• No results found

Inspirational Bits: Förmedla teknik i en designmiljö

N/A
N/A
Protected

Academic year: 2022

Share "Inspirational Bits: Förmedla teknik i en designmiljö"

Copied!
48
0
0

Loading.... (view fulltext now)

Full text

(1)

 

   

  Inspirational  Bits  

 

        KATJA GRUFBERG

 

 

                                               

 

Master of Science Thesis  

 

(2)

           

Inspirational Bits:

Communicating Technology in a Design Community

Katja Grufberg

Master of Science Thesis MMK 2010:95 MCE 234 KTH Industrial Engineering and Management

Machine Design

(3)

Master of Science Thesis MMK 2010:95 MCE 234

Inspirational Bits:

Communicating Technology in a Design Community

Katja Grufberg

Approved

2010-12-14

Examiner

Lars Hagman

Supervisor

Sofia Ritzén

Commissioner

SICS

Contact person

Petra Sundström

Abstract

In  any  design  process,  a  medium’s  properties  need  to  be  considered.  This  is  nothing  new   in   design.   Still   it   is   found   that   in   Human-­‐Computer   Interaction   (HCI)   and   interactive   systems   design   the   properties   of   a   technology   are   often   glossed   over.   That   is,   technologies   are   black-­‐boxed   without   much   thought   given   to   how   their   distinctive   properties  open  up  design  possibilities.  

This  thesis  describes  an  approach  using  Inspirational  Bits  to  become  more  familiar  with   the  design  material  in  HCI,  the  digital  material.  It  is  also  a  way  to  become  better  able  to   share   some   of   this   knowledge   with   all   members   of   an   interdisciplinary   design   team.  

Inspirational  Bits  are  quick  and  dirty  but  fully  working  systems  in  both  hardware  and   software   with   the   single   aim   of   exposing   one   or   several   of   the   dynamic   properties   of   some  of  the  digital  materials.  

 

(4)

 

Examensarbete MMK 2010:95 MCE 234

Inspirational Bits:

Förmedla teknik i en designmiljö

Katja Grufberg

Godkänt

2010-12-14

Examinator

Lars Hagman

Handledare

Sofia Ritzén

Uppdragsgivare

SICS

Kontaktperson

Petra Sundström

Sammanfattning

I  alla  designprocesser  måste  man  ta  hänsyn  till  ett  mediums  egenskaper.  Detta  är  inget   nytt   inom   design.   Ändå   förekommer   det   ofta   inom   människa   -­‐   dator   interaction   (HCI)   och   interaktiv   systemdesign   att   teknikens   egenskaper   bara   ses   över   som   hastigast.  

Tekniken   är   ofta   abstraherad,   utan   att   tillräcklig   uppmärksamhet   ges   till   hur   deras   distinkta  egenskaper  öppnar  upp  för  designmöjligheter.  

I  den  här  rapporten  beskrivs  ett  tillvägagångssätt  som  kallas  Inspirational  Bits  för  att  bli   mer  bekant  med  designmaterialet  inom  HCI,  det  digitala  materialet.  Det  är  också  ett  sätt   för   att   bli   bättre   på   att   förmedla   kunskapen   till   alla   gruppmedlemmar   i   ett   interdisciplinärt   designteam.   Inspirational   Bits   skapas   ”snabbt   och   smutsigt”   men   är   fullt  fungerande  system  i  både  hård-­‐  och  mjukvara,  med  målet  att  blotta  en  eller  flera  av   de  dynamiska  egenskaperna  hos  digitala  material.  

(5)

Index

 

1.  INTRODUCTION   7  

1.1.  Mobile  Life  Centre   7  

1.2.  Designing  Systems  For  Supple  Interaction   7  

1.3.  Earlier  projects   8  

1.4.  Problem  background   9  

1.5.  Purpose   9  

1.6.  Method   9  

1.7.  Delimitations   10  

2.  BACKGROUND   11  

2.1.  Approaching  technology   11  

2.2.  Technology  as  a  material   11  

2.3.  Designing  for  supple  interaction   13  

3.  INSPIRATIONAL  BITS   14  

3.1.  What  is  an  Inspirational  Bit?   14  

3.2.  Specification  of  Inspirational  Bits   15  

3.3.  Phidgets   15  

3.3.4.  What  are  Phidgets?   16  

3.3.5.  Whom  are  Phidgets  for?   16  

3.3.6.  Are  Phidgets  similar  to  Inspirational  Bits?   16  

4.  RFID   18  

4.1.  Common  knowledge  of  RFID   18  

4.2.  RFID  readers   18  

4.3.  RFID  tags   19  

4.4.  Identity  code   19  

4.5.  Radio  frequency   20  

(6)

5.  INSPIRATIONAL  BITS  OF  RFID   21  

5.1.  Exploration  of  RFID  as  a  material   21  

5.2.  The  RFID  Inspirational  Bits   24  

5.2.1.  BendID   25  

5.2.2.  RFiddish   26  

5.2.3.  The  diZe   27  

5.2.4.  inteRFere   27  

5.3.  RFID  properties  and  possibilities   29  

5.4.  The  Inspirational  Bits  Workshop   31  

5.5.  A  professional  designer’s  perspective   32  

5.6.  Comments  to  this  feedback   33  

6.  DISCUSSION   35  

7.  CONCLUSIONS  AND  RECOMMENDATIONS   37  

8.  ACKNOWLEDGEMENTS   39  

REFERENCES   40  

(7)

1.  Introduction  

“The   link   between   the   ‘concrete   and   mathematical   engineer’   and   the   ‘abstract   and   artistic  designer’”  said  the  head  lecturer  of  my  university  department  when  he  described   my  future  occupation  after  the  program  I  was  attending.  And  that  is  exactly  what  this   project  has  been  all  about;  communicating  technology  to  a  design  community.  Research   has  been  done  on  how  to  make  technology  more  tangible  for  everyone,  mainly  through   different  methods  and  platforms.  I  have  been  aiming  for  something  different.  

 

1.1.  Mobile  Life  Centre  

The   Mobile   Life   Centre   at   Stockholm   University   in   Kista   is   doing   research   in   mobile   services   and   ubiquitous   computing   [1].   The   topic   of   the   centre   includes   research   on   consumer-­‐oriented   mobile   and   ubiquitous   services,   spanning   all   areas   from   entertainment  and  socialisation  to  work  and  society.  The  Centre  joins  forces  with  local   research   organization   such   as   the   Swedish   Institute   of   Computer   Science   (SICS)   and   Interactive  Institute  and  has  major  partners  from  the  IT  and  telecom  industry,  including   Ericsson  Research,  Sony  Ericsson,  Nokia  and  Microsoft  Research  Ltd.  Partnerships  in  the   public   sector,   including   City   of   Stockholm   Municipality   and   Kista   Science   City   secure   societal   relevance   and   collaboration   with   Stockholm   Innovation   and   Growth   ensures   that   results   are   integrated   in   the   innovation   system.   In   the   Centre,   this   academic,   industrial  and  public  partnership  will  be  able  to  jointly  work  on  strategically  important   projects   that   can   provide   a   sustainable   growth   for   Sweden.   The   Centre   adopts   a   fundamentally   user-­‐oriented   perspective   on   services   for   the   future   mobile   life.   It   provides  a  neutral  arena  where  researchers  and  industrial  partners  together  develop:  

• New   interaction   models   and   platforms   that   provide   a   unified   interface   across   different  applications  and  terminals  

 

• Efficient  and  user-­‐oriented  methods  for  developing  mobile  services    

• A  deepened  understanding  of  the  unique  properties  of  the  future  mobile  life    

• A   future   mobile   service   eco-­‐system   where   alternative   universes   for   infrastructure,  business  models  and  the  industry's  new  roles  are  explored  

 

• New   mobile   and   ubiquitous   services   in   areas   such   as   pervasive   games,   social,   emotional  and  bodily  communication  and  new  mobile  media.  

 

 

 

1.2.  Designing  Systems  For  Supple  Interaction  

“Designing  Systems  For  Supple  Interaction”  is  a  group  within  the  Mobile  Life  Centre  that   is   working   with   developing   supple   systems   [2].   These   systems   rely   on   subtle   signals;  

rich  human  communication  and  interpretation  strategies  such  as  emotion,  social  ritual,  

(8)

provide  engaging  moment-­‐to-­‐moment  experiences.  There  are  two  main  factors  driving   the  evolution  of  supple  systems.  One  is  the  rapid  growth  of  leisure  and  entertainment   use  of  technologies  and  the  other  is  the  commercial  availability  of  sensor  technology  for   tracking   human   expression   which   has   lead   to   an   increasing   number   of   systems   attempting  to  use  such  technology  to  provide  compelling  experiences.  

Successful  examples  of  existing  supple  systems  include  the  Nintendo  Wii  and  the  Apple   iPhone.  Designing  and  building  supple  systems  is  challenging  because  it  is  an  unfamiliar  

“material”   for   interaction   designers   but   also   because   it   requires   a   wide   range   of   competencies.   The   quality   of   an   experience   arises   in   interaction   between   users   and   systems.   This   interaction   is   in   turn   affected   by   a   system’s   hardware   as   well   as   it’s   software,  and  how  well  they  work  together.  

 

1.3.  Earlier  projects  

The  keyword  of  earlier  projects  in  the  group  Designing  Systems  For  Supple  Interaction   has  been  suppleness.  That  a  system  is  being  supple  means  that  the  interaction  between   the   human   and   the   system   should   be   like   a   “dance”,   without   having   to   make   an   effort   and  without  having  any  disrupting  breaks  due  to  technical  errors.  Intention,  action  and   response  should  be  in  harmony.  Earlier  attempts  of  making  supple  systems  include  the   eMoto  and  the  LEGA.  

The  mobile  messaging  system  eMoto  (figure  1)  made  use   of   the   stylus   that   comes   with   Sony   Ericsson   symbian   phones,  the  P800  and  the  P900  series,  extending  it  with   an  accelerometer  and  a  pressure  sensor  to  allow  users  to   express  themselves  physically  [3].  By  gesturing  with  the   pen,   using   pressure   and   movement,   users   changed   the   background   to   their   text   messages   to   have   colours,   shapes   and   animations   resembling   their   physical   movements.   Hard   pressure   and   energetic   movements   with  the  stylus  rendered  a  strong  red  colour  with  a  large   set   of   animated   small,   sharp-­‐edged   shapes   moving   in   a   jerky  way.  Less  pressure  and  harmonic,  wavy  movements,  rendered  a  calm  blue,  wavy   background  that  slowly  billowed  back  and  forth.  These  messages  could  then  be  sent  to   other  users  to  express  various  emotional  content.  

The  LEGA  (figure  2)  is  a  playful  and  social  system  that   communicates   expressions   in   a   group   of   friends   [4].  

The   egg-­‐shaped   LEGAs   are   placed   in   the   hand   of   one   and   each   and   are   physically   presenting   the   system.  

When  facing  an  object  that  encourage  to  reaction,  e.g.  a   craft   in   a   museum,   the   user   expresses   oneself   by   moving,   patting   and   pressing   the   LEGA   in   different   ways.   The   signals   are   stored   in   an   area   around   the   object   and   when   a   friend   is   entering   that   area,   the   friend’s   object   is   starting   to   replay   the   first   user’s   gestured  expressions.  

Figure  1.  eMoto  

Figure  2.  The  LEGA  

(9)

1.4.  Problem  background  

In  a  design  process  the  design  team  usually  becomes  experts  on  the  materials  they  are   working  with.  However,  the  technology  of  the  product  is  often  integrated  as  an  external   part,   a   completed   craft,   which   is   handling   the   ”technical   stuff”.   Later   on,   this   neglect   towards  technology  can  result  in  a  conflict  between  the  technology  and  the  rest  of  the   materials  of  the  product.  

In   general,   an   industrial   designer   or   an   architect   has   more   training   in   expressing   themselves   visually,   to   mediate   their   expert   knowledge   and   visions,   in   a   legible   and   concrete  way,  than  for  example  an  engineer.  Engineers,  in  general,  must  become  better   at  mediating  their  ideas  and  expertise  in  a  legible  and  concrete  way.  

When   designing   for   supple   systems,   or   any   systems,   it   is   important   to   have   a   great   understanding  for  the  technology  used,  its  possibilities  and  limitations,  so  that  it  does   not  end  up  in  a  conflict  with  the  rest  of  the  materials.  The  understanding  of  a  technology   could   be   given   by   an   engineer   who   is   able   to   mediate   knowledge   in   a   legible   and   concrete  way.  There  seemed  to  be  a  need  for  a  tool  for  this  purpose.  With  this  research   the   wish   was   to   come   up   with   a   tool   that   inspires   to,   and   mediate   knowledge   of,   a   technology   and   thereby   simplifies   the   understanding   of   the   technology   in   a   design   development.  

 

1.5.  Purpose  

This  project  has  been  focusing  on  looking  at  technology  as  a  “digital  material”.  By  doing   so  the  wish  was  to  explore  the  technology  as  a  material  and  describe  its  properties  and   possibilities.   The   outcome   should   be   a   collection   of   models   that   present   properties,   useful   to   a   design   team   that   needs   to   investigate   a   digital   material   that   they   will   be   working  with.  

The  purpose  of  this  master  thesis  was  to  find  a  concrete  and  legible  way  to  communicate   a  digital  material  to  a  design  team  and  to  demonstrate  this  way  by  choosing  one  digital   material,  in  this  case  RFID,  and  create  a  number  of  models  that  are  pedagogic  and  that   inspires  a  design  team  to  work  with  that  material.  These  models  should  be  experienced   as   easy   to   grasp,   inspiring,   playful   and/or   they   should   be   turning   a   technology’s   limitation  into  a  design  possibility.  

 

1.6.  Method  

The  team  for  this  project  consisted  of  four  group  members,  each  one  choosing  a  digital   material  to  explore.  I  chose  to  explore  RFID.  

The  project  started  with  a  literature  study  of  the  given  subject  to  gain  some  knowledge   in  the  field  and  to  see  what  had  been  done  earlier  for  the  same  purpose.  The  main  topic   in   this   study   was   how   to   approach   technology   to   get   a   better   understanding   of   it.  

Secondly,  the  study  was  directed  to  how  such  an  approach  can  be  interpreted  physically,   in  practical  objects.  

The   project   continued   with   a   brainstorming   about   what   I   wanted   out   of   the   models,   what  I  did  not  want  and  how  to  get  to  where  I  wanted.  The  project  was  given  the  name  

(10)

Inspirational   Bits.   Almost   throughout   the   whole   project   I   was   coming   back   to   what   Inspirational  Bits  really  are.  

Phidgets   [5]   are   a   set   of   “plug   and   play”   building   blocks   used   mainly   by   software   designers  to  quickly  sketch  up  an  idea  physically.  These  were  studied  and  evaluated  to   see  if  they  were  anything  like  what  I  was  after.  The  aim  was  to  see  if  there  was  anything   to   learn   from   them,   any   conclusions   to   be   made   about   the   way   they   were   used,   any   similarities  with  the  way  of  using  Inspirational  Bits,  and  trying  to  find  what  they  were   lacking  in  the  sense  of  what  I  was  after.  

One  and  each  of  the  group  members  chose  a  different  technology  to  create  Inspirational   Bits   from.   This   technology   was   read   upon   just   to   get   a   bit   deeper   knowledge   about   it   before  starting  to  work  practically  with  it.  

The   Inspirational   Bits   were   created   through   an   experimental   and   iterative   method.  

Every  week  a  new  Inspirational  Bit  was  demonstrated,  tested  and  evaluated  within  the   group.  Even  though  I  was  (almost)  an  engineer,  I  had  a  lot  to  learn  about  these  different   but   commonly   used   technologies   that   I   did   not   know   from   before.   The   results   were   gathered  and  analysed  and  if  the  Bit  was  not  legible  enough,  for  example,  I  knew  I  had  to   work  more  with  the  visual  presentation  of  my  model.  

The  finished  Inspirational  Bits  were  tested  through  a  workshop  with  participants  from   different  design  teams  and  with  different  academic  background.  The  participants  filled   out  three  different  questionnaires  regarding  their  experience  from  the  Inspirational  Bits   during  the  workshop.  A  professional  designer  gave  her  feedback  on  the  Bits.  

 

1.7.  Delimitations  

• This   project  is  investigating  the  subject  of  how  to  approach  technology  to  get  a   better   understanding   of   it   in   a   design   perspective.   It   is   limited   to   investigate   computer  technology  in  general  and  mobile  technology  in  particular.  

• The  Inspirational  Bits  are  limited  to  inspire  to  accommodative  movements.  I  was   interested   in   creating   models   that   provide   technology   that   can   be   experienced   and  felt.  

• This  thesis  is  only  investigating  one  technology,  RFID.  

• The   technologies   chosen   to   explore   and   create   Inspirational   Bits   from,   had   of   course  a  great  significance  for  the  outcome.  

• Four  Inspirational  Bits  were  created  from  RFID  and  were  therefore  only  handling   an  insignificant  part  of  the  infinite  possibilities  the  digital  material  can  lead  up  to.  

• The   Inspirational   Bits   created   in   this   project   are   representing   only   what   has   inspired  me  to  create  with  a  chosen  technology.  

• In   the   making   of   the   RFID   Inspirational   Bits   only   low   frequency   (LF)   and   high   frequency  (HF)  have  been  used.    

• Only   two   different   types   of   RFID   readers,   each   with   different   size   of   antenna,   have  been  used.    

• The  RFID  tags  used  have  been  of  various  kinds  with  different  sizes  of  antennas.  

(11)

2.  Background  

As   mentioned   earlier,   research   has   been   made   on   trying   to   make   technology   more   available  to  everyone  and  some  of  the  research  is  brought  up  in  this  chapter.  There  have   also  been  practical  ways  on  trying  to  solve  the  same  problem,  “plug  and  play”  building   blocks   being   one   of   them.   A   main   question   in   this   research   has   been   “What   is   a   material?”.  What  is  it  that  makes  a  material  a  material?  What  is  a  technology  and  what   similarities  can  be  drawn  between  the  subjects  technology  and  material?  What  can  be   gained   by   exploring   the   properties   of   a   technology?   By   approaching   technology   as   a   digital  material,  by  gaining  expertise  of  it,  a  design  team  will  more  likely  create  technical   products  for  supple  interaction.  

 

2.1.  Approaching  technology  

I  will  describe  two  different  ways  of  approaching  a  technology  in  a  design  process.  The   first,  and  perhaps  the  most  common  way,  is  to  collect  knowledge  about  the  technology   as  such.  This  is  usually  done  sooner  or  later  in  any  design  process  and  unfortunately  it   seems  as  if  it  is  usually  later.  A  theoretical  and  practical,  and  sometimes  experimental,   research  is  performed  which  leads  to  an  account  of  how  the  technology  actually  works.  

The   investigation   is   looking   into   its   limitations   and   is   examining   its   strengths   and   its   weaknesses.  This  is  to  give  rise  to  a  more  sufficient  knowledge  about  the  technology  but   also  about  learning  about  its  limitations  and  not  taking  the  technology  for  granted.  From   these  inputs  one  can  decide  whether  the  technology  seems  to  fill  the  requirements  for   the  particular  purpose  of  the  product.  

The  second  way  is  to  approach  a  technology  in  perhaps  a  more  controversial  way.  This   way   is   to   work   on   the   supposition   of   the   everyday   assumption   of   the   technology   and   what  it  can  be  used  for.  By  assuming  the  use  and  limitations  of  the  technology,  without   looking   into   it   or   taking   it   for   granted,   one   can   open   up   for   imagination   and   explore   other  possibilities.  E.g.  to  look  at  what  the  technology  is  not  meant  to  do  is  one  way  to   open  up  for  design  inspiration.  By  doing  this,  interest  and  inspiration  of  the  technology   can  be  pushed  to  the  start  of  the  design  process,  which  will  hopefully  result  in  a  stronger   outcome.  Trying  to  find  the  unexpected  in  a  technology  can  be  a  source  for  inspiration,   as  can  be  seen  in  other  brainstorming  methods.  With  this  approach  one  can  also  study   the   technology’s   limitations   as   such   and   make   something   fun   out   of   them.   By   not   approaching  a  property  as  a  limitation,  but  as  a  source  of  inspiration,  it  might  be  taken   less  like  a  constraint.  One  such  approach  could  also  be  to  increase  the  limitations  to  the   extremes  and  see  what  comes  out  of  that.  Another  could  be  to  make  weird  combinations   between  different  technologies  and  see  what  that  might  lead  up  to.  

 

2.2.  Technology  as  a  material  

Most   of   us   would   agree   to   say   that   algorithms,   databases,   hardware,   communication   standards,   etc.   have   their   own   limitations   and   possibilities.   Embedded   in   each   are   properties  that  are  more  or  less  fixed,  even  though  the  possibilities  for  combining  them   are   nearly   endless   [6].   Löwgren   and   Stolterman   describe   technology   as   a   material   without   properties.   They   suggest   that   the   basic   technology   has   some   fundamental  

(12)

material.   Most   of   these   material   properties   are   constantly   challenged   by   new   technological   breakthroughs   and   new   innovations   in   how   to   use   the   material.   They   suggest  that  by  consider  technology  as  a  material  without  properties;  the  design  process   becomes  more  open,  with  more  degrees  of  freedom  and  therefore  more  complex.  Also,   development  work  rarely  starts  from  scratch;  instead,  one  build  using  existing  libraries,   established  communication  protocols  etc.,  each  with  their  own  pre-­‐defined  properties.    

Vallgårda   and   Redström   talk   of   computational   composites,   alloys   made   up   of   a   combination  of  digital  material  that  impose  particular  properties  [7].  Thus,  they  explain   that  it  is  almost  impossible  to  work  with  the  digital  material  in  its  most  raw  form,  at  the   granularity   where   technology   “handles   only   voltage   according   to   stored   sequences   of   (practically)   discrete   voltage   levels   and   maybe   input   streams   likewise   of   (practically)   discrete   voltage   levels”.   Components   such   as   radio,   accelerometers,   short-­‐range   communications  etc.  build  on  top  of  this  basic  level  and,  in  turn,  become  subsumed  into   yet  more  abstract  interactive  systems,  such  as  PCs,  mobile  phones,  etc.  Because  of  this   layering   of   technology,   what   can   be   found   in   human-­‐computer   interaction   and   interactive  systems  design  is  that  the  particular  properties  of  low-­‐level  technologies  are   often  glossed  over.  

This   appears   to   stand   in   contrast   to   the   techniques   and   approaches   that   are   used   in   studio-­‐based   and   creative   design   practices   [8].   Through   sketches,   mock-­‐ups   and   early   prototyping,  traditionally  schooled  designers  engage  in  a  “conversation  with  materials”  

[9].  In  the  formation  of  a  new  idea  the  materials  are  worked  with  is  such  a  way  that  they   start  to  “talk  back”,  revealing  new  opportunities  and  challenges.  It  seems,  however,  that   computing  technology  is  a  more  complicated  material  for  many  designers  to  work  with   [10].  

Hallnäs  and  Redström  bring  up  an  example  of  what  is  a  material  and  what  is  not.  If  you   take  a  mobile  phone  and  ask  yourself  what  it  is  made  of,  some  would  say  that  it  is  made   out   of   metals   and   plastics.   Such   an   opinion   suggests   that   the   aesthetics   of   a   mobile   phone  leads  down  to  a  box  containing  some  electronic  circuits  and  the  rest  is  a  matter  of   neutral  technology.  They  suggest  that  a  definition  of  materials  in  a  design  process  can  be   tackled   by   frequently   asking   ourselves   what   it   is   that   builds   the   things.   E.g.   programs   builds   a   mobile   phone   in   use,   thus   programmes   are   material.   So   the   notion   of   design   material  is  not  an  absolute  notion,  but  depends  on  a  given  perspective.  Technology  is  a   material  in  space  and  over  time  [11].  It  is  not  enough  to  touch  and  feel  this  material  in   any  given  moment  and  thereby  get  to  know  its  properties  and  potentials;  instead;  the   digital   material   has   to   reveal   itself   and   its   dynamic   qualities   when   put   together   into   a   running  system.  

One   popular   approach   to   supporting   developers   and   designers   building   interactive   systems  has  been  to  work  on  so-­‐called  support  tools.  Yet,  most  of  these  systems  aim  to   support  designers  in  the  processes  of  visualizing  and  refining  an  interaction  design  (e.g.  

[12],   [13]),   not   to   handle   and   explore   the   digital   material.   There   are   also   a   range   of   systems  that  enable  designers  to  rapidly  reconfigure  the  construction  of  their  designs,   such   as   varying   the   colour,   form   and   overall   build   of   an   object,   and   also   visualize   previous  versions  of  a  design  (e.g.  [14]),  but  still  this  does  not  provide  access  to  the  full   range   of   possibilities   the   digital   material   might   offer.   The   designer   remains,   in   some   fashion,  removed  from  the  actual  technology.  

The   range   of   plug   and   play   building   block   solutions   provide   an   alternative,   hands-­‐on   approach   to   building   systems   and,   in   doing   so,   go   some   way   towards   solving   the  

(13)

immediacy   problem.   These   systems,   such   as   Phidgets   [5]   and   Arduino   [15],   let   the   amateur  hardware  developer/maker  handle  and  come  to  understand  more  of  the  digital   material’s   potentials,   making   the   material   more   open   for   reflection   in   action   [9].   But,   they  still  compartmentalize  and  blackbox  basic  building  blocks,  such  as  RFID.  Arguably,   this  is  intended  in  their  design  and  the  basis  of  their  success.  

 

2.3.  Designing  for  supple  interaction  

             “A  supple  system  is  doing  sort  of  a  social/emotional  ‘dance’  with  the  end  user.”  

                         (Isbister  och  Höök,  2009)  

Suppleness   is   a   use   quality   created   by   Isbister   and   Höök   [17].   A   supple   system   is   a   hardware   device   that   uses   custom-­‐built   hardware,   sensors,   and   wireless   communication,  to  interact  with  end-­‐users  and  create  a  physical,  emotional,  and  highly   involving  interaction.  Supple  systems  rely  on  subtle  signals;  rich  human  communication   and   interpretation   strategies   such   as   emotion,   social   ritual,   nonverbal   communication,   and  kinaesthetic  engagement;  and  emergent  dynamics,  to  provide  a  moment-­‐to-­‐moment   experience.  

Supple   systems   are   software-­‐intensive,   hardware-­‐intensive   and   interaction-­‐intensive.  

The  behaviour  of  a  supple  system  is  defined  by  its  software,  the  physical  by  its  hardware   and  the  use  of  a  supple  system  is  completely  defined  by  how  people  take  it  into  use  and   create  meaning  with  and  through  the  system.  

Supple   systems   is   a   class   of   applications   that   lies   in   the   forefront   of   technological   development  and  is  pushing  the  evolution  in  the  area  of  the  involved  technologies.  The   evolution   is   driven   by   the   commercial   availability   of   sensors   for   tracking   human   expression,   which   has   lead   to   a   growing   number   of   systems   that   use   those   to   provide   compelling  user  experiences.  Such  systems  rely  on  design  of  the  hardware  and  software   together,   integrated   into   specific   interaction   devices   that   customers   buy   as   a   whole.  

Examples  include  Apple’s  iPhone  and  Nintendo’s  Wii.  

The  quality  of  an  experience  arises  in  the  interaction  between  users  and  systems.  The   interaction   is   in   turn   affected   by   the   hardware   and   software   of   the   system.   Even   seemingly  simple  artefacts,  such  as  pulse-­‐meters,  require  holistic  design  of  specialized   hardware  and  specialized  user  interfaces.  Each  of  these  factors   is  equally  important:  a   problem  in  any  one  of  them  can  ruin  an  otherwise  great  experience.  

With   this   vision,   a   process   will   be   developed   for   rapid,   integrated,   development   of   supple   systems.   The   focus   is   set   on   building   so-­‐called   life-­‐style   applications,   mobile   systems   that   are   tightly   integrated   into   our   every-­‐day   lives,   as   their   advanced   use   of   technology  highlights  the  challenges  for  future  applications  of  supple  systems  –  be  it  in   factories,   vehicles,   or   applications   on   our   mobile   phones.   The   systems   developed   will   explore   new   materials,   such   as   fabric   or   paper,   integrated   with   sensors   and   wireless   technologies.  

Practically,   the   keywords   to   aim   for   in   the   experience   aspect   of   the   supple   kind   of   product  development,  is  movement,  fluency,  harmony  and  coherency.  

(14)

3.  Inspirational  Bits  

The  making  of  Inspirational  Bits  has  been  an  iterative  process.  Throughout  this  whole   process  I  had  to  repeatedly  go  over  what  I  was  aiming  for,  over  and  over  again,  since  it   slightly  changed  from  time  to  time.  This  is  because  this  way  of  thinking  was  developed   by   building   the   Bits   and   because   the   technologies   used   were   very   different   from   each   other.  “What  is  an  Inspirational  Bit  and  how  do  I  create  them?”  were  the  main  questions   being  repeated  in  the  iterations.  In  this  chapter  I  am  also  taking  a  closer  look  at  Phidgets   to  see  whether  these  building  blocks  are  anything  like  what  I  am  trying  to  achieve  with   my  models.  

 

3.1.  What  is  an  Inspirational  Bit?  

The  Inspirational  Bits  are  models  created  to  tutor,  to  inspire,  to  create  curiosity,  and  to   leave   behind   a   space   for   innovative   thoughts.   An   Inspirational   Bit   unwraps   the   black-­‐

boxed   technology,   and   perhaps   twists   it   again,   but   in   a   way   that   should   be   easy   to   understand.  An  Inspirational  Bit  invites  the  one  who  is  using  it  to  get  an  understanding   of  the  technology  it  is  made  from.  It  shows  the  digital  material  as  such,  it  lets  the  user   experience  the  technology  and  it  opens  up  possibilities  of  how  it  could  be  used,  or  what   it  could  be  used  for,  that  maybe  was  not  originally  the  purpose.    

Inspirational   Bits   are   made   through,   what   some   people   would   call,   technology-­‐driven   design,  because  the  technology  is  chosen  prior  to  anything  else.  The  aim  of  these  Bits,   however,   is   to   use   them   for   creating   products   that   are   not   necessarily   technology-­‐

driven.   Different   technologies   have   been   chosen   and   studied   carefully   to   find   what   properties   should   be   lifted   and   made   tangible.   Later   on,   when   a   user-­‐oriented   design   team  has  chosen  a  technology  for  their  ideas,  the  Inspirational  Bits  can  help  to  shape  the   ideas  and  quickly  point  out  some  possibilities,  limitations  or  other  properties  that  can   and  be  good  to  keep  in  mind  when  working  with  the  technology.  

An   Inspirational   Bit   is   a   model   that   illustrates   a   technology.   Almost   like   a   sample   provided   of   another   kind   of   material,   e.g.   of   wood,   metal,   plastic,   etc.,   this   model   provides  an  understanding  of  the  properties  of  a  digital  material.  The  model  should  be   tangible   enough   to   inspire   and   open   enough   to   leave   space   for   imagination   of   design   possibilities.   By   defining   an   Inspirational   Bit   I   am   pushed   to   developing   the   possible   paradox  of  a  model  that  should  be  semantic  and  easy  enough  to  understand  and  at  the   same  time  be  unmanufactured  enough  to  open  up  for  imagination  and  for  unexpected   design  possibilities.  

The  Inspirational  Bits  is  created  to  let  the  user  experience  a  technology.  By  surrounding   oneself  with  the  presence  of  the  technology  and  getting  to  “feel”  it,  one  might  easier  be   able  to  play  with  the  idea  of  what  it  could  possibly  be  used  for.  When  playing  with  it  the   possibilities  reveal  themselves  in  a  way  that  might  be  easier  to  grasp  than  through  only   reading.   At   the   same   time   it   does   not   necessarily   have   to   be   self-­‐explanatory   in   all   respects.  A  design  team  member,  perhaps  the  one  who  built  it  or  someone  who  already   experienced  it,  should  be  able  to  fill  out  the  possible  blanks.  

 

(15)

3.2.  Specification  of  Inspirational  Bits  

In   order   to   make   sure   that   I   was   continuously   aiming   for   the   same   direction   I   had   to   make   a   specification   of   requirements   for   the   Inspirational   Bits.   These   were   my   own   requirements  that  I  thought  would  lead  up  to  the  best  result.  During  the  process  these   requirements  constantly  changed  but  this  is  what  they  looked  like  in  the  end.  

• The   Inspirational   Bits   should   be   of   use   for   a   design   team   looking   for   creating   innovative  technical  products.  In  a  design  team  there  is  most  likely  a  difference  in   technical  knowledge  and  the  Inspirational  Bits  should  be  useful  to  anyone.  Team   members  with  little,  or  non,  technical  knowledge  can  receive  deeper  explanation   from  members  with  more  technical  knowledge.  

 

• The  Inspirational  Bits  should  illustrate  property/-­‐ies  of  a  technology.  Almost  like   samples  provided  of  other  kinds  of  materials,  e.g.  for  wood,  metal,  plastics,  etc.,   this   model   should   provide   an   understanding   of   the   properties   of   a   digital   material.  

 

• The  Inspirational  Bits  should  be  tangible  enough  to  instruct  and  simple  enough  to   inspire.  It  should  be  semantic  and  easy  enough  to  understand,  when  facing  it,  and   at  the  same  time  be  unmanufactured  enough  to  leave  space  for  imagination  and   for  unexpected  design  possibilities.  

 

• The   Inspirational   Bits   should   let   the   user   experience   a   technology.   By   surrounding  oneself  with  the  presence  of  the  technology  and  getting  to  “feel”  it,   the  Inspirational  Bit  should  make  it  easier  to  play  with  the  idea  of  what  it  could   possibly  be  used  for.  

 

• An  Inspirational  Bit  should  create  an  intuition  about  the  use,  to  some  extent.  At   the  same  time  it  should  not  necessarily  be  self-­‐explanatory  in  all  respects.  

 

• An  Inspirational  Bit  should  invite  to  innovative  thinking  around  a  technology  and   be   experienced   as   easy   to   grasp,   inspiring,   playful   and/or   should   be   turning   a   limitation  into  a  design  possibility.  

 

• The   making   of   Inspirational   Bits   should   be   “quick   and   dirty”.   By   overdoing   the   Inspirational  Bits,  the  focus  on  the  properties  might  be  lost  in  the  appearance  of   only   one   possible   solution.   Another   risk   is   that   the   attention   to   the   system   instead  will  be  drawn  to  the  design  of  it.  

 

3.3.  Phidgets  

In   computer   programming,   a   widget   is   an   element   of   a   graphical   user   interface   (GUI)   that  displays  an  information  arrangement  changeable  by  the  user,  such  as  a  window  or  a   text  box.  Widgets  are  basic  visual  building  blocks,  which  combined  in  an  application  hold   all  the  data  processed  by  the  application  and  the  available  interactions  on  this  data.  A   phidget   is   a   physical   widget   and   a   representation   and/or   implementation   of   a   GUI   widget.  

   

(16)

3.3.4.  What  are  Phidgets?  

Phidgets  [5]  are  developed  to  build  physical  analogue  components  to  software  widgets,   allowing   the   construction   of   complex   physical   systems   out   of   simpler   components   (figure  3).  Phidgets  are  a  system  of  low-­‐cost  electronic  components  and  sensors  that  are   controlled  by  a  host  computer  via  USB.  Using  the  USB  as  the  basis  for  all  phidgets,  the   complexity   is   managed   behind   an   application-­‐programming   interface   (API).   There   are   various  phidgets  available,  each  having  a  counterpart  class  in  the  API.  As  each  phidget  is   attached  to  the  host  computer,  it  is  made  available  to  control  in  the  API,  where  its  state   can  be  accessed  and  set.  

The   Phidget   Interface   Kit   allows   input   and   output   interfaces   to   analogue   and   digital   sensors   and   switches   and   is   connected   to   a   computer  via  USB.  Up  to  eight  phidgets  can  be   connected   to   the   Phidget   Interface   Kit.   The   phidgets   all   have   different   properties   and   sensitivity  for  different  purposes.  

The   phidget   API   is   what   allows   systems   to   access   the   phidget   devices   in   a   high   level   manner.   The   API   allows   the   management   of   devices   as   they   are   attached,   to   subscribe   to   events  and  to  access  the  state  of  the  phidgets.  

The  core  API  is  originally  written  in  C  and  has   been  extended  to  work  in  numerous  languages   including   .NET   and   Java.   Phidgets   can   be   programmed   using   a   variety   of   software   and   programming   languages,   ranging   from   Java   to   Microsoft  Excel.  

Phidgets   are   designed   and   produced   by   the   phidgets   company   and   arose   out   of   a   research   project   in   2001   directed   by   Saul   Greenberg   at   the   Department   of   Computer   Science,  University  of  Calgary  [18].  

 

3.3.5.  Whom  are  Phidgets  for?  

The  phidgets  are  building  blocks  designed  to  display  how  a  developed  software  system   works   out   physically.   For   example,   instead   of   clicking   in   the   window   of   the   computer   screen   you   push   the   physical   button   that   you   have   connected   to   your   computer.   They   are   building   blocks   suitable   for   software   designers   and   might   not   be   for   designers   in   general.   The   usage   of   phidgets   is   primarily   focused   to   allow   exploration   of   alternative   physical  computer  interaction  systems,  but  have  most  notably  been  adopted  by  robotic   enthusiasts  as  they  greatly  simplify  Computer-­‐Robot  interaction.    

 

3.3.6.  Are  Phidgets  similar  to  Inspirational  Bits?  

The   phidgets   are   programmed   to   work   within   a   certain   range   where   the   system   is   considered  to  be  stable.  This  is  to  prevent  incorrect  output  from  the  sensors.  Since  my   wish  is  to  study  the  properties  of  a  technology,  this  is  not  what  I  am  after.  The  phidgets  

Figure  3.  Phidgets  

(17)

are  programmed  to  be  reliable  demonstration  components  and  does  not  really  open  up   for  imagination,  which  makes  it  hard  to  find  new  design  possibilities.  

Phidgets  are  building  blocks.  The  idea  of  Inspirational  Bits  is  not  to  use  them  as  building   blocks.  They  are  meant  to  be  fully  working  systems  but  only  in  a  way  so  that  they  inspire   and  directs,  not  in  a  sense  that  you  can  integrate  them  into  another  system.  

Lifting  the  programmed  constraints  from  the  phidgets  could  be  one  way  to  make  them   more  into  the  kind  of  Inspirational  Bits  that  I  am  after.  By  letting  the  sensors  react  on   environment   without   programmed   limitations,   I   might   be   able   to   find   design   possibilities  that  are  unexpected.  

By   combining   different   phidgets   in   weird   combinations   might   be   another   way   of   creating  Inspirational  Bits  out  of  the  phidgets.  

(18)

4.  RFID  

The   following   chapters   were   presented   in   the   workshop   as   common   theory   about   the   technology.   This   theory   includes   the   facts   that   one   would   normally   find   doing   a   quick   search   on   RFID.   In   the   workshop   I   compared   the   impact   this   theory   had   on   the   participants  with  the  impact  the  Inspirational  Bits  had,  in  terms  of  feeling  comfortable   with  working  with  RFID  and  being  inspired  to  work  with  RFID.  

 

4.1.  Common  knowledge  of  RFID  

Radio  Frequency  Identification  (RFID)  is  a  technology  that  uses  radio  waves  for  sending   and  reading  information  at  distance  from  transponders  and  memories  called  tags.  The   technique  is  great  for  situations  like  “where  does  this  product  come  from  and  where  is  it   going”  and  “does  this  car  have  the  right  to  pass  here  or  not”.  

RFID   labels   can   be   placed   on   products   and   contain   product   information  and/or  work  as  a  theft  alarm.  They  are  caped  in   ID  cards/passports  for  identification  and  they  are  casted  into   plastic  pieces  and  serves  as  digital  keys,  and  they  are  used  in   bracelets   on   hospital   patients   where   they   contain   identification,  and  simple  information  about  their  journal  and   medications.  Other  examples  of  areas  where  RFID  is  used  are   in  cards  for  public  transports  (figure  4)  or  ski  lifts,  road  fees,   price  tags,  booking  systems,  libraries,  etc.    

  4.2.  RFID  readers  

RFID   readers   can   have   different   looks.   There   are   handheld   ones   (figure   5)   and   stationary   ones.   Stationary   readers   are   usually   mounted   by   doors   or   in   portals.   The   handheld  ones  are  often  seen  in  the  hands  of  shop  assistants.  

The   RFID   reader   has   to   use   the   same   radio   frequency   and   protocol   as   the   tags   that   it   is   reading.   The   reader   creates   a   magnetic  field  and  sends  out  a  request  for  response.  If  there  is  a   RFID  tag  within  that  field,  it  will  respond  back  to  the  reader  by   sending  its  unique  ID-­‐code.  

Compared  to  using  barcodes,  which  are  also  commonly  used  in   shops,   the   RFID   technique   does   not   require   line   of   sight   in   the   communication  and  is  not  as  sensitive  to  a  situation  of  blocking   dirt.  In  addition,  it  is  a  lot  harder  to  copy  a  RFID  tag  compared  to   a   common   barcode.   The   barcode,   however,   has   the   advantage   that  it  can  be  read  by  any  kind  of  barcode  reader,  they  are  very   cheap  to  produce  and  they  are  not  affected  by  any  interference.  

 

Figure  4.  RFID  tags  in  cards   for  public  transports.  

Figure  5.  A  handheld  RFID   reader.  

(19)

4.3.  RFID  tags  

An  RFID  tag  consists  of  an  antenna  and  a  radio  chip  that  sends  and  receives  data.  The   radio  part  is  usually  very  small  and  can  be  produced  in  many  different  shapes  and  sizes,   which  gives  a  good  flexibility  and  a  broad  usage  area.  The  most  common  tags  are  in  label   forms.  

There  are  three  different  kinds  of  RFID  tags:  passive,  active  and  semi-­‐passive  tags.  The   passive  RFID  tags  are  the  cheapest  and  the  most  common  versions  of  tags.  They  have  a   very  simple  construction  and  consist  only  of  an  antenna  and  a  unique  number  that  can   be  sent  out  a  few  decimetres.  In  this  type  of  RFID  transponders,  all  the  information  is   stored   in   a   database.   The   information   stored   is   bound   to   the   unique   ID   number.   This   simple   type   of   RFID   can   be   compared   to   the   function   of   a   bar   code.   More   advanced   passive  RFID  tags  have  a  built  in  memory  that  can  be  subscribed  to  many  times  although   the  memory  is  fairly  limited.  

The   passive   tags   do   not   have   an   internal   energy   supply.   The   reader   consists   of   an   oscillating  magnet  field  that  induces  enough  voltage  in  the  antenna  for  the  passive  tag  to   be  able  to  receive  an  incoming  signal  and  send  an  outgoing  signal  containing  its  number.  

The  content  does  not  only  have  to  be  a  number,  it  can  be  more  complex,  like  information   from   an   integrated   memory.   The   tag   can   be   small   enough   to   fit   in   a   price   tag,   to   be   injected   under   the   skin   of   an   animal   or   to   be   implemented   in   humans   for   radio   wave   identification.  

The  passive  tags  have  the  capacity  of  being  read  from  a  distance  of  a  few  centimetres  up   to  10  metres  depending  on  what  standard  is  used  and  what  effect  the  environment  has.  

Since  the  passive  tags  do  not  have  a  built-­‐in  energy  source  they  can  be  made  very  small   (figure  6)  and  easy  to  apply  where  space  is  a  critical  factor,  e.g.  under  stickers  or  skin.    

The  main  difference  between  the  passive  tags  and  the  active  tags  is  that  the  active  tags   have   their   own   energy   source,   a   battery,   unlike   the   passive   tags   where   the   energy   is   induced  from  the  magnetic  field  from  the  reader.  The  energy  from  the  batteries  in  the   active  tags  is  used  to  send  information  and  to  run  the  components  in  the  tags.  The  active   tags  are  therefore  bigger,  need  more  maintenance  and  are  significantly  more  expensive   to  produce.  The  active  tags  are  used  to  communicate  over  a  larger  distance,  e.g.  on  a  car   on  the  motorway,  and  can  reach  up  to  hundreds  of  metres.  The  communication  between   a  reader  and  an  active  tag  is  more  reliable  due  to  the  ability  to  have  an  active  session   with  the  reader.  And  because  of  the  higher  level  of  voltage,  the  signal  can  pass  through   decelerating   materials   like   liquids.   The   batteries   in   active   tags   can   last   for   up   to   ten   years.   Bigger   memories   can   be   integrated   since   the   size   is   usually   not   an   issue   with   active  tags.    

Semi-­‐passive  RFID  is  a  hybrid  between  passive  and  active  RFID.  The  difference  is  that   the   integrated   energy   source   is   only   running   the   microchip   and   other   internal   components,  and  not  the  sending  of  signals.  Therefore  the  battery  lasts  longer.  The  tag   can  log  data  over  time  and  send  it  whenever  a  reader  asks  for  it.  

 

4.4.  Identity  code  

Every   tag   has   a   unique   identity,   which   consists   of   a   code   of   up   to   20   characters.   This  

(20)

can   also   contain   a   memory   in   which   you   can   store   information,   normally   with   a   size   between  2  –  2000  bytes.  It  is  possible  to  increase  the  amount  of  memory  but  the  cost  of   the  circuit  would  be  significantly  larger.  

 

4.5.  Radio  frequency  

For  a  reader  and  a  tag  to  be  able  to  communicate  they  have  to  be  “speaking  the  same   language”.  In  RFID  this  means  that  the  reader’s  antenna  and  the  tag’s  antenna  have  to  be   tuned  to  work  on  the  same  frequency.  About  30  different  frequencies  are  used  and  the   four  most  common  ones  are:  

• Low  Frequency  (LF)   125  –  134  kHz  

With  this  low  frequency  the  waves  can  easily  penetrate  materials  like  water  or   even  metal.  Therefore  this  type  is  used  for  tags  in  tissues  of  humans  and  animals.  

• High  Frequency  (HF)   13,56  MHz  

This   is   a   frequently   used   frequency   band   suitable   in   many   sectors   of   applications.  It  is  still  reliable  and  can  penetrate  some  materials  and  the  range  is   longer.  

• Ultra  High  Frequency  (UHF)   862  –  960  MHz  

The  frequency  band  is  fairly  tight  and  the  communication  can  easily  be  disturbed   by   other   units,   like   a   microwave   oven   for   example.   Cannot   penetrate   other   materials.  

• Ultra  High  Frequency  (UHF)   2,4  GHz  

The  frequency  band  is  very  tight  and  the  communication  can  easily  be  disturbed   by   other   units,   like   mobile   phones   for   example.   Cannot   penetrate   other   materials.  

Every   circuit   is   also   run   by   a   protocol,   which   differs   depending   on   the   system.   The   protocol  is  controlling  how  the  communication  between  the  reader  and  the  tag  is  to  be   done.   It   is   also   controlling   that   a   collision   of   data   will   not   occur.   Thus,   a   RFID   tag   can   only  be  read  by  a  reader  that  is  using  the  same  frequency  and  the  same  protocol  as  the   tag.  

 

4.6.  Range  

The   range   can   vary   from   a   couple   of   centimetres   up   to   hundreds   of   metres.   This   distance,  in  which  a  tag  can  be  read,  depends  on  four  major  factors:  

• The  antenna  size,  both  of  the  reader  and  of  the  tag  

• The   frequency;   the   electric   current   that   the   tag   can   induce   from   the   magnetic   field  of  the  reader  

• Interference,   from   other   radio   frequencies   or   absorptions   from   surrounding   materials  

• The  type  of  tag;  whether  it  contains  a  battery  or  not.  

References

Related documents

Kunskapen om SSABs arbete för en säker arbetsmiljö härrör i första hand från en överordnad eller från intranätet Tabell 11b, se nästa sida). Undantaget här är

Om exempelvis resultatet i frågeställningen ovan hade visat att flertalet män inte kände till begreppet, men alla kvinnor, så hade det varit intressant att försöka ta reda på

Samtidigt börjar fler företag som använder sig av online-annonser att införa betalväggar på sina hemsidor där konsumenter på internet tvingas stänga av sin annonsblockerare,

Oavsett om personer föredrog bild med kompletterande text eller rörlig bild i sitt flöde uppfattade respondenterna att de två typerna av innehåll förekom i lika stor utsträckning i

Enligt teorierna presenterade i medarbetarperspektivet finns en utmaning för chefer att öka medarbetarnas närhet till CSR för att åstadkomma en så lyckad implementering av

Abstract: This bachelor thesis is based on the current discourse within the aid policy, which highlights and focuses on measurability and reporting of results within

If the HomeCom Project is successful in creating attractiveness of Linköping by promoting the region as centre of the home communications industry, it is likely to attract

HARQ Systems: Resource Allocation, Feedback Error Protection, and Bits-to-Symbol Mappings..