HydA2

Initial hydrogen evolution measurements of mutant cyanobacteria and E.coli (carrying only hydrogenase constructs), using Clark type hydrogen electrode, indicated no

Initial hydrogen evolution measurements of mutant cyanobacteria (carrying only hydrogenase constructs), using Clark type hydrogen electrode, indicated no hydrogen evolution,