• No results found

Evaluation  of  Cellruptor  pre-treatment  on       biogas  yield  from  various  substrates

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation  of  Cellruptor  pre-treatment  on       biogas  yield  from  various  substrates"

Copied!
55
0
0

Loading.... (view fulltext now)

Full text

(1)

     

0$67(5¶67+(6,6    

 

   

     

Evaluation  of  Cellruptor  pre-treatment  on       biogas  yield  from  various  substrates

   

     

SELVAKUMAR  THIRUVENKADAM    

            Supervisor:    Mr  Andreas  Berg  

     Research  Manager  

     SCANDINAVIAN  BIOGAS  FUELS  AB        SE-581  83  Linköping  SWEDEN  

 

Examiner:      Prof.  Gen  Larsson  

     Head  of  Div.  Bioprocess  Technology        Department  of  Biotechnology  

     KTH  ROYAL  INSTITUTE  OF  TECHNOLOGY        SE-106  91  Stockholm  SWEDEN  

(2)

 

(3)

ABSTRACT  

In  this  thesis  work,  Cellruptor  pre-treatment  was  evaluated  in  order  to  increase  biogas   yield.  Initially,  the  effects  of  residence  time  (30,  60,  90,  120  and  180  min)  and  substrate   release   (rapid/non-rapid)   from   the   draining   port   of   Cellruptor   on   biosludges   were   investigated   to   find   the   optimum   operating   conditions   of   Cellruptor.   Under   these   optimum  operating  conditions,  the  effect  of  Cellruptor  pre-treatment  on  batch  reactors   of   various   substrates   and   semi-continuous   digester   of   biosludge   were   investigated   at   mesophilLF WHPSHUDWXUH Ü&  7KH YDULRXV VXEVWUDWHV LQ EDWFK UHDFWRUV LQFOXGH

biosludge,   dewatered   sludge,   digested   sludge,   fibre   sludge,   hay,   maize   silage,   minced   meat,  orange  peel,  seaweed  and  yeast.  From  the  initial  study,  90  min  residence  time  and   rapid   release   of   pre-treated   substrate   from   draining   port   were   found   to   be   optimum   operating   conditions   of   Cellruptor.   From   the   batch   experiments,   Cellruptor   pre- treatment  showed  maximum  and  minimum  increase  of  methane  yield  in  hay  (32%)  and   dewatered  sludge  (2%)  respectively.  The  semi-continuous  digester  experimental  results   showed   increase   in   biogas   production   by   22.4%   from   Cellruptor   pre-treatment   of   biosludge   at   HRT   of   15   days   and   OLR   of   2.0   g   VS/L/day.   With   further   studies,   Cellruptor   pre-treatment   may   be   deployed   in   large-scale   biogas   plants   to   improve   biogas  yield.  

 

Keywords:    Cellruptor,  pre-treatment,  biogas,  methane,  biosludge,  mesophilic,  batch    

   

(4)

 Contents  

ABSTRACT   I  

CONTENTS   II  

1   INTRODUCTION   1  

1.1   Aim   2  

1.2   Hypothesis   2  

1.3   Strategy   2  

2   BACKGROUND   3  

2.1   Biogas  ă  for  a  sustainable  environment   3  

2.2   Anaerobic  Digestion   3  

2.2.1   Microbiology  and  Biochemistry   4  

2.2.2   Environmental  factors   5  

2.2.3   Solid  Characteristics   6  

2.2.4   Operational  Parameters   6  

2.2.5   Control  Parameters   7  

2.3   Pre-treatment  Techniques  of  substrates   7  

2.3.1   Cellruptor   9  

2.4   The  substrates   9  

2.4.1   Biosludge   9  

2.4.2   Dewatered  Sludge   9  

2.4.3   Digested  Sludge   10  

2.4.4   Fibre  Sludge   10  

2.4.5   Hay   10  

2.4.6   Maize  Silage   10  

2.4.7   Minced  Meat   10  

2.4.8   Orange  Peel   11  

2.4.9   Seaweed   11  

2.4.10   Yeast   11  

3   METHODS  AND  MATERIALS   12  

3.1   Cellruptor   12  

3.1.1   Process  conditions   12  

3.2   Batch  Experiment   13  

3.2.1   The  substrates  &  Experimental  set-up   13  

(5)

3.2.2   Batch  start  up   13  

3.2.3   Analysis   16  

3.3   Semi-continuous  digester  experiment   17  

3.3.1   The  substrates   17  

3.3.2   Digester  configuration   17  

3.3.3   Digester  Operation   17  

3.3.4   Analysis   18  

3.4   Software   18  

4   RESULTS   20  

4.1   Batch  experiments   20  

4.1.1   Batch  set  A   20  

4.1.2   Batch  set  B   21  

4.1.3   Batch  set  C,  D  and  E   22  

4.2   Semi-continuous  digester  experiment   26  

5   .      DISCUSSION   28  

5.1   Batch  experiments   28  

5.1.1   Biosludge   28  

5.1.2   Dewatered  Sludge   29  

5.1.3   Digested  Sludge   29  

5.1.4   Fibre  sludge   29  

5.1.5   Hay   30  

5.1.6   Maize  Silage   30  

5.1.7   Minced  Meat   30  

5.1.8   Co-digestion  of  minced  meat  with  digested  sludge   31  

5.1.9   Orange  Peel   31  

5.1.10   Seaweed   31  

5.1.11   Yeast   32  

5.2   Semi-continuous  digester  experiment   32  

5.2.1   Biogas  production  and  Methane  content   32  

5.2.2   pH,  VFA  and  VS  reduction   33  

5.3   Evaluation  of  Cellruptor  Pre-treatment   33  

6   .  CONCLUSION   35  

7   REFERENCES   36  

ACKNOWLEDGEMENT   42        

 

(6)

APPENDIX  A:  Statistics  Sweden   43  

APPENDIX  B:  Batch  raw  data   44  

APPENDIX  C:  Statistical  data   47  

(7)

1 INTRODUCTION  

 

For   the   past   few   decades,   the   increasing   global   scarcity   of   petroleum   and   petroleum- derived  fuels  has  led  to  intensive  research  on  finding  new  alternative  energy  sources  for   power   generation   and   transportation   all   over   the   world.   Among   the   proposed   alternative  fuels,  biogas  has  received  much  attention  in  recent  years  for  gas  engines  and   could   be   one   remedy   in   many   countries   to   reduce   their   oil   imports.   The   European   Union   (EU)   renewable   energy   policy   has   set   a   target   to   produce   renewable   energy,   which  meets  20%  of  European  energy  demand,  by  2020,  while  biogas  contributes  25%  

share   of   this   renewable   energy   (Nielsen   and   Oleskowicz-Popiel).   Among   the   EU   nations,   Germany   remains   top   in   biogas   production,   where   major   amount   of   biogas   (85%)   is   produced   from   municipal   solid   waste   methanisation   plant,   decentralised   agricultural  plant  and  centralised  co-digestion  plant   (XU2EVHUY¶(5 .  

 

In   Sweden,   biogas   is   been   produced   since   1940   from   sewage   treatment   plants.   The   HQHUJ\FULVLVGXULQJ¶VLQFUHDVHGFRQFHUQLQ biogas  production  from  other  organic   substrates.  Biogas  production  from  sugar  refinery  plants  and  paper  mills  were  initiated   during   this   period.   Every   Swedish   municipality   constructed   biogas   plants   at   their   sewage   treatment   facility   to   enhance   WKH ELRJDV SURGXFWLRQ ,Q ¶V extraction   of   methane  gas  from  landfills  were  innovated  to  minimise  these  methane  emission  to  the   atmosphere.   Large   scale   anaerobic   co-digestion   of   various   organic   substrates   such   as   agricultural   waste,   food   waste,   slaughterhouse   waste,   etc.,   was   developed   during  

¶V   This   led   to   continuous   research   and   development   in   the   field   of   biogas   technology.    

 

With  the  aim  of  becoming  wRUOG¶VILUVWRLO-free  economy  by  2020,  Swedish  government   has   implemented   new   renewable   energy   policies   to   promote   the   renewable   energy   production   in   Sweden   (Swedish   energy   agency,   2011;   EREC,   2011).   Being   a   leader   of   biogas-to-vehicle-fuel   revolution,   amount   of   biogas   delivered   as   a   vehicle   fuel   is   substantially   higher   than   natural   gas   supplies   in   Sweden   (SCB,   2011;   Appendix   A).  

According  to  Avfall  Sverige  (Swedish  Waste  Management),  317,440  MWh  of  biogas  was   produced  by  anaerobic  digestion  of  green  and  food  waste  in  2009,  which  is  equivalent   to  35  million  litres  of  petrol.  Table  1  represents  the  primary  biogas  production  in  2009   from  Germany  (leading  biogas  producer  in  EU),  Sweden  and  EU  (EurOEVHUY¶(5     

Considering   perspectives   of   bioenergy   systems   and   waste   management,   the   biogas   production   from   various   waste   materials   has   been   gaining   more   attention   in   the   last   couple   of   years.   Further   increase   in   biogas   production   can   be   accomplished   by   improving   the   biodegradability   on   pre-treating   the   substrates.   An   ample   scope   on  

(8)

research   and   applications   of   anaerobic   digestion   and   various   pre-treatment   strategies   has   been   made   in   this   thesis   with   emphasis   on   combining   both   topics   to   enhance   the   biogas  production  from  various  waste  materials.  

 

Table  1:  Biogas  production  in  Germany,  Sweden  and  EU,  in  2009    

Region  

Primary  biogas  output  (ktoe)  

Landfills   Sewage  sludge*   Others**   Total  

Germany      265.5  (6%)      386.7  (9%)   3561.2  (85%)   4213.4  

Sweden          34.5  (31%)          60.0  (55%)          14.7  (14%)      109.2  

EU   3001.6  (36%)   1003.7  (12%)   4340.7  (52%)   8346.0  

*  Urban  and  Industrial  sludge      

**  Municipal  solid  waste  methanisation  plant,  decentralised  agricultural  plant  and    centralised  co-digestion  plant  

 

1.1 Aim  

This   thesis   work   evaluates   the   Cellruptor   pre-treatment   to   enhance   biogas   production   from  various  substrates.  

 

1.2 Hypothesis  

Cellruptor  pre-treatment  will  improve  anaerobic  digestion  process.  

 

1.3 Strategy  

¾ Optimum  Cellruptor  operating  conditions  were  analysed  after  investigating  the   effect   of   cellruptor   residence   time   variation   and   rapid/non-rapid   release,   on   methane  yield  of  biosludge.  

¾ Batch   experiments   were   performed   to   evaluate   the   cellruptor   pre-treatment   on   biogas   production   from   various   substrates,   namely:   biosludge,   digested   sludge,   dewatered   sludge,   fibre,   hay,   maize,   minced   meat,   orange   peel,   seaweed   and   yeast.  

¾ A   semi-continuous   digester   experiment   was   also   carried   out   to   study   the   pre- treatment  effect  on  methane  yield  from  biosludge.  

(9)

2 Background  

2.1 Biogas  ă  for  a  sustainable  environment  

Biogas   is   a   renewable   energy   source,   comprising   of   methane   (50-80%),   carbon   dioxide   (20-50%),  and  traces  of  other  gases  such  as  hydrogen,  carbon  monoxide,  and  nitrogen.  

In   large   scale,   biogas   can   be   used   for   production   of   heat   and/or   steam,   electricity,   chemicals   and   fuel   cells   whereas   in   small   scale,   it   remains   as   an   alternative   energy   source  in  rural  communities,  which  meets  the  basic  need  of  cooking  and  lighting.  Once   upgrading  biogas  to  high  purity  level  adequate  to  vehicle  fuel  standards,  it  can  be  used   as   vehicle   fuel   similar   to   natural   gas.   Biogas   can   be   produced   by   many   ways   which   includes   pyrolysis,   hydrogasification   and   anaerobic   digestion,   while   anaerobic   digestion   remains   as   a   most   promising   technology   for   developing   a   sustainable   environment.   At   the   environmental   level,   biogas   production   forbids   the   release   of   greenhouse  gas  (methane)  into  the  atmosphere  and  also  replaces  the  chemical  fertilizers   with  nutrient  rich  digestate.  (Engler  et  al.,  1998)  

 

2.2 Anaerobic  Digestion  

Anaerobic   digestion   is   a   biological   process   which   is   capable   of   converting   almost   all   types   of   organic   materials   into   methane   and   carbon   dioxide.   Some   existing   sources   of   methane  emissions  are  wetland  soils,  oceans,  rumen  of  ruminant  animals,  and  the  lower   intestinal   tracts   of   humans,   landfills,   and   sewage   digesters.   Microbial   production   of   methane  from  organic  matter  has  become  an  attractive  method  of  waste  treatment  and   resource   recovery,   and   this   is   carried   out   by   action   of   complex   anaerobic   flora   consisting   of   bacteria,   fungi,   protozoa   and   archaeal   methanogens.   Anaerobic   process   also  offers  an  effective  means  of  pollution  reduction,  which  is  superior  to  that  achieved   via   conventional   aerobic   process   due   to   the   fugitive   volatile   emissions   taking   place   before   degradation   in   aerobic   treatment   plants   leading   to   air   pollution.   Methane   produced  by  anaerobic  fermentation  of  biomass  is  a  clean,  renewable  fuel.    

Three  basic  points  about  anaerobic  digestion  process  are:  

(i)  Slow  growing  anaerobic  bacteria  and  archaeal  methanogens  are  the  most  important   microbial  community  involved  in  biogas  production  process;  

(ii)  A  higher  level  of  metabolic  specialization  could  be  seen  in  this  process  than  aerobic   process;  

(iii)  Most  of  the  substrate  free  energy  is  converted  to  terminal  product  methane.  At  the   end   of   digestion,   the   end   product   contains   less   microbial   biomass   than   aerobic   decomposition  and,  therefore,  disposal  of  digested  sludge  after  digestion  may  not  be  a   problem   but   it   also   depends   on   the   feedstock   characteristics.   (Nagamani   and   Ramasamy,  1999)      

(10)

As   practiced   for   several   years,   interest   in   anaerobic   digestion   in   many   countries   has   widely   focused   on   the   economic   recovery   of   fuel   gas   from   municipal   sludge,   cattle,   industrial  and  kitchen  wastes  and  agricultural  surpluses  (Demirbas  et  al.,  2011).    

 

2.2.1 Microbiology  and  Biochemistry  

Hydrolysis,  acidogenesis,  acetogenesis  and  methanogenesis  are  four  important  steps  of   anaerobic   digestion   process.   The   model   of   microbial   groups   involved   in   this   four-step   flow   of   carbon   from   complex   polymers   to   biogas   consists   of   five   groups.   During   the   process   of   anaerobic   digestion   (Figure   1),   complex   polymers   are   broken   into   simple   products  by  enzymes  produced  by  fermentative  bacteria  (Group  1),  which  ferment  the   substrate   to   short   chain   fatty   acids,   hydrogen   and   carbon   dioxide.   Fatty   acids,   longer   than   acetate   are   catabolized   to   acetate   by   obligate   hydrogen   producing   acetogens   (Group  2).  Hydrogen,  carbon  dioxide  and  acetate  are  the  major  products  produced  by   these  two  groups  after  digestion  of  the  substrate.  Hydrogen  and  carbon  dioxide  can  be   converted   into   acetate   by   hydrogen   oxidizing   acetogens   (Group   3)   or   methane   by   carbon   dioxide   reducing,   hydrogen   oxidizing   methanogens   (Group   4).   Acetate   is   also   converted  into  methane  by  acetotropic  methanogens  (Group  5)  (Show  et  al.,  2010).    

  Figure  1:  Steps  in  Anaerobic  Digestion    

(11)

2.2.2 Environmental  factors    

Nutrients  

Carbon,   nitrogen   and   phosphorus   are   the   macro   nutrients   that   nourish   the   microbial   growth.   Generally,   these   nutrients   are   available   in   sufficient   quantities   in   municipal   sewage   and   sludge.   Microbial   community   also   relies   on   micro   nutrients   such   as   sulphur,  vitamin  and  trace  of  minerals  (iron,  cobalt,  nickel,  molybdenum,  selenium).  All   nutrients   should   be   available   in   sufficient   quantities   as   the   microbial   activity   depends   on   the   multiplicative   factor   of   all   essential   nutrients.   There   should   also   be   a   balanced   proportion  of  carbon  and  nitrogen  and  the  optimum  proportion  ranges  between  20:1  to   30:1  (C:N  ratio)  (Davidsson,  2007).    

Temperature  

Digestion   temperature   remains   a   crucial   factor   in   anaerobic   processes   and   it   has   to   remain   constant   throughout   the   process.   The   operational   temperature   ranges   of   anaerobic   digestion   process   are   classified   as   mesophilic   (30-Ü&  WKHUPRSKLOLF -

Ü& RUSV\FKURSKLOLF -Ü& FRQGLWLRQV7KHPHVRSKLOLFSURFHVVLVPRVWFRPPRQO\

used  as  the  thermophilic  process  has  disadvantages  such  as  process  instability,  lowered   effluent   quality,   low   methane   production   per   unit   substrate   and   high   energy   requirement  for  heating,  and  maintenance  (Duran  and  Speece,  1997,  Vindis  et  al.,  2009).  

Psychrophilic  conditions  are  seldom  used  due  to  the  slow  microbial  growth.  

pH  

The  enzymatic  activity  of  methanogenic  bacteria  is  regulated  within  a  specific  pH  range   and  the  maximum  activity  is  achieved  at  optimum  pH.  In  mesophilic  anaerobic  process,   the  desired  pH  range  for  methanogens  are  6.6-7.6  (optimum  pH  around  7.0)  and  6.6-7.8   (optimum  pH  6.8)  under  low  solids  (1-2%)  and  high  solids  (90-96%)  sludge  respectively   (Lay  et  al.,  1997).  The  inhibition  of  methane  formation  might  also  occur,  when  the  pH  is   lesser  than  6.3  or  higher  than  7.8  during  digestion  of  high  solids  sludge  (Liu  et  al.,  2008).  

Alkalinity  

The   accumulation   of   volatile   fatty   acids   (VFA)   and   the   production   of   carbon   dioxide   during  anaerobic  digestion  can  result  in  a  pH  drop,  which  may  cause  process  instability   and   inhibition   of   methanogenesis.   Thus,   the   addition   of   external   alkalinity   source   (buffering   agents)   leads   to   achieve   stable   pH   and   may   improve   the   rate   of   anaerobic   digestion  (Couderc  et  al.,  2008).  The  bicarbonate  of  the  liquid  phase  and  carbon  dioxide   in  gas  phase  stabilizes  the  system  pH  by  producing  alkalinity,  which  counteracts  the  pH   reduction  by  accumulation  of  VFAs  (Appels  et  al.,  2008).  

Moisture  Content  

Water   is   important   as   the   nutrients   get   dissolved   in   it,   which   in   turn   facilitate   the   diffusion   transport   of   these   dissolved   substances   across   the   bacterial   cell   membrane.  

Thus  addition  of  water  increases  the  rate  of  hydrolysis,  whereby  decreasing  the  rate  of  

(12)

solids   accumulation   (Couderc   et   al.,   2008).   Lay,   et   al.   (1997)   investigated   the   effect   of   moisture  content  of  digesting  sludge  on  biogas  production.  

Toxic  Substances  

Volatile  fatty  acids  (VFAs),  free  ammonia,  hydrogen,  hydrogen  sulphide,  heavy  metals,   chlorinated   compounds   and   detergents   are   few   toxic   substances   that   inhibit   the   anaerobic  process.  These  substances  are  either  produced  during  the  digestion  process  or   already  present  in  the  substrates  and  hence,  few  substrates  need  to  be  pre-treated  before   AD,  to  remove  toxic  substances  (Show  et  al.,  2010).  

 

2.2.3 Solid  Characteristics    

Total  Solids  

Total  solids  (TS)  are  the  amount  of  dry  matter  remaining  after  the  removal  of  moisture   FRQWHQWE\GU\LQJDWÜ&DQG76DUHFRPSRVHGRIYRODWLOHDQGIL[HGVROLGV,QFUHDVHLQ

TS   %   of   the   substrate   fed   into   the   reactor   has   no   effect   either   in   TS   or   VS   removal   (Fongsatitkul  et  al.,  2010).  

Volatile  Solids  

Volatile  solids  (VS)  are  the  amount  of  organic  matter  lost  on  combusting  dry  solids  at  

Ü& 2UJDQLF ORDGLQJ UDWH LV GHWHUPLQHG E\ 96 DQDO\VLV DV LW JLYHV DQ DSSUR[LPDWH

amount  of  organic  matter  present  in  the  waste.    

 

2.2.4 Operational  Parameters    

Organic  Loading  Rate  

Organic  loading  rate  (OLR)  is  the  measure  of  organic  material  fed  into  the  digester  and   this  depends  on  volatile  solids  content  and  methane  potential  of  the  substrate.  Feeding   the   digester   above   optimum   OLR   may   lead   to   accumulation   of   inhibitory   substances,   disturbing  the  process  stability  or  low  VS-reduction.  

Hydraulic  Retention  Time  

Hydraulic   retention   time   (HRT)   is   the   average   residence   time   of   the   liquid   inside   the   digester  and  the  optimum  HRT  for  most  mesophilic  anaerobic  digester  ranges  between   15  to  30  days  (Davidsson,  2007).      

(13)

Temperature      (Refer  2.2.2)   Stirring  

The   constituents   in   the   reactor   must   be   mixed   well   to   increase   contact   between   the   substrate   and   microorganisms.   It   provides   a   uniform   sludge   concentration   across   the   UHDFWRU WR DFKLHYH PD[LPXP GLJHVWLRQ E\ LPSURYLQJ PLFURRUJDQLVPV¶ DFFHVVLELOLW\ WR   substrates.   Optimum   mixing   should   be   maintained   to   avoid   the   disruption   of   microorganism.   Different   substrates   in   co-digestion   process   should   be   mixed   well   before  entering  the  AD  process.  

 

2.2.5 Control  Parameters    

Volatile  Fatty  Acids  

Volatile   fatty   acids   (VFA)   are   intermediates   formed   during   the   digestion   process   and   when  VFAs  get  accumulated  in  high  quantities,  they  inhibit  Methanogenesis.  The  most   prominent   inhibitory   VFAs   are   acetic   and   propionic   acid.   At   increasing   temperatures,   accumulation  of  VFA  decreases  the  pH  value  and  when  pH  falls  below  6.0,  AD  process   gets  inhibited  (Nielsen  and  Angelidaki,  2008).  

Volatile  Solids  Reduction    

Volatile  solids  constitute  the  organic  portion  of  total  solids  and  these  reduce  during  the   digestion  process,  as  they  are  converted  to  biogas.    Volatile  solids  reduction  is  directly   related  to  the  biogas  yield  (Appels  et  al.,  2008).  

Methane  Potential  

Based  on  economical  aspect  of  AD,  it  is  important  to  know  the  methane  potential  of  the   substrates.   Many   techniques   such   as   biochemical   methane   potential   (BMP),   dynamic   respiration   rate   (DR4)   and   chemical   oxygen   demand   (COD)   test   are   available   to   determine   the   methane   yield.   The   most   common   BMP   test   is   a   batch   test   for   28   days,   which  is  likely  to  provide  information  useful  for  execution  of  CSTR   (Shanmugam  and   Horan,  2009).  

 

2.3 Pre-treatment  Techniques  of  substrates  

The  digestion  process  is  affected  by  the  non-degradable  constituents  and  rigid  cell  wall   of   the   substrate   which   cause   the   cell   constituents   inaccessible   for   the   anaerobic   microorganisms   and,   hence,   the   anaerobic   digestion   is   limited   by   hydrolysis   rate   (Rivard   et   al.,   1998).   The   microbial   consortia   in   the   reactor   tend   to   multiply   by   metabolizing  the  organic  matter  and  forms  biomass.  The  reduction  of  substrate  biomass   is   an   important   factor   to   enhance   biogas   production   and   this   can   be   achieved   by   cell   lysis.   Hence,   an   effective   pre-treatment   aims   to   enhance   the   biogas   production   by  

(14)

improving   the   substrate   accessibility   to   the   microbial   community   and   consequently,   accelerating  the  rate  of  anaerobic  digestion.    

During   recent   years,   many   studies   have   been   made   on   various   mechanical   pre- treatment  techniques  that  disrupt  cells  by  application  by  force,  including:  

 

High  pressure  homogenizer      

The  High  pressure  pump  compresses  the  sludge  up  to  several  bars  (up  to  900  bar)  and   then,   the   sludge   undergoes   a   sudden   depressurization   in   the   homogenizing   valve   forming   cavitation   bubbles.   An   irreversible   disruption   of   the   cell   membrane   happens   during  the  explosion  of  these  bubbles  (Rai  and  Rao,  2009).    

Ultrasonic  homogenizer      

Cavities  or  microbubbles  are  formed  due  to  the  repetitive  compression  and  rarefaction   of   the   ultrasonic   waves,   when   passed   through   sludge   medium.   The   cell   wall   and   membranes  are  disrupted  due  to  the  powerful  mechanical  shear  force  generated  during   the  collapse  of  many  microbubbles  (Khanal  et  al.,  2007).  This  principle  is  an  adaptation   from   Pulsed   electric   field   technology,   which   has   notable   significances   in   medical   field   (imaging  device),  food  industry  (extraction  of  vegetable  oils),  etc.  

Thermal  Hydrolysis  

Cell  rupture  is  achieved  by  effect  of  heat  produced  at  high  temperature  (160-Ü&IRU

30-60   min)   leading   to   increase   in   sludge   digestion   and   soluble   COD   (Carrere   et   al.,   2008).  

Freezing  and  Thawing  

Freeze/thaw   pre-treatment   disrupts   the   cell   membrane   physically   by   forming   ice   crystals.   They   cause   irreversible   rupture   of   cell   floc   by   reducing   the   bound   water   content  (Gao,  2010).  

Gamma-irradiation  

Gamma   radiations   disrupt   the   cell   membrane   and   release   the   soluble   organic   compounds,   which   influences   the   hydrolysis   step   in   the   digestion   process   (Lafitte- Trouque  and  Forster,  2002).  

 

Besides   the   above   mentioned   mechanical   pre-treatments,   viz.   chemical   pre-treatment   (Acid  or  alkaline  hydrolysis,  Ozone  pre-treatment)  (Perez-Elvira  et  al.,  2006),  Biological   pre-treatments   (Yunqin   et   al.,   2010)   and   combination   of   pre-treatments   such   as   Microsludge®  (combination  of  chemical  and  mechanical  pre-treatment)  are  available  to   increase   the   digestion   rate.   Even   though,   there   is   existence   of   pre-treatments   in   commercial  level  such  as  Microsludge®,  %LR7+(/<6Œ2SHQ&(/®&DPELŒWKHUPDO

hydrolysis  process  and  Crown®  GLVLQWHJUDWLRQV\VWHPWKHUH¶VVWLOODVHDUFKIRUDEHWWHU

(15)

pre-treatment   based   on   economical   and   operational   grounds.   One   such   promising   technology  is  Cellruptor.    

 

2.3.1 Cellruptor  

Eco-Solids   International   Ltd.   (Hampshire,   UK)   has   developed   this   simple   cell   disintegration  technology,  Cellruptor  and,  reported  28%  increase  in  biogas  production   during   the   commercial   trial   period   at   Yorkshire   wastewater   treatment   plant   (WWTP)   (Yorkshire,   UK).   Unlike   other   pre-treatment   techniques,   Cellruptor   just   require   low   energy  (maximum  10  bar  pressure)  to  disrupt  the  cells.  

Principle    

A   soluble   gas   such   as   CO2   is   compressed   to   the   sludge   at   10   bar   pressure   and   this   soluble   gas   diffuses   to   the   cell   through   the   cell   wall.   During   a   rapid   depressurization,   the  diffused  CO2  causes  cell  expansion  leading  to  an  irreversible  rupture  of  cell  wall.  At   large   scale,   biogas   containing   40%   CO2   can   be   passed   to   the   Cellruptor   making   the   process  very  more  economical  than  spending  for  a  compressed  gas  tank.    

 

2.4 The  substrates  

 

2.4.1 Biosludge  

Biosludge   is   the   outcome   of   the   secondary   (biological)   treatment   of   sewage   treatment   plants.  It  is  also  called  as  excess  sludge,  activated  sludge,  waste  activated  sludge  (WAS)   or  surplus  activated  sludge  (SAS).  Resulted  due  to  overproduction  of  microorganisms,   biosludge   contain   rich   biomass,   extracellular   polymeric   substances   (EPS)   with   more   than   95%   water   (Yin   et   al.,   2004).   The   biomass   comprises   of   Bacteria,   fungi,   protozoa,   and  rotifers.  Generally,  the  TS  and  VS  are  around  7-10  g/L  and  70-80%  respectively.  

 

2.4.2 Dewatered  Sludge  

Dewatered   sludge   is   the   waste   activated   sludge   with   less   water   content.   The   water   is   removed   from   the   excess   sludge   before   storage   at   anaerobic   conditions   to   avoid   the   hydrolysis   process.   Anaerobically   stored   dewatered   sludge   has   proven   to   enhance   biodegradability   due   to   earlier   breakdown   of   polyacrylamides   (PAM)   to   soluble   substrates   during   anaerobic   storage,   with   the   anaerobic   storage   acting   as   a   pre- treatment   technique   (Xu   et   al.,   2010).   Dewatered   sludge   used   in   this   work   was   dewatered  waste  activated  sludge.  

 

(16)

2.4.3 Digested  Sludge  

Digested   sludge   is   the   outcome   of   tertiary   treatment   of   sewage   treatment   plants.   The   digested   sludge   has   reduced   mass,   odour   and   pathogens   due   to   complete   anaerobic   digestion  of  primary  and  secondary  sludge  (Ek,  2005).  The  TS  and  VS  are  around  20-40   g/L   and   50%   respectively   and,   digested   sludge   had   showed   improved   dewaterability   after   thermal   and   alkaline   pre-treatments   than   conventional   process   (Carballa   et   al.,   2009).  

 

2.4.4 Fibre  Sludge  

Fibre   sludge,   a   waste   material   generated   from   lignocellulosic   bio   refineries,   such   as   paper  and  pulp  industries.  These  wastes   are  either  dumped  into  the  soil  or  burnt  out,   causing   environmental   pollution   and   hence,   these   wastes   can   be   used   for   biogas   production   because   of   their   high   polysaccharide   and   low   lignin   content   (Cavka   et   al.,   2010).  

 

2.4.5 Hay  

Besides  their  use  as  animal  fodder,  hay  can  be  also  for  biogas  production.  However,  its   use  for  biogas  should  be  controlled  to  protect  the  biodiversity  and  the  methane  yield  of   255-327   mL/g   VS   from   hay   of   size   range   of   0.5‒20   mm   (Stewart   et   al.,   1984).   Menind   and  Normak  (2009)  found  a  negative  correlation  between  biogas  yield,  particle  size  and   lignin  content  during  grinding  pre-treatment  of  hay.        

 

2.4.6 Maize  Silage  

Maize   silage,   an   animal   fodder,   can   be   an   ideal   substrate   for   anaerobic   digestion   because   of   high   carbohydrate   and   low   lignin   content.   The   presence   of   rapidly   degrading   organic   content   leads   to   initial   increase   in   biogas   production,   which   may   limit   the   loading   rate.   Anaerobic   digestion   of   maize   silage   (30.8%   TS,   94.1%   VS)   at   mesophilic  temperature  yielded,  0.347  m3  CH4/kg  TS  (ãSDONRYiHWDO).  

 

2.4.7 Minced  Meat  

Meat  and  other  animal  by-products  are  likely  to  be  potential  biogas  producers  because   of  the  high  fat  and  protein  content.  Recent  studies  on  anaerobic  co-digestion  of  animal   by-producWV ZLWK VHZDJH VOXGJH DW PHVRSKLOLF WHPSHUDWXUH Ü&  KDYH   shown   improved   methane   production   (Luostarinen   et   al.,   2009,   Luste   and   Luostarinen,   2010).  

Thermochemical   pre-treatment   (Ü& DQG 1D2+   (Wu   et   al.,   2009)   of   animal   by- products  have  enhanced  the  efficiency  of  AD  process  while  pasteurization,  sterilization  

(17)

and   alkali   hydrolysis   showed   no   improvement   in   methane   production   (Hejnfelt   and   Angelidaki,  2009).    

 

2.4.8 Orange  Peel  

A   large   amount   of   solid   wastes   from   the   fruit   processing   industries   are   commonly   landfilled  because  to  avoid  the  expensive  treatment  of  these  wastes.    One  such  waste  is   the   Orange   Peel,   a   lignocellulosic   biomass   (cellulose   (%):   13.61±0.6,   hemicellulose   (%):  

6.10±0.2,  lignin  (%):2.10±0.3)  (Ververis  et  al.,  2007),  containing  high  organic  content  (ca   90-95%   TS)   which   makes   it   a   suitable   feedstock   for   anaerobic   digestion.   However,   the   antimicrobial  agents  (peel  oil  and  limonin)  may  inhibit  the  digestion  process  (Naparaju   and  Rintala,  2006).      

 

2.4.9 Seaweed  

Seaweed   is   multicellular   marine   algae,   which   cause   social   problems   in   coastal   regions   due   to   its   high   accumulation   resulting   from   marine   eutrophication.   Results   on   biogas   production  from  seaweeds  in  laboratory  tests  at  mesophilic  (Moen  et  al.,  1997,  Kerner  et   al.,   1991)   and   thermophilic   conditions   (Hansson,   1983)   have   been   reported.   Nkemna   and  Murto  (2010)  reported  the  effect  of  heavy  metals  removal  from  seaweed  on  biogas   production   in   batch   tests   and   UASB   reactors.   Mussgnug,   et   al.   (2010)   investigated   six   Germany  dominant  microalgae  species  (cyanobacteria,  freshwater  and  saltwater  algae)   for  biogas  production  with  drying  pre-treatment  and  they  also  concluded  that  a  suitable   cell   disruption   method   is   of   great   importance   to   enhance   the   biogas   production.   The   seaweed   used   in   this   study   was   filamentous   red   alga   of   genera   Polysiphonia,   Rhodomela  and  Ceramium.  

 

2.4.10    Yeast    

Yeast   residue,   a   solid   waste   from   beer   brewery   industries   can   be   considered   as   a   suitable  substrate  for  biogas  production  because  of  its  high  organic  content.  Yeast  cells   have   a   rigid   cell   wall   constituting   mainly   of   polysaccharides,   namely   glucans   and   mannans,   which   has   to   be   ruptured   to   make   the   cell   constituents   accessible   for   anaerobic   digestion.   Cell   wall   lysis   may   be   achieved   by   pre-treatment   methods   like   enzymatic  pre-treatment  (Mallick  et  al.,  2010),  horizontal  bead  mill  (Heim  et  al.,  2007),   autolysis(Shotipruk   et   al.,   2005)   and   a   combination   of   enzymatic   pre-treatment   with   high   pressure   homogenizer   (Baldwin   and   Robinson,   1994) %DNHU¶V \HDVW ZDV XVHG LQ

this  thesis  work.  

 

     

(18)

3 Methods  and  Materials  

3.1 Cellruptor  

The  Cellruptor  equipment  used  in  this  work  was  obtained  from  Eco-Solids  International   Ltd.   (Hampshire,   UK)   and   is   shown   in  Figure   2.   The   assembled   equipment   consist   of   three  main  units:  8  L  pressure  cylinder  with  sampling  and  drain  ports,  compressed  CO2   tank   air   cylinder   and   a   collecting   bucket.   In   order   to   ensure   that   the   right   pressure   is   maintained   in   the   cylinder,   there   was   an   extra   gas   meter   attached   near   the   sampling   port  of  the  high  pressure  cylinder,  apart  from  the  gas  regulator  near  the  gas  cylinder.  

 

3.1.1 Process  conditions  

The   pressure   that   was   operated   during   this   thesis   work   was   10   bar   and   the   residence   time   ranged   from   30   to   180   min.   The   equipment   was   handled   according   to   the   PDQXIDFWXUHU¶V LQVWUXFWLRQV (FR-Solids   International   Ltd.,   Hampshire,   UK).   All   pre- treatment  run  took  place  at  room  temperature  and  the  working  volume  for  every  run  of   pre-treatment  was  between  1.5-2.0  L.      

     

  Figure  2:  Cellruptor  

     

(19)

3.2 Batch  Experiment    

3.2.1 The  substrates  &  Experimental  set-up    

Ten  different  substrates  were  studied  in  five  sets  (A-E)  of  batch  experiments  and  Table  2   summarizes  all  the  substrates  with  their  collection  place  and  solids  content.  Both  batch   sets   A   and   B   utilized   biosludge   from   wastewater   treatment   plants   (WWTP),   but   the   difference   lies   in   the   aim   of   each   one.   Batch   set   A   was   designed   to   study   the   effect   of   residence   time   (30,   60,   90,   120   and   180   min)   while   batch   set   B   aimed   to   evaluate   the   effect   of   substrate   release   (rapid/non-rapid)   from   cylinder   draining   port   on   biogas   production.   Remaining   batch   sets   C,   D   and   E   were   designed   to   evaluate   the   effect   of   Cellruptor   pre-treatment   of   various   other   substrates   on   biogas   production,   under   operating  conditions  of  10  bar  pressure  and  90  min  residence  time.  

Substrates  as  starting  material  for  pre-treatment  

Cellruptor   needs   the   substrates   in   slurry   form   and   hence,   substrates   with   high   TS   content  (>10%)  and  in  non-slurry  form  were  diluted  with  water  or  digested  sludge.  The   non-treated   substrates   (or   control)   were   also   diluted,   as   to   eliminate   the   influence   of   dilution  factor  and  pre-wetting  over  biogas  production.    Few  substrates  were  processed   in  the  following  way  prior  to  Cellruptor  pre-treatment:  dry  substrates  (maize  and  hay)   were  manually  scissored  into  small  pieces  (~1-2  cm);  orange  peel  was  mashed  using  a   food  processor;  seaweed  was  initially  washed  with  water  to  remove  sand  particles  and   then  scissored  to  shorter  fragments  (~2-3  cm).    

 

3.2.2 Batch  start  up  

The   mandatory   solutions   in   all   batch   bottles,   irrespective   of   the   substrate   type,   are   inoculum,  nutrient  solution,  Na2S  solution  and  Milli-Q  water.    Inoculum  was  prepared   by   mixing   the   digested   sludge   from   Nykvarn   sewage   treatment   plant   (Linkoping,   Sweden)   with   the   sludge   collected   from   various   semi-continuous   stirred   tank   reactors   (CSTR)   at   Scandinavian   Biogas   Fuels   AB.   The   nutrient   solution   comprising   of   NH4Cl,   NaCl,   CaCl2.2H2O   and   MgCl2.6H2O   while   Na2S   solution   (0.1   M)   acts   as   a   reducing   agent   ensuring   low   redox   potential   by   complete   removal   of   residual   oxygen.   Milli-Q   water   is   the   double   distilled   water   prepared   from   the   Millipore   System   (Millipore,   Billerica,  USA).  The  amount  of  loading  substrate  and  milli-Q  water  in  each  bottle  was   calculated  based  on  OLR  and  assumed  methane  potential  of  each  substrate.  

Batch  experiments  were  carried  out  in  triplicates  of  320  mL  glass  bottles  holding  100  mL   liquid   phase   and   the   procedure   were   accordant   with   Scandinavian   Biogas   Fuels   AB   standard   procedure   described   below.   The   substrates   were   weighed   and   loaded   into   their   respective   labelled   glass   bottles,   which   was   then   followed   by   flushing   N2  gas   to   secure  anaerobic  environment  in  these  bottles.  20  mL  inoculum,  2  mL  nutrient  solution   and  milli-Q  water  were  added  to  these  bottles  while  flushing  N2  gas.  The  bottles  having   been   sealed   immediately   with   EPDM   rubber   stoppers   and   aluminium   caps,   the   gas  

(20)

phase   was   then   altered   by   evacuating   and   refilling   using   nitrogen/carbon   dioxide   mixture  (N2/CO2  ;  80/20%)  for  more  than  nine  times.  Finally,  0.3  mL  Na2S  solution  was   injected   after   depressurizing   the   bottles   completely.   The   bottles   were   then   shook   well   DQGSODFHGLQVLGHÜ&WHPSHUDWXUHURRP  

Three   standard   controls   were   used   for   each   batch   set   and   they   were   prepared   (in   triplicates)  as  mentioned  below:  

Inoculum  Control   To   determine   the   methane   production   from   inoculum   alone   and   this   value   helps   for   the   calculation   of   methane   production   from   solely   substrate   in   substrate   bottles.   (20   mL   inoculum,   2   mL   nutrient  solution,  0.3  mL  Na2S  solution  and  78  mL  milli-Q  water)   Positive  Control  

 

To   determine   the   degradation   efficiency   of   inoculum   by   using   cellulose   filter   paper.   (0.5   g   Whatman   filtration   paper   Grade   3   (Whatman  Ltd.,  UK),  20  mL  inoculum,  2  mL  nutrient  solution,  0.3   mL  Na2S  solution  and  78  mL  milli-Q  water)  

Methane  Control    

To   determine   the   instrument   reliability   by   estimating   the   known   methane  amount.  (50  mL  methane  and  100  mL  milli-Q  water)  

(21)

Table  2:  Sample  collection  and  pre-treatment  conditions  of  various  substrates  

  Batch  set  

 

Substrate     Collection  place  in  Sweden  

Solids  content#   Pre-treatment  level   Residence  time  (min)  

Pressure  (bar)   Rapid/Non-rapid  

release##  

TS     (%)  

VS   (%TS)  

A  

Biosludge   Henriksdal  WWTP,  Stockholm.    4.3   71.0   30,60,90,120  &  180  min   10  bar  

Non-rapid  

Biosludge   Municipal  WWTP,  Varberg.    5.3   78.9  

B   Biosludge   Municipal  WWTP,  Varberg.    5.2   78.6  

90  min   10  bar  

Rapid  and  Non-rapid    

C  

%DNHU¶V\HDVW   Supermarket,  Linkoping.   28.1   93.4  

90  min   10  bar   Rapid    

Minced  meat**   Supermarket,  Linkoping.   40.5   97.5  

Digested  sludge   Nykvarn  sewage  treatment  plant,  Linkoping.    2.7   66.9  

Fibre  sludge*   Husum  Pulp  Plant,  Husum.   29.4   66.4  

D  

Hay*   Haga  Farm,  Östergötland.   93.3   90.9  

90  min   10  bar   Rapid    

Dewatered  sludge*   Loudden  WWTP,  Stockholm.   24.7   83.8  

Maize  silage*   Hags  Farm,  Östergötland.   35.2   96.8  

E  

Biosludge   Bromma  WWTP,  Stockholm.    6.2   68.2  

90  min   10  bar   Rapid    

Dewatered  sludge*   Henriksdal  WWTP,  Stockholm.   27.7   60.4  

Minced  meat*   Supermarket,  Linkoping.   40.5   97.5  

Biosludge   Frövi  Pulp  Plant,  Frövi.    7.1   78.3  

Seaweed*   Kattegat  coast,  Varberg.   12.0   70.0  

Orange  peel*   Brämhults  Juice  Industry,  Boras.   20.7   95.6  

Diluted  with  (*water/**digested  sludge)  before  pre-treatment          #  solids  content  of  fresh  substrate      ##  substrate  release  from  draining  port  of  Cellruptor  

(22)

3.2.3 Analysis  

Solids  content  (TS  &  VS)  

TS   and   VS   were   estimated   according   to   the   standard   protocol   of   Swedish   Standards   Institute.   A   small   amount   of   substrate   were   placed   in   a   silica   crucible   and   dried   in   hot   air   oven   at   105ÜC   for   20   hours.   The   crucibles   were   then  FRROHGLQDGHVLFFDWRUDQGZHLJKHGLQD³0HOWHUFKHPLFDOEDODQFH´7KLV

procedure  was  performed  in  duplicates  to  obtain  concordant  values.    

      Where      A  -  weight  of  silica  crucible    

     B  -  weight  of  VLOLFDFUXFLEOHDQGVXEVWUDWHEHIRUHGU\LQJDWÜ&  

     C  -  weight  of  silica  crucible  and  substrate,  after  drying  DWÜ&  

 

$IWHUGHWHUPLQLQJ76FRQWHQWWKHVLOLFDFUXFLEOHZDVNHSWDWÜ&IRUKRXUV

in   a   muffle   furnace.   The   crucible   was   weighed   in   a   matter   chemical   balance   after  cooling  to  room  temperature.  

 

Where      A  -  weight  of  silica  crucible    

     C  -  weight  of  silica  crucible  and  substrate,  after  drying  DWÜ&  

     D  -  weight  of  silica  crucible  and  substrate,  after  ignition  DWÜ&  

 

Biogas  production  

The  amount  of  biogas  produced  in  each  batch  flasks  were  evaluated  from  the   gas  pressure  measured  by  testo  digital  pressure  meter  (Testo  AG,  Lenzkirch,   Germany)  on  7  occasions  (Day  1,  3,  7,  14,  20,  31  and  60).  Having  measured  the   gas  pressure,  1  mL  of  biogas  was  withdrawn  from  the  headspace  of  each  flask   and  injected  into  their  corresponding  31.7  mL  glass  vial  for  further  analysis  by   gas   chromatography   (GC).   Then,   the   bottles   were   completely   depressurized   expect   methane   control   flasks.   For   methane   control   flasks,   pressure   is   measured  only  on  first  occasion  while  gas  sampling  is  done  on  all  occasions   together  with  other  flasks.      

Methane  content  

The   methane   content   in   the   biogas   was   determined   from   the   GC   spectra,   measured  on  a  HP  5880A  series  GC  system  (Hewlett  Packard,  Houston,  USA)   equipped  with  a  Flame  ionization  detector  (FID).  Separations  were  carried  out   by  mobile  phase  (N2  gas)  passing  through  Poraplot  T  column  at  a  flow  rate  of   130  mL/PLQ7KH),'¶VRYHQLQMHFWRUDQGGetector  temperatures  were  80,  150   DQG Ü& UHVSHFWLYHO\ ,QVWUXPHQWDO FKHFN GDWD DFTXLUHPHQW DQG GDWD

References

Related documents

Däremot är denna studie endast begränsat till direkta effekter av reformen, det vill säga vi tittar exempelvis inte närmare på andra indirekta effekter för de individer som

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Samtliga regioner tycker sig i hög eller mycket hög utsträckning ha möjlighet att bidra till en stärkt regional kompetensförsörjning och uppskattar att de fått uppdraget

Från den teoretiska modellen vet vi att när det finns två budgivare på marknaden, och marknadsandelen för månadens vara ökar, så leder detta till lägre

Tillväxtanalys har haft i uppdrag av rege- ringen att under år 2013 göra en fortsatt och fördjupad analys av följande index: Ekono- miskt frihetsindex (EFW), som

Swedenergy would like to underline the need of technology neutral methods for calculating the amount of renewable energy used for cooling and district cooling and to achieve an

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

För att göra detta har en körsimulator använts, vilken erbjuder möjligheten att undersöka ett antal noggranna utförandemått för att observera risktagande hos dysforiska