• No results found

Pesticide residues in cucumbers cultivated in Bangladesh

N/A
N/A
Protected

Academic year: 2022

Share "Pesticide residues in cucumbers cultivated in Bangladesh"

Copied!
77
0
0

Loading.... (view fulltext now)

Full text

(1)

Pesticide residues in cucumbers cultivated in Bangladesh

Jennie Haag Anna Landahl

(2)

cultivated  in  Bangladesh  

   

Jennie  Haag   Anna  Landahl  

 

(3)

Abstract  

Pesticides  are  widely  used  for  preventing  crop  losses  due  to  pest  attack.  In  Bangladesh,  food  safety   and   health   of   farmers   are   being   compromised   as   a   result   of   poor   regulation   concerning   usage   of   pesticides  in  food  production.  The  aim  of  this  study  was  to  identify  pesticides  applied  on  cucumber   crops  in  Bangladesh  and  quantify  pesticide  levels  in  these  crops.  A  method  for  extraction  and  clean-­‐

up   was   developed   to   allow   the   quantification   of   four   pesticides   by   GC-­‐ECD   in   vegetable   samples,   specifically  cucumber.  The  accuracy  of  the  method  was  validated  using  recovery  and  its  precision  by   studying   the   standard   deviation   and   relative   standard   deviation.   Analysis   of   cucumber   samples   obtained   in   the   field   showed   no   traces   of   the   target   pesticides.   The   results   indicate   that   different   types   of   chemicals   are   used   on   the   examined   crops.   It   is   also   believed   that   the   growth   habit   of   cucumber   may   affect   the   exposure   to   pesticides.   To   overcome   the   health   hazards,   restrictions   regarding  the  types  and  quantities  of  chemicals  used  on  the  fields  need  to  be  implemented.  Further   studies   would   benefit   from   being   executed   in   a   controlled   environment,   and   from   monitoring   the   types  and  amounts  of  pesticides  that  are  applied.  

   

(4)

Populärvetenskaplig  sammanfattning  

Bangladesh   är   ett   av   världens   mest   tättbefolkade   länder   och   en   tredjedel   av   befolkningen   lever   i   fattigdom.   Landets   ekonomi   och   befolkningstäthet   ställer   höga   krav   på   lantbrukets   produktionskapacitet.  En  stor  del  av  befolkningen  försörjer  sig  på  odling  och  många  har  problem  med   att  få  tillräckligt  hög  avkastning.  För  att  minimera  förluster  i  skörden  till  följd  av  skadedjursangrepp   besprutas  grödorna  med  pesticider.

 

Pesticider   kan   orsaka   negativa   hälsoeffekter   då   de   innehåller   ämnen   som   är   avsedda   att   döda   oönskade  organismer.  En  del  pesticider  är  också  kända  för  att  orsaka  cancer,  fosterskador,  genetiska   defekter   och   allergiska   reaktioner.   I   nuläget   finns   ingen   reglering   för   pesticidanvändning   gällande   applikationsmängd   och   kontinuitet   i   Bangladesh.   Avsaknaden   av   regleringar   och   information   till   lantbrukarna   leder   ofta   till   att   större   kvantiteter   än   nödvändigt,   och   ur   produktions-­‐   och   hälsosynpunkt  berättigat,  används.  Detta  innebär  en  hälsorisk  för  lantbrukare,  då  de  ofta  besprutar   grödorna   utan   nödvändig   skyddsutrustning.   Det   föreligger   även   en   risk   att   människor   som   konsumerar  besprutade  livsmedel  får  i  sig  kemikalierna  via  födointaget.  Det  är  därför  av  intresse  att   utreda  hur  höga  halter  av  pesticider  som  återfinns  i  livsmedel.    

En  forskargrupp  vid  Institutionen  för  organisk  kemi,  Dhaka  universitet,  i  Bangladesh  har  sedan  2003   studerat   pesticider.   Den   studie   som   beskrivs   här   är   en   del   av   forskargruppens   pågående   projekt  

”Studies  of  organic  pollutants  in  food  and  environment”  och  syftar  till  att  identifiera  och  kvantifiera   giftiga  kemikalier  i  miljö  och  livsmedel.  Vi  tog  fram  och  utvärderade  en  metod  för  att  kvantifiera  fyra   utvalda  bekämpningsmedel  i  gurkor  med  gaskromatografi.  Totalt  analyserades  14  gurkor  odlade  på  9   olika  platser  i  Bangladesh.  

Resultatet  av  studien  påvisade  inga  halter  av  de  fyra  utvalda  pesticiderna  i  de  undersökta  proverna.  

Detta  är  dock  inget  bevis  på  att  inga  kemikalierester  finns  i  gurkorna  eftersom  andra  pesticider  kan   ha   använts.   Studien   genomfördes   under   regnperioden   i   Bangladesh   och   den   kraftiga   nederbörden   tros  ha  påverkat  resultaten.  Det  är  också  möjligt  att  gurkornas  vertikala  växtsätt,  under  ett  täckande   lövverk,  kan  ha  en  skyddande  effekt  mot  besprutningen.  Vidare  studier  hade  gynnats  av  odling  i  en   kontrollerad  miljö  där  pesticidanvändandet  kunde  övervakas.    

   

(5)

Acknowledgements  

We  would  like  to  express  our  gratitude  towards  everyone  that  has  contributed  in  making  our  project   feasible.  Without  your  knowledge  and  guidance  it  would  not  have  been  possible  for  us  to  actualize   this  study.    

Thank  you,  

Henrik   Kylin,

  Professor   at   the   department   of   water   and   environmental   studies,   Linköping   University,  for  your  commitment  of  being  our  Swedish  supervisor  and  for  devoting  your  time  to  our   project.    

Peter  Sundin,

Programme  director  at  International  Science  Programme  (ISP),  Uppsala  University,   for  guidance  and  assisting  us  with  relevant  contacts.

Roger   Herbert,

Senior   lecturer   at   Department   of   Earth   Sciences,   Program   for   Air,   Water   and   Landscape  Sciences,  Uppsala  University,  for  your  help  with  administrative  matters.

Sida,

through   the   International   Science   Programme   (ISP)   at   Uppsala   University,   for   funding   our   study  in  Bangladesh  via  an  MFS  scholarship.

Dr.  Nilufar  Nahar,

Professor  and  Research  Group  Leader,  Department  of  chemistry,  University   of  Dhaka,  for  being  our  supervisor  and  dedicating  your  time  to  our  project.  For  welcoming  us  to  your   research  group  and  for  your  great  hospitality  during  our  stay  in  Dhaka.

Dr.   Mohammad   Shoeb,

Professor   at   Department   of   Chemistry,   University   of   Dhaka,   for   answering   all   of   our   questions,   providing   us   with   valuable   information   and   making   our   stay   memorable.  

Dr.  Md.  Iqbal  Rouf  Mamun,

Professor  at  Department  of  Chemistry,  University  of  Dhaka,  for   your  guidance  and  for  always  making  us  feel  at  home.

Md.  Nashir  Uddin  Al  Mahmud,

Assistant  professor,  Government  College  Bangladesh,  for  your   tireless  help  in  the  laboratory.

We   would   like   to   thank   everyone   in   the   laboratory   for   helping   us   in   our   work   and   making   us   feel   welcome.  

Finally   we   would   like   to   show   our   appreciation   to   all   of   our   friends,   both   inside   and   outside   the   laboratory,  for  making  our  stay  in  Bangladesh  unforgettable!  

Uppsala,  May  2014.  

Jennie  Haag  &  Anna  Landahl  

   

(6)

Table  of  Contents  

Abstract  ...  i  

Acknowledgements  ...  iii  

1   Introduction  ...  1  

1.1   Background  ...  1  

1.2   Objective  ...  1  

2   Bangladesh  ...  2  

2.1   Pesticide  use  ...  2  

3   Background  ...  4  

3.1   Gas  chromatography  with  electron  capture  detector  (GC-­‐ECD)  ...  4  

3.2   Target  pesticides  ...  5  

3.2.1   Cypermethrin  ...  5  

3.2.2   Diazinon  ...  5  

3.2.3   Fenvalerate  ...  5  

3.2.4   Chlorpyrifos  ...  6  

4   Method  ...  7  

4.1   Sample  collection  ...  7  

4.2   Laboratory  study  ...  8  

4.2.1   Method  development  ...  8  

4.2.2   Method  validation  ...  11  

5   Results  ...  13  

5.1   Gas  chromatographic  analyses  ...  13  

5.2   Calibration  curves  and  recovery  ...  18  

6   Discussion  ...  27  

6.1   Method  development  ...  27  

6.2   Contaminants  ...  28  

6.3   Method  validation  ...  28  

6.4   Sources  of  error  ...  29  

7   Conclusions  ...  29  

8   List  of  abbreviations  ...  31  

9   References  ...  32  

Appendix  1  ...  34  

Appendix  2  ...  35  

(7)

1 Introduction   1.1 Background  

The   minor   field   study   presented   in   this   report   was   a   part   of   an   ongoing   project   performed   by   the   organic   environmental   chemistry   research   group   at   Dhaka   University,   Bangladesh.   The   research   group   has   been   working   on   pesticide   residue   analyses   since   2003.   During   the   past   ten   years   the   research  group  has  established  methods  to  determine  “old”  (classical  chlorinated  insecticides)  and  

“new”  current-­‐use  pesticides  in  different  sample  matrices  and  trained  a  number  of  skilled  staff  in  the   field.  Currently,  the  research  group  is  working  on  a  project  titled  Studies  of  organic  pollutants  in  food   and  environment.  The  objective  of  this  project  is  to  identify  and  quantify  toxic  chemicals  in  different   food  and  environmental  samples,  educate  students  and  young  scientists,  play  an  active  role  in  both   regional   and   international   student   exchange   programmes,   disseminate   knowledge   through   conferences  and  seminars,  and  to  publish  scientific  papers  in  peer  reviewed  journals.  The  project  is   mainly   funded   through   the   International   Programme   in   the   Chemical   Sciences   (IPICS)   at   Uppsala   University.  

1.2 Objective  

Food  safety  is  compromised  in  Bangladesh  as  a  result  of  too  high  application  of  pesticides  and  the   use   of   unauthorized   toxic   chemicals   in   food   production.   Pesticides   used   to   prevent   crop   losses   include   compounds   that   are   known   to   cause   harm   to   human   health   and   the   environment.   Many   harmful  effects  are  believed  to  be  a  direct  result  from  overuse  and  misuse  of  toxic  chemicals.  

The   objective   of   this   study   is   to   investigate   the   occurrence   of   four   target   pesticides   in   cucumber   samples  collected  in  Bangladesh  and  quantify  the  concentrations  of  these  pesticides  in  the  samples.  

A  method  for  extraction  and  clean-­‐up  of  the  samples  was  developed  and  validated  to  establish  the   quality,  i.e.,  the  precision,  repeatability  and  of  the  accuracy  of  the  method.    

   

(8)

2 Bangladesh  

Bangladesh  is  located  where  the  river  Padma  enters  the  Bay  of  Bengal  and  consists  of  a  river  delta   (Husain  and  Tinker,  2013).  Bangladesh  is  one  of  the  most  densely  populated  countries  in  the  world   and   around   a   third   of   the   Bangladeshi   people   live   in   poverty.   The   population   growth   is   causing   a   great   pressure   on   the   natural   resources   of   the   country,   especially   on   the   cultivatable   land   (IFAD,   2013).  In  Bangladesh  around  84%  of  the  population  are,  in  some  meaning,  dependent  on  agriculture   for   their   livelihood   (Dasgupta   et   al.,   2004).   Despite   this,   most   Bangladeshis   struggle   to   keep   the   agricultural  production  at  a  significant  level.  Due  to  the  country’s  location,  Bangladesh  depends  upon   the  vagaries  of  the  monsoon  (Husain  and  Tinker,  2013).  Around  two  thirds  of  Bangladesh’s  area  is   less  than  5  meters  above  sea  level.  The  exposure  and  vulnerability  to  floods  makes  the  conditions  for   farming  unsustainable.  Approximately  60%  of  farmers  in  Bangladesh  are  functionally  landless  (FAO,   2013).  The  major  staple  crop  of  Bangladesh  is  rice  which  constitutes  71%  of  the  caloric  intake  of  the   Bangladeshi  people  (Dasgupta  et  al.,  2004).  Major  loss  in  rice  production,  caused  by  floods  and  pest   attacks,   forces   the   price   of   staple   rice   to   increase   rapidly.   Also,   the   price   of   quality   rice   seeds   is   increasing,  making  it  hard  for  small  farmers  to  increase  their  production  (FAO,  2013).  

2.1 Pesticide  use  

Pesticide  use  in  Bangladesh  has  increased  rapidly  over  the  past  four  decades  (Figure  1).  The  farmers   use  pesticides  to  increase  the  crop  production  and  to  prevent  crop  losses  due  to  pest  attack  (Figure   2;   Rahman,   2012).   The   concerns   regarding   high   pesticide   usage   are   the   possibility   of   pesticide   resistance   and   their   harmful   effect   of   human   health   and   environment   (Rahman,   2002).   Pesticides   include   compounds   that   are   known   to   cause   cancer,   genetic   damage,   foetal   defects,   and   allergic   responses.  Many  of  the  harmful  effects  are  believed  to  be  a  direct  result  from  overuse  and  misuse  of   pesticides.   The   lack   of   information   to   the   farmers   leads   to   a   higher   use   of   toxic   chemicals   than   recommended.  Pesticide  poisoning  and  environmental  damages  are  now  common  in  Bangladesh  due   to  overuse.  To  prevent  the  hazardous  effects  of  pesticides,  farmers  need  to  be  educated  about  the   risks  of  overuse  and  the  importance  of  using  safety  gear  (Dasgupta  et  al.,  2005).  Despite  this,  little   effort  has  been  made  in  Bangladesh  to  develop  other  methods  than  pesticides  for  pest  management   (Rahman  et  al.,  1994).  

Figure  1.  Trends  in  pesticide  use  (MOA,  2007).    

0   5000   10000   15000   20000  

1985   1990   1995   2000   2005  

Year  

Pes(cide  consump(on  (mt/kl)  

(9)

distribution  and  use  of  pesticides.  However,  the  pesticide  use  in  many  developing  countries  is  poorly   regulated  and  therefore  violations  to  the  code  may  occur.  DDT  is  an  example  of  a  pesticide  that  is   banned  in  Bangladesh,  but  that  is  still  available  on  the  market  (Meisner,  2004).  Lately  an  increased   concern  for  the  sustainability  of  pesticide  usage  has  arisen.  Through  collaboration  with  international   development  agencies,  the  Bangladeshi  government  promoted  Integrated  Pest  Management  (IPM),   which  is  an  alternative  to   conventional   pest   management.   IPM  is  an  ecologically  based  method   to   prevent  insects  from  harming  the  crops.  Through  judicial  use,  biological  techniques,  natural  parasites   and   predators   to   control   pest   populations,   pesticide   use   is   minimized,   reducing   the   damages   to   human   health   and   environment   (Dasgupta   et   al.,   2004).   IPM   was   first   used   on   rice   crops   in   Bangladesh   in   1981   through   the   FAO   Inter-­‐Country   Programme   (ICP).   A   national   IPM   policy   was   launched   in   Bangladesh   in   January   2002.   Since   the   chemical   pesticides   are   expensive   the   IPM   can   reduce  the  farmers’  costs,  which  can  increase  the  profit.  The  adoption  to  IPM  may  however  reduce   the  productivity,  which  can  lead  to  decreased  profits  (Rahman,  2012).  

Figure  2.  Farmer  applying  pesticides  on  cucumber  crops.    

   

(10)

3 Background  

In  this  section  the  choice  and  features  of  the  analytical  method  and  a  description  of  the  four  target   pesticides  is  presented.    

3.1 Gas  chromatography  with  electron  capture  detector  (GC-­‐ECD)  

The   gas   chromatograph   used   for   analysing   the   samples   was   a   Shimadzu   GC-­‐2010   with   an   auto   injector,  AOC-­‐20i,  an  RTX-­‐5  MS  column  (30  m  x  0.25  mm  i.d.  x  0.25  µm  phase  thickness,  RESTEK,  USA)   and  an  electron  capture  detector  (ECD)  (Figure  3).  Each  injection  was  of  1  µL  in  the  split-­‐less  mode,   opening   the   split   after   2   min   with   a   split   ratio   of   20:1.   The   injector   was   held   at   220   ⁰C   and   the   detector  at  290  ⁰C.  The  temperature  programme  was  120  ⁰C  for  2  min,  increasing  10  ⁰C/min  to  270  

⁰C  and  held  for  1  min,  and  then  2  ⁰C/min  to  290  ⁰C  which  was  held  for  3  min.  Both  the  make-­‐up  and   carrier  gas  was  nitrogen,  with  a  column  flow  of  1  mL/min.  

It  is  important  for  the  system  that  the  injector  acts  like  a  sluice.  This  is  established  by  a  self-­‐sealing   rubber  membrane  which  is  pierced  by  an  injection  needle.  The  carrier  gas,  nitrogen,  transports  the   sample   from   the   injection   through   the   column   and   to   the   detector.   The   column   is   located   in   a   thermostated   oven   and   contains   a   stationary   and   a   mobile   phase.   When   the   sample   extract   is   transported  through  the  column  its  components  are  partitioned  differently  between  the  two  phases   and   are   thus   transported   through   the   column   at   different   speed.   The   separation   depends   on   the   compound   properties,   column   type,   the   gas   flow,   and   the   oven   temperature.   In   general   the   components   with   the   lowest   boiling   point   are   least   adsorbed   to   the   stationary   phase,   but   a   large   difference  in  polarity  between  the  compounds  might  also  affect  the  retention.  The  components  are   then  registered  by  the  detector  (Simonsen,  2005).  

Figure  3.  Schematic  of  the  gas  chromatographic  system.    

The   ECD   is   selective   and   has   low   detection   limits   for   compounds   with   high   electron   affinity   (that  

“capture   electrons”),   for   example   halogen-­‐containing   pesticides.   The   ECD   detects   compounds   by   decreasing   the   ionization   level   in   the   detector.   A   high   standing   current   is   produced   in   the   ECD   by   interaction   of   a   radioactive   β-­‐emitter   and   the   carrier/make-­‐up   gas.   When   an   electronegative   compound   reaches   the   detector   it   captures   electrons   and   thereby   decreases   the   current   which   results  in  a  negative  peak.  The  free  electrons  have  a  faster  mobility  than  the  formed  negative  ions   which   are   not   captured   by   the   anode.   The   concentration   of   the   compound   is   proportional   to   the   degree  of  the  captured  ions.  The  identification  of  the  components  is  based  only  on  retention  time  

(11)

spectrometric  analysis.  This  enables  detection  of  the  analysed  compounds  at  lower  concentrations   (USGS,  2014).  

3.2 Target  pesticides  

The  four  target  pesticides  are  commonly  used  for  pest  control  in  Bangladesh.  

3.2.1 Cypermethrin  

Cypermethrin  (Figure  4)  is  a  synthetic  pyrethroid  insecticide  that  affects  the  insects’  central  nervous   system.  It  kills  insects  that  come  in  contact  with  or  ingest  the  substance.  Cypermethrin  is  excreted   quickly   from   the   human   body   and   is   unlikely   to   bioaccumulate.   When   working   with   or   handling   cypermethrin,   side   effects   such   as   skin   burning   and   tingling,   dizziness   and   itching   might   be   experienced.  The  US  EPA  classifies  the  insecticide  as  a  possible  carcinogen  (NPIC,  1998).      

 

Figure  4.  Structure  of  cypermethrin  (Sigma-­‐Aldrich,  2013a).  

3.2.2 Diazinon  

Diazinon   (Figure   5)   is   used   as   insecticide,   acaricide   and   nematicide.   It   is   a   synthetic   chemical   that   belongs  to  a  group  called  organophosphates.  Diazinon  is  one  of  the  most  widely  used  insecticides  for   agricultural  pest  control.  The  chemical  is  fat-­‐soluble  and  can  be  stored  in  fat  tissues  in  the  human   body.   When   working   with   diazinon   effects   from   daily   exposure   can   be   nausea,   dizziness   and   headache.   Studies   have   shown   that   long-­‐term   exposure   to   the   substance   can   lead   to   neurological   problems  (NPIC,  2009a).  

Figure  5.  Structure  of  diazinon  (Sigma-­‐Aldrich,  2013b).    

3.2.3 Fenvalerate  

Fenvalerate  (Figure  6)  is  a  pesticide  primarily  used  as  an  insecticide.  The  insecticide  is  stable  to  heat   and  sunlight  and  is  applicable  on  a  wide  range  of  pests.  Fenvalerate  is  considered  to  be  of  moderate   toxicity  to  mammals  and  is  harmful  to  the  central  nervous  system  after  only  a  short-­‐term  or  acute   exposure  (WHO  and  FAO,  1996).  Symptoms  experienced  by  humans  when  handling  the  pesticides,   even   handling   according   to   recommendations,   are   burning   sensation   in   the   skin,   cough,   dizziness,   headache  and  nausea  (PAN,  2010).  

(12)

Figure  6.  Structure  of  fenvalerate  (Sigma-­‐Aldrich,  2013c).    

3.2.4 Chlorpyrifos  

Chlorpyrifos  (Figure  7)  is  an  organophosphate  pesticide  used  in  agriculture  to  control  insect  attacks.  

The  substance  attacks  the  nerve  cells  which  causes  nervous  system  failure.  Chlorpyrifos  has  a  wide   usage   spectrum   and   kills   insects   upon   contact.   Signs   of   acute   toxicity   can   be   seen   directly   after   exposure   to   the   pesticide.   When   exposed   to   high   doses   humans   may   experience   direct   symptoms   such   as   vomiting,   abdominal   cramps   and   diarrhoea.   Neurological   symptoms   may   also   appear   as   a   delayed  symptom  to  the  exposure  (NPIC,  2009b).  

Figure  7.  Structure  of  chlorpyrifos  (Sigma-­‐Aldrich,  2013d).    

   

(13)

4 Method  

4.1 Sample  collection  

In   order   to   get   a   representative   picture   of   the   overall   pesticide   usage   on   cucumber   crops   in   Bangladesh,  cucumber  samples  were  collected  from  nine  different  areas  (Figure  8).  

Figure  8.  Map  of  Bangladesh  illustrating  the  location  of  the  nine  different  collection  areas  (LGED,  2012).    

In  some  cases  several  samples  were  gathered  from  different  fields  or  markets  in  the  same  area.  A   total  of  14  cucumber  samples  were  collected  and  transported  to  Dhaka  University  for  further  analysis   (Table  1).  The  exact  application  time,  identity,  amount  and  concentration  of  the  used  pesticide  were   unknown  for  most  of  the  gathered  samples.  It  was  also  uncertain  which  substances  were  used  on  the   various  fields  due  to  the  farmers’  frequent  change  of  pesticides.    

Table  1.  Sample  ID,  location  and  date  of  collection  for  the  14  samples  

Sample  ID   Location  ID   Location   Date  of  Collection  

AJ1   1   Ananda  Bazar,  Dhaka   17/06/2013  

AJ  2   2   Shaitbaria,  Kaligong   23/06/2013  

AJ  3   2   Shaitbaria,  Kaligong   23/06/2013  

AJ  4   2   Shaitbaria,  Kaligong   23/06/2013  

AJ  5   3   Isshardichor,  Mymensingh   28/06/2013  

AJ  6   4   Balla  kantha,  Gofurgaon,  Mymensingh   28/06/2013  

AJ  7   5   Saiza  Chor,  Gofurgaon,  Mymensingh   28/06/2013  

AJ  8   5   Saiza  Chor,  Gofurgaon,  Mymensingh   29/06/2013  

AJ  9   6   Madarinagar,  Nandail,  Mymensingh   29/06/2013  

AJ  10   7   Razabaria,  Nandail,  Mymensingh   29/06/2013  

AJ  11   8   Varella,  Comilla   12/07/2013  

AJ  12   9   Gobindapure,  Comilla   12/07/2013  

AJ  13   9   Gobindapure,  Comilla   12/07/2013  

AJ  14   9   Gobindapure,  Comilla   12/07/2013  

 

(14)

4.2 Laboratory  study  

The   cucumber   samples   collected   from   several   fields   in   different   districts   of   Bangladesh   were   transported  to  Dhaka  University  for  analysis.  A  method  for  extraction  and  clean-­‐up  of  the  samples   were   developed   and   validated   to   establish   the   accuracy   of   the   procedure.   The   extracts   were   then   analysed  by  GC-­‐ECD  (Figure  9)  to  determine  the  samples  interiorly  pesticide  concentrations.    

     

Figure  9.  GC-­‐ECD  (to  the  left)  and  rotary  evaporator  (to  the  right)  used  for  analysis.  

4.2.1 Method  development  

To   achieve   a   high   quality   chromatogram   with   a   baseline   with   sufficiently   low   noise,   different   procedures   were   tested.   The   procedures   were   improved   until   an   adequate   level   of   accuracy   was   accomplished.  The  reasons  for  developing  the  procedures  are  explained  in  the  Results  section.    

4.2.1.1 Procedure  1  

The  extraction  (Figure  10)  was  initiated  by  washing  the  cucumber  samples  with  sufficient  water  and   homogenized   with   a   kitchen   blender.   Out   of   the   cucumber   mash,   three   replicas   (10   g   each)   were   transferred   to   50-­‐ml   Teflon   tubes   and   the   additional   mash   was   stored   in   the   freezer.   The   10   g   of   mash  was  mixed  with  20  ml  of  ethyl  acetate  and  then  shaken  vigorously  for  one  minute  and  then   vortexed   for   one   minute.   To   separate   the   water   from   the   sample   6   g   of   anhydrous   magnesium   sulphate   (MgSO4)   and   1.5   g   sodium   chloride   (NaCl)   were   added   to   the   tubes.   The   samples   were   shaken   and   vortexed   as   above   and   then   centrifuged   for   5-­‐7   min   at   4000   rpm.   A   glass   pipette   was   used   to   pipette   10   ml   of   the   extract   into   a   round   bottom   flask   (RB-­‐flask).   The   extract   was   then   evaporated  using  a  rotary  evaporator  (Figure  9)  until  it  was  completely  dry.  To  make  sure  there  was   no  remaining  water  in  the  sample  3-­‐4  ml  n-­‐hexane  was  added  and  the  sample  was  again  evaporated   until  dryness.    

(15)

Figure  10.  Flow  scheme  of  the  extraction  of  Procedure  1.    

The  clean-­‐up  method  (Figure  11)  used  for  the  first  procedure  was  executed  using  a  combined  florisil–

alumina  column.  The  column  was  made  by  adding  5g  florisil,  5  g  alumina  and  0.5  g  charcoal  to  a  100   ml  flask.  To  dissolve  the  solid  material  20  ml  n-­‐hexane  were  added  to  the  RB-­‐flask  and  then  poured   into  the  column.  The  column  was  rinsed  with  50  ml  n-­‐hexane  until  equilibrium  was  reached  and  then   5  g  anhydrous  sodium  sulphate  (Na2SO4)  was  added.  To  dissolve  the  dried  extract,  2-­‐3  ml  n-­‐hexane   was   added   and   the   RB-­‐flask   was   put   into   an   ultrasonic   bath   for   30   seconds.   The   extract   was   then   added   to   the   column.   To   elute   the   column   20   ml   n-­‐hexane   were   added   and   when   the   n-­‐hexane   surface  was  2  cm  above  the  packing  80  ml  of  Dichloromethane  (DCM)  was  added  to  the  column.  The   DCM   extract   were   collected   into   RB-­‐flasks   and   evaporated   until   dryness.   To   make   sure   that   the   sample  was  completely  dry  3-­‐4  ml  n-­‐hexane  were  added  and  the  extract  was  evaporated  again.  The   extract  was  then  dissolved  with  4  ml  n-­‐hexane  and  2  ml  of  the  mix  were  transferred  to  a  vial,  using  a   glass  pipette.  

Figure  11.  Flow  scheme  of  clean-­‐up  of  Procedure  1.    

4.2.1.2 Procedure  2  

The   extraction   was   executed   as   described   in   procedure   1   (4.2.1.1).   The   clean-­‐up   (Figure   12)   was   performed  by  adding  150  mg  Primary  Secondary  Amine  (PSA)  and  750  mg  Anhydrous  MgSO4  to  test   tubes.  The  dried  extract  were  dissolved  using  5  ml  n-­‐hexane  and  3  g  Na2SO4  were  then  added  to  the   RB-­‐flasks.  Using  a  glass  pipette,  2  ml  of  the  extract  were  transferred  to  test  tubes  and  the  samples   were   vortexed   for   one   minute   and   centrifuged   for   five   minutes.   The   extract   was   rinsed   through   a   0.45  μm  filter  and  transferred  to  vials.  

Homogenize  washed   cucumber  with   kitchen  blender    

Add  10  g  of  cucumber   mash  in  50  ml  teflon  

tubes  

Add  20  ml  ethyl   acetate.  Shake   vigorously  for  1  min.  

Vortex  for  1  min      

Add  6  g  anhydrous   MgSO4  and  1.5  g  NaCl.  

Shake  vigorously  for  1   min.  Vortex  for  1  min.  

Centrifuge  the  teflon   tubes  for  5-­‐7  min  

Pipese  10  ml  of  the   extract  into  RB-­‐flask.  

Evaporate  untl   dryness    

Add  3-­‐4  ml  n-­‐Hexane   to  the  extract.  

Evaporate  to  dryness  

Add  5  g  Florisil,  5  g   Alumina  and  0.5  g   Charcoal  into  a  100  ml  

flask    

Add  50  ml  n-­‐Hexane  to   flask  and  pack  the   column.  Add  5  g  of   sodium  sulphate  

Dissolve  the  dried   extract  with  2-­‐3  ml  n-­‐

Hexane.  Place  in  a   ultrasonic  bath  for  30  

sec  

Apply  the  extract  to  the  

column   Elute  the  column  with  

20  ml  n-­‐Hexane  

Add  80  ml  of   Dichloromethane  

(DCM).    

(16)

Figure  12.  Flow  scheme  of  clean-­‐up  of  Procedure  2.    

4.2.1.3 Procedure  3  

Procedure  3  (Figure  13)  was  performed  as  described  in  the  extraction  from  procedure  1  up  to  the   centrifugation  step.  After  being  centrifuged,  5  ml  of  the  extract  were  transferred  to  test  tubes  and  3   g  Na2SO4  were  added.  The  tubes  were  then  vortexed  for  one  minute.  Clean  test  tubes  were  filled  with   150   mg   PSA   and   750   mg   anhydrous   MgSO4   and   2   ml   of   the   extract   were   transferred   to   the   clean   tubes.  The  sample  was  vortexed  for  one  minute,  centrifuged  for  five  minutes,  then  rinsed  through  a   0.45  μm  filter  and  transferred  to  vials.  

Figure  13.  Flow  scheme  of  Procedure  3.    

4.2.1.4 Procedure  4  

The  extraction  of  the  final  procedure  (Figure  14)  follows  in  procedure  1  up  to  the  centrifugation  step.  

After  the  centrifugation,  10  ml  of  the  extract  were  passed  through  20  g  Na2SO4  into  a  RB-­‐flask.  The  

Na2SO4  were  then  rinsed  with  10  ml  ethyl  acetate  and  the  sample  was  evaporated  until  dryness.  To  

ensure  that  the  sample  was  completely  dry,  3-­‐4  ml  n-­‐hexane  were  added  and  the  evaporation  was   repeated.  

 

Add  150  mg  PSA  and   750  mg  Anhydrous   MgSO4  to  test  tubes  

Elute  the  dried   extract  with  5  ml  n-­‐

hexane  

Add  3  g  Na2SO4  to   the  RB-­‐flasks  

Pipese  2  ml  of  the   extract  to  the  test  

tubes  

Vortex  the  samples   for  1  min  and   centrifuge  for  5  min  

Rinse  the  extract   through  a  0.45  μm   filter  and  add  to  vial  

Homogenize  washed   cucumber  with   kitchen  blender  

Add  10  g  of  cucmber   mash  in  50  ml  teflon  

tubes  

Add  20  ml  ethyl   acetate.  Shake   vigorously  for  1  min.  

Vortex  for  1  min  

Add  6  g  anhydrous   MgSO4  and  1.5  g  NaCl.  

Shake  vigorously  for  1   min.  Vortex  for  1  min  

Centrifuge  the  teflon   tubes  for  5-­‐7  min  

Pipese  5  ml  of  the   extract  to  test  tubes  

and  add  3  g  Na2SO4  

Vortex  the  test  tubes   for  1  min  

Add  150  mg  PSA  and   750  mg  Anhydrous   MgSO4  to  clean  test  

tubes  

Pipese  2  ml  of  the   extract  to  the  test  

tubes  

Vortex  the  samples   for  1  min  and   centrifuge  for  5  min  

Rinse  the  extract   through  a  0.45  µm   filter  and  add  to  vial  

(17)

 

Figure  14.  Flow  scheme  of  extraction  of  Procedure  4.  

The  clean-­‐up  (Figure  15)  were  made  by  first  adding  150  mg  PSA  and  750  mg  Anhydrous  MgSO4  to  test   tubes.  The  dried  extract  was  dissolved  with  5  ml  n-­‐hexane  and  3  g  Na2SO4  were  added  to  the  RB-­‐

flasks.  From  the  dissolved  extract,  2  ml  was  transferred  to  the  test  tubes  which  was  vortexed  for  one   minute   and   centrifuged   for   five   minutes.   The   extract   was   rinsed   through   a   0.45   μm   filter   and   transferred  to  vials.  

Figure  15.  Flow  scheme  of  clean-­‐up  of  Procedure  4.    

4.2.2 Method  validation  

The  purpose  of  method  validation  is  to  evaluate  the  quality  of  the  data  produced  with  the  method.  In   this   study   the   validation   characteristics   are   linearity,   repeatability,   accuracy,   precision   and   limit   of   detection  (LOD).  The  linearity  and  Limit  of  Detection  (LOD)  were  determined  by  a  calibration  curve   and   the   precision   by   calculations   of   the   standard   deviation   for   the   replicas.   The   accuracy   of   the   analytical  method  was  determined  by  recovery.    

4.2.2.1 Calibration  curve  

The  concentration  of  pesticides  in  the  cucumber  samples  were  determined  by  creating  a  calibration   curve   that   shows   the   relation   between   the   pesticide   concentration   and   the   detector   response.   A   mixture  with  concentration  1  μg/g  of  the  four  target  pesticides  diazinon,  chlopryrifos,  cypermethrin   and   fenvalerate   (DCCF)   was   diluted   to   eight   different   concentrations   using   n-­‐hexane   (Table   2)   to  

Homogenize  washed   cucumber  with  kitchen  

blender  

Add  10  g  of  cucumber   mash  in  50  ml  teflon  

tubes  

Add  20  ml  ethyl   acetate.  Shake   vigorously  for  1  min.  

Vortex  for  1  min  

Add  6  g  anhydrous  

MgSO4  and  1.5  g  NaCl.  

Shake  vigorously  for  1   min.  Vortex  for  1  min  

Centrifuge  the  teflon  

tubes  for  5-­‐7  min   Add  20  g  Na2SO4  to  a   funnel  

Pipese  10  ml  of  the   extract  to  through   the  funnel  in  to  a  RB-­‐

flask  

Rinse  with  10  ml  ethyl   acetate  

Evaporate  extract   untl  dryness  

Add  3-­‐4  ml  n-­‐hexane   and  evaporate  untl  

dryness  

Repeat  the  previous   step  

Add  150  mg  PSA  and   750  mg  Anhydrous   MgSO4  to  test  tubes  

Elute  the  dried   extract  with  5  ml  n-­‐

hexane  

Add  3  g  Na2SO4  to   the  RB-­‐flasks  

Pipese  2  ml  of  the   extract  to  the  test  

tubes  

Vortex  the  samples   for  1  min  and   centrifuge  for  5  min  

Rinse  the  extract   through  a  0.45  μm   filter  and  add  to  vial  

(18)

create   standard   solutions.   The   standard   solutions   were   then   analysed   by   a   GC-­‐ECD   and   the   concentrations  were  plotted  against  the  areas  in  the  chromatograms.  From  this  a  linear  equation  was   obtained.  The  LOD  for  each  pesticide  was  determined  as  the  lowest  amount  detected  in  the  GC-­‐ECD.  

Table  2.  Dilution  of  the  pesticide  mixture  DCCF  to  produce  listed  standard  concentrations   Standard  Concentration  

(µg/g)   Concentration  DCCF  

(µg/g)   Volume  DCCF    

(ml)   Volume  n-­‐Hexane  

(ml)  

0.1   1   1   9  

0.05   0.1   5   5  

0.025   0.05   5   5  

0.01   0.025   4   6  

0.005   0.01   5   5  

0.0025   0.005   5   5  

0.001   0.0025   4   6  

0.0005   0.001   5   5  

 

4.2.2.2 Recovery  

Recovery   is   a   measure   of   how   much   of   an   analyte   that   is   lost   during   the   clean-­‐up   procedure.   A   cucumber  sample,  which  was  analysed  and  found  to  be  a  blank  matrix,  was  spiked  with  a  mixture  of   DCCF  at  two  different  concentrations.  Three  replicas  were  made  for  each  of  the  two  spiking  levels,   High  Recovery  (HR)  and  Low  Recovery  (LR).  The  HR  was  spiked  with  a  concentration  corresponding  to   0.1   µg/g   and   the   LR   with   0.05   µg/g   wet   mass.   Extraction   and   clean-­‐up   was   executed   according   to   Procedure  4  (4.2.1.4)  and  the  samples  were  analysed  with  GC-­‐ECD.  The  recovery  was  calculated  using   equation  1.  The  average  value,  standard  deviation  (SD)  and  relative  standard  deviation  (RSD)  were   calculated   using   Excel.   The   standard   deviation   and   the   relative   standard   deviation   indicate   the   methods  precision,  the  correspondence  between  the  separate  measurements.    

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦  (%) =   !!! ∙!∙!∙!""∙!

!∙!∙!         Equation  1  

A  =  Area  of  the  chromatogram   m  =  intercept  in  calibration  curve   e  =  ethyl  acetate  in  extract  (ml)   n  =  n-­‐hexane  in  extract  (ml)   s  =  spiking  level  (μg/g)  

k  =  gradient  of  calibration  curve   g  =  matrix  (g)  

p  =  pipetted  amount  (ml)  

   

(19)

5 Results  

5.1 Gas  chromatographic  analyses  

The  samples  collected  from  Ananda  Bazar  in  Dhaka  were  extracted  and  cleaned-­‐up  using  procedure  1   (4.2.1.1)   and   analysed   by   GC-­‐ECD.   The   chromatogram   showed   a   unsatisfying   baseline   and   a   unidentified  peak  after  20  minutes  (Figure  16).  

 

Figure  16.  Chromatogram  for  sample  AJ2  using  procedure  1.    

The   unidentified   peak   at   ca.   20   minutes   was   believed   to   be   a   result   of   high   water   concent   in   the   anlysed  sample.  A  new  method  was  devoloped  where  the  florisil-­‐alumina  column  were  excluded  and   replaced   by   another   extraction   method   using   PSA   (Procedure   2,   4.2.1.2).   When   analysing   samples   using   this   method   it   was   seen   that   the   baseline   was   still   not   good   enough   and   the   peak   was   still   present  (Figure  17).  

Figure  17.  Chromatogram  for  sample  AJ5  using  procedure  2.    

(20)

Since  the  matrix  had  a  high  water  content,  a  second  analysis  was  done  adding  both  PSA  and  C18  to   the  extract.  The  result  was  disappointing,  no  change  were  shown  in  the  chromatogram  (Figure  18).  

Figure  18.  Chromatogram  for  sample  AJ5  using  procedure  2  adding  both  PSA  and  C18.    

The  same  procedure  (procedure  2)  was  redone  adding  5  g  of  Na2SO4  instead  of  3  g  used  in  previous   analysis   to   reduce   the   amount   of   water   in   the   sample.   The   baseline   did   not   improve   and   the   unidentified  peak  was  not  reduced  by  these  measures  (Figure  19).  

 

Figure  19.  Chromatogram  for  sample  AJ4  using  procedure  2  adding  5  g  Na2SO4.    

The   possibility   of   the   solvent   being   the   cause   of   the   unwanted   peak   and   the   poor   baseline   were   evaluated   by   changing   the   solvent   ethyl   acetate   to   acetoonitrile.   Samples   were   extracted   and   analysed  in  the  same  way  as  previously  but  with  acetonitrile  as  solvent  (Figure  20).  

(21)

Figure  20.  Chromatogram  for  sample  AJ9  using  procedure  2  with  acetonitrile  as  solvent.    

Since  the  peak  and  the  poor  baseline  did  not  improve  when  switching  solvent  it  was  believed  that  the   problem  might  be  in  the  added  magnesium  sulfate.  To  evaluate  this,  three  reagent  blanks  using  n-­‐

hexane  (Figure  21),  acetonitrile  (Figure  22)  and  ethyl  acetate  (Figure  23)  were  analysed  in  the  GC-­‐

ECD.    

 

Figure  21.  Chromatogram  for  reagent  blank  (n-­‐hexane).    

(22)

 

Figure  22.  Chromatogram  for  reagent  blank  (acetonitrile).    

Figure  23.  Chromatogram  for  reagent  blank  (ethyl  acetate).    

The  chromatograms  were  still  showing  an  unsatisfying  baseline  and  an  unidentified  peak,  therefore   conclusions  could  be  made  that  neither  the  MgSO4  nor  the  solvents  were  the  source  for  the  uneven   baseline  and  high  peak.  To  rule  out  the  possibility  of  contamination  from  the  rotary  evaporator,  used   in  all  procedures  to  dry  the  extract,  an  additional  procedure  were  developed  (4.2.1.3).  Samples  were   extracted  and  cleaned-­‐up  without  the  interference  of  the  rotary  evaporator.  Results  were  improved   but  the  baseline  was  still  not  satisfactory  (Figure  24).  

(23)

 

Figure  24.  Chromatogram  for  sample  AJ4  using  procedure  3.

 

 

A  last  and  final  procedure  (procedure  4)  were  developed  by  adding  steps  to  procedure  2  to  further   reduce  the  water  content  in  the  sample.  Samples  analysed  with  this  method  displayed  an  adequately   good  baseline,  but  the  unidentified  peak  was  still  present  (Figure  25)    

Figure  25.  Chromatogram  for  sample  AJ11  using  the  final  procedure.    

Since  the  unidentified  peak  was  not  interfering  with  any  of  the  target  analytes  it  was  determined  that   future  analyses  would  be  carried  out  by  using  the  final  procedure  and  the  “ghost  peak”  should  be   ignored.  The  obtained  chromatograms  for  the  total  14  samples  are  represented  in  Appendix  2.  None   of  the  four  target  pesticides  were  detected  in  any  of  the  analyzed  samples.    

After  the  laboratory  part  of  the  study  was  completed  new  information  was  obtained  about  the  poor   baseline  and  the  large  peak  that  are  present  in  most  of  the  chromatograms.  The  undulating  baseline   at  number  1  in  Figure  27  (between  retention  times  approximately  12-­‐24  min)  is  believed  to  be  short  

(24)

chained  chlorinated  paraffins.  The  large  peak  at  number  2  is  thought  to  be  dioctylphthalate  and  the   cluster  of  peaks  at  number  3  probably  consists  of  dinonyl-­‐  or  didecylphthalates.  Possible  sources  of   these  compounds  are  presented  in  the  Discussion.    

 

Figure  26.  Chromatogram  for  high  recovery  illustrating  the  contaminants  that  causes  a  poor  baseline  (no.  1  and  3)  and  a    

high  peak  (no.  2).  

 

5.2 Calibration  curves  and  recovery  

By   performing   recovery   experiments   the   accuracy   of   the   final   procedure   were   validated.   Standard   solutions  were  analyzed  and  chromatograms  for  the  concentrations  0.1  µg/g  (Figure  27),  0.05  µg/g   (Figure   28),   0.025   µg/g   (Figure   29),   0.01   µg/g   (Figure   30),   0.005   µg/g   (Figure   31)   and   0.0025   µg/g   (Figure  32)  were  obtained.  

(25)

Figure  27.  Chromatogram  of  DCCF  0.1  µg/g  for  calibration  curve.    

Figure  28.  Chromatogram  of  DCCF  0.05  µg/g    for  calibration  curve.    

(26)

 

Figure  29.  Chromatogram  of  DCCF  0.025  µg/g  for  calibration  curve.    

 

Figure  30.  Chromatogram  of  DCCF  0.01  µg/g  for  calibration  curve.    

(27)

 

Figure  31.  Chromatogram  of  DCCF  0.005  µg/g  for  calibration  curve.    

Figure  32.  Chromatogram  of  DCCF  0.0025  µg/g    for  calibration  curve.    

With   the   known   pesticide   concentrations   and   received   areas   from   the   chromatograms,   calibration   curves   were   made   for   the   four   target   pesticides   (Figure   33).   The   coefficient   of   determination   is   satisfying  for  all  of  the  regressions  and  is  valid  to  use  in  the  further  calculations  of  the  recovery.      

(28)

 

   

Figure  33.  Calibration  curves  for  diazinon,  chlorpyrifos,  cypermethrin  and  fenvelarate.  

The  samples  for  the  different  recovery  levels  were  anlyzed  in  the  GC-­‐ECD.  Chromatograms  for  each   replica   of   the   HR   level   (Figure   34,   Figure   35   and   Figure   36)   and   LR   level   (Figure   37,   Figure   38   and   Figure  39)  were  obtained.    

Figure  34.  Chromatogram  for  recovery  level  HR,  replica  number  one.    

 

y  =  501664x  +  3222,1   R²  =  0,99278  

0   50000   100000  

0   0,05   0,1  

Area  

Concentra(on  (μg/g)  

Diazinon  

y  =  1  397  835x  +  3  359   R²  =  1  

0   100000  

0   0,05   0,1  

Area  

Concentra(on  (μg/g)  

Cypermethrin  

y  =  2  919  385,96x  +  36  234,70   R²  =  0,98  

0   200000   400000  

0   0,05   0,1  

Area  

Concentra(on  (μg/g)  

Chlorpyrifos  

y  =  1  145  546,98x  +  4  715,53   R²  =  1,00  

0   100000   200000  

0   0,05   0,1  

Area  

Concentra(on  (μg/g)  

Fenvalerate  

(29)

 

Figure  35.  Chromatogram  for  recovery  level  HR,  replica  number  two.    

   

Figure  36.  Chromatogram  for  recovery  level  HR,  replica  number  three.    

(30)

Figure  37.  Chromatogram  for  recovery  level  LR,  replica  number  one.    

 

Figure  38.  Chromatogram  for  recovery  level  LR,  replica  number  two.    

 

(31)

 

Figure  39.  Chromatogram  for  recovery  level  LR,  replica  number  three.    

By   using   the   received   areas   and   the   linear   equation   from   the   calibration   curves   the   recovery   percentage   were   calculated   by   using   Equation   1   (4.2.2.2).   From   this   the   standard   deviation   and   relative  standard  deviation  were  calculated  (Table  3).  The  obtained  recovery  values  were  evaluated   and  the  procedure  could  be  validated.    

   

(32)

Table  3.  Obtained  results  for  area,  recovery,  SD  and  RSD  for  the  four  target  pesticides  

Sample   Area   Recovery   Average   SD   RSD  

Diazinon            

LR1   29000   100        

LR2   29000   100   100   3.0   2.9  

LR3   30000   110        

HR1   47000   88        

HR2   50000   94   92   3.4   3.7  

HR3   50000   94        

Chlorpyrifos            

LR1   180000   100        

LR2   190000   110   110   8.7   8.1  

LR3   210000   120        

HR1   340000   100        

HR2   350000   110   110   2.9   2.7  

HR3   350000   110        

Cypermethrin            

LR1   54000   73        

LR2   59000   80   77   3.4   4.4  

LR3   58000   78        

HR1   150000   100        

HR2   160000   110   99   16   16  

HR3   120000   81        

Fenvalerate            

LR1   60000   97        

LR2   58000   93   94   2.4   2.6  

LR3   57000   92        

HR1   140000   110        

HR2   150000   120   120   5.1   4.3  

HR3   140000   120        

 

   

References

Related documents

Other fears related to how some interviewees did not seem to trust the idea of using only computers to record patient data, as one physician stated: ‘Manual is great, because

Still many other aspects regarding patient safety could be collected and it was possible to get a good picture of the risks of providing health care in Bangladesh.. In one

Therefore, it is hypothesized that logging residues can increase the accumulation of MeHg in forests soils, by creating an environment favorable to Hg methylating microorganisms,

I första hand är familjecentralen en mötesplats för föräldrar och barn att lära känna andra familjer och samtidigt ha tillgång till ett gäng professionella

Despite the fact that Bangladesh, Norway and Tunisia have very different historical and political backgrounds, freedom of speech and press freedom are now guaranteed by

I argue that in Bangladesh alongside the government, a section of journalists, academics, businessmen, political parties, secular and Islamist activists all act against the spirit

Consequently, the content analysis finds that of all 546 items related to freedom of the press, freedom of expression and the politics of religion, the Daily Star published 91

Islamic extremists are not only using grenades, bombs, firearms or machetes in their acts of terrorism, to transform the secular democratic Bangladesh into a fundamentalist